Lam, Clifford and Feng, Phoenix (2018) A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data. Journal of Econometrics, 206 (1). pp. 226-257. ISSN 0304-4076 http://eprints.lse.ac.uk/88375/
Lam, Clifford and Souza, Pedro C.L. (2019) Estimation and selection of spatial weight matrix in a spatial lag model. Journal of Business and Economic Statistics. ISSN 0735-0015. http://eprints.lse.ac.uk/91501/
Baranowski, Rafal, Chen, Yining and Fryzlewicz, Piotr (2019) Narrowest-over-threshold detection of multiple change points and change-point-like features. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 81 (3). 649 - 672. ISSN 1369-7412. http://eprints.lse.ac.uk/100430/
Fryzlewicz, Piotr (2018) Tail-greedy bottom-up data decompositions and fast mulitple change-point detection. Annals of Statistics, 46 (6B). pp. 3390-3421. ISSN 0090-5364. http://eprints.lse.ac.uk/85647/
Qiao, Xinghao, Guo, Shaojun and James, Gareth M. (2019) Functional graphical models. Journal of the American Statistical Association, 114 (525). 211 - 222. ISSN 0162-1459. http://eprints.lse.ac.uk/84856/
Guo, Shaojun and Qiao, Xinghao (2022) On consistency and sparsity for high-dimensional functional time series with application to autoregressions. Bernoulli. ISSN 1350-7265 (In Press). http://eprints.lse.ac.uk/114638/
Chang, J., Kolaczyk, E. D. and Yao, Q. (2022). Estimation of subgraph densities in noisy networks. Journal of the American Statistical Association, 117, 361-374. http://eprints.lse.ac.uk/104684/
Chang, J., Cheng, G. and Yao, Q. (2022). Testing for unit roots based on sample autocovariances. Biometrika, to appear. http://eprints.lse.ac.uk/114620/
Zhou, Yunzhe, Shi, Chengchun, Li, Lexin, & Yao, Qiwei (2023). Testing for the Markov property in time series via deep conditional generative learning. Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(4), 1204-1222.
Shi, Chengchun, Wan, Runzhe, Chernozhukov, Victor, & Song, Rui. (2021). Deeply-debiased off-policy interval estimation. In International conference on machine learning, Pages 9580-9591.
Chen, Yining (2020) Jump or kink: note on super-efficiency in segmented linear regression break-point estimation. Biometrika. ISSN 0006-3444. http://eprints.lse.ac.uk/103488/
Feng, Oliver Y., Chen, Yining, Han, Qiyang, Carroll, Raymond J and Samworth, Richard J. (2022) Nonparametric, tuning-free estimation of S-shaped functions. Journal of the Royal Statistical Society. Series B: Statistical Methodology. ISSN 1369-7412. http://eprints.lse.ac.uk/111889/
A. Beskos, J. Dureau and K. Kalogeropoulos (2015) Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion. http://eprints.lse.ac.uk/64806/
Dureau, J., Kalogeropoulos, K., Vickerman, P., Pickles, M. and Boily, M. C. (2016) A Bayesian approach to estimate changes in condom use from limited human immunodeficiency virus prevalence data. Journal of the Royal Statistical Society. Series C: Applied Statistics, 65 (2). 237 - 257. ISSN 0035-9254 http://eprints.lse.ac.uk/47602/
Wang, Tengyao, Dobriban, Edgar, Gataric, Milana and Samworth, Richard J. (2024) Sharp-SSL: selective high-dimensional axis-aligned random projections for semi-supervised learning. Journal of the American Statistical Association. ISSN 0162-1459.
Li, Jie, Fearnhead, Paul, Fryzlewicz, Piotr and Wang, Tengyao (2024) Automatic change-point detection in time series via deep learning. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 86 (2). 273 - 285. ISSN 1369-7412.