Abstract

The eruption of the Eyjafjallajökull volcano starting on 14 April 2010 resulted in the spreading of volcanic ash over most parts of Europe. In Slovenia, the presence of volcanic ash was monitored using ground-based in-situ measurements, lidar-based remote sensing and airborne in-situ measurements. Volcanic origin of the detected aerosols was confirmed by subsequent spectral and chemical analysis of the collected samples. The initial arrival of volcanic ash to Slovenia was first detected through the analysis of precipitation, which occurred on 17 April 2010 at 01:00 UTC and confirmed by satellite-based remote sensing. At this time, the presence of low clouds and occasional precipitation prevented ash monitoring using lidar-based remote sensing. The second arrival of volcanic ash on 20 April 2010 was detected by both lidar-based remote sensing and airborne in-situ measurements, revealing two or more elevated atmospheric aerosol layers. The ash was not seen in satellite images due to lower concentrations. The identification of aerosol samples from ground-based and airborne in-situ measurements based on energy-dispersive X-ray spectroscopy confirmed that a fraction of particles were volcanic ash from the Eyjafjallajökull eruption. To explain the history of the air masses bringing volcanic ash to Slovenia, we analyzed airflow trajectories using ECMWF and HYSPLIT models.

References

Mitchard, E. T. A., Saatchi, S. S., White, L. J. T., Abernethy, K. A., Jeffery, K. J., Lewis, S. L., Collins, M., Lefsky, M. A., Leal, M. E., Woodhouse, I. H., and Meir, P. 2011. Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud. Biogeosciences, v.8, pp.8781-8815.

Keep in touch with the Grantham Research Institute at LSE
Sign up to our newsletters and get the latest analysis, research, commentary and details of upcoming events.