MY557      Half Unit
Causal Inference for Observational and Experimental Studies

This information is for the 2025/26 session.

Course Convenor

Dr Daniel De Kadt

Availability

This course is available on the MPhil/PhD in Economic Geography, MPhil/PhD in Environmental Economics, MPhil/PhD in International Relations, MPhil/PhD in Regional and Urban Planning Studies, MRes in Management (Employment Relations and Human Resources), MRes in Management (Marketing), MRes in Management (Organisational Behaviour) and MRes in Political Science. This course is freely available as an outside option to students on other programmes where regulations permit. It does not require permission.

This course is not controlled access. If you register for a place and meet the prerequisites, if any, you are likely to be given a place.

Requisites

Additional requisites:

Knowledge of multiple linear regression and some familiarity with generalised linear models, to the level of MY452/MY552 or equivalent. Familiarity with notions of research design in the social sciences, to the level of MY400/MY500 or equivalent. Familiarity with R.

Course content

This course provides an advanced introduction to modern quantitative causal inference in the social sciences. The class covers the canonical approaches to causal inference and includes excursions to the leading edge of the field. We begin with a foundational introduction to both the potential outcomes and graphical frameworks for causality, before considering a range of applied research designs for causal inference. We first discuss identification and estimation for classical randomized experiments, with brief forays into more complex designs. We then turn to a range of observational designs, which will be the primary focus of the class. The first of these is selection on observables (SOO), and we cover regression, matching, and weighting as estimations strategies, before discussing sensitivity analyses and interval estimation (bounds). We then consider instrumental variables (IV) from both the modern potential outcomes perspective and, briefly, the classical structural approach, before delving into new IV settings like examiner designs, shift-share designs, and recentered instruments. From IV we move to regression discontinuity designs (RDD); we approach identification from the continuity perspective and introduce local polynomial approximation for estimation. Finally, we pivot to causal inference with time-varying data, focusing first on the canonical two-period difference-in-differences (DiD) design. We then consider generalised DiD with many time periods, treatment effect heterogeneity, staggered assignment, and non-absorbing treatments. Throughout the class examples are drawn from different social sciences. The course includes seminars for each of the major methods, which combine the close reading and discussion of an applied paper with a brief session on implementation in R.

Teaching

20 hours of lectures and 10 hours of seminars in the Winter Term.

This course has a reading week in Week 6 of Winter Term.

Formative assessment

Problem sets from the computer classes can be submitted for feedback.

 

Indicative reading

• Imbens, G. W. and Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press.
• Angrist, J. D. and Pischke, J.-S. (2009). Mostly Harmless Econometrics. Princeton University Press.
• Rosenbaum, P.R. (2010). Design of Observational Studies. Springer.

Assessment

Quiz (40%)

Research paper (60%)


Key facts

Department: Methodology

Course Study Period: Winter Term

Unit value: Half unit

FHEQ Level: Level 8

CEFR Level: Null

Total students 2024/25: 9

Average class size 2024/25: 4

Controlled access 2024/25: No
Guidelines for interpreting course guide information

Course selection videos

Some departments have produced short videos to introduce their courses. Please refer to the course selection videos index page for further information.