ST311      Half Unit
Artificial Intelligence

This information is for the 2022/23 session.

Teacher responsible

Dr Xinghao Qiao


This course is compulsory on the BSc in Data Science. This course is available on the BSc in Actuarial Science, BSc in Mathematics, Statistics and Business and BSc in Politics and Data Science. This course is available with permission as an outside option to students on other programmes where regulations permit and to General Course students.


Students must have completed one of the following two combinations of courses: (a) ST102 and MA100, or (b) MA107 and ST109 and EC1C1. Equivalent combinations may be accepted at the lecturer’s discretion.

A computer programming course using Python, e.g. ST101 Programming for Data Science.

Students who have no previous experience in Python are required to complete an online pre-sessional Python course from the Digital Skills Lab before the start of the course (


Course content

The objective of this course is to introduce students to basic principles of artificial intelligence (AI) systems. By AI, we refer to machines (or computers) that mimic cognitive functions that humans associate with the human mind, such as learning and problem solving. The course will take a practical approach, explaining the main principles and methods used in the design of AI systems.

The course will provide an introduction to main principles of deep learning, covering topics of neural nets as universal approximators, design of neural network architectures, backpropagation and optimisation methods for training neural networks, and some special deep neural network architectures commonly used for solving AI tasks such as image classification, sequence modelling, natrual language processing and generative models. If time allows, this course will also provide an introduction to reinforcement learning problem formulation. Students will gain practical knowledge to learn and evaluate deep learning and reinforcement learning algorithms (if time allows) using Python and open-source software libraries.


The lectures cover fundamental methodological and theoretical principles while computer workshops provide students with an opportunity to gain hands-on-experience by solving exercises using modern and commonly used software libraries such as PyTorch and OpenAI Gym.

This course will be delivered through a combination of classes and lectures totalling a minimum of 35 hours across Lent Term. This year, some of this teaching may be delivered through a combination of classes and flipped-lectures delivered as short online videos.

Students are required to use a Python programming environment, e.g. by installing Anaconda / Jupyter notebooks on their own laptops or using Google Colab, and to use their own laptops in the workshops.

Formative coursework

Students will be expected to produce 8 exercises in the LT.

Indicative reading

1. A. Zhang, Z. Lipton, M. Li and A. Smola, Dive into Deep Learning, 2022,

2. I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2017,

3. R. Sutton and A. C. Barto, Reinforcement Learning: An Introduction, 2nd Edition, MIT Press, 2018

4. M. Nielsen, Neural Networks and Deep Learning, 2016, online book.

5. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Pearson, 2016


Coursework (30%) in the LT.
Project (70%) in the ST.

Students are required to hand in the solutions to 3 sets of exercises (each accounting for 10% of the final grade).

The project will be a group project with 2 members per group. The detailed instruction will be handed out in Week 10 of Lent term, and students need to submit a written report by Week 1 of Summer term.

Key facts

Department: Statistics

Total students 2021/22: 26

Average class size 2021/22: 13

Capped 2021/22: Yes (30)

Lecture capture used 2021/22: Yes (LT)

Value: Half Unit

Guidelines for interpreting course guide information

Course selection videos

Some departments have produced short videos to introduce their courses. Please refer to the course selection videos index page for further information.

Personal development skills

  • Self-management
  • Problem solving
  • Application of information skills
  • Communication
  • Application of numeracy skills
  • Commercial awareness
  • Specialist skills