MA203 Half Unit
Real Analysis
This information is for the 2017/18 session.
Teacher responsible
Dr Konrad Swanepoel
Availability
This course is compulsory on the BSc in Financial Mathematics and Statistics, BSc in Mathematics and Economics and BSc in Mathematics with Economics. This course is available on the BSc in Actuarial Science, BSc in Business Mathematics and Statistics, BSc in Econometrics and Mathematical Economics and BSc in Statistics with Finance. This course is available as an outside option to students on other programmes where regulations permit. This course is available with permission to General Course students.
Prerequisites
Introduction to Abstract Mathematics (MA103), or some equivalent giving experience with formal proofs, convergence of sequences and continuity of functions.
Course content
This is a course in real analysis for those who have already met the basic concepts of sequences and continuity on the real line. Here we generalize these concepts to Euclidean spaces and to more general metric and normed spaces. These more general spaces are introduced at the start and are emphasized throughout the course.
Topics covered are:
 Sequences and series on the real line.
 Metric and normed spaces; open and closed sets, topological properties of sets and equivalent metrics, sequences in metric spaces, compactness, completeness.
 Continuity of real valued functions and of functions between metric spaces, uniform continuity and Lipschitz condition.
 Differentiation of real valued functions, the mean value theorem, differentiation of functions between Euclidean spaces and partial derivatives.
 Riemann integral and the fundamental theorem of calculus.
 Sequences and series of functions; pointwise and uniform convergence of sequences of functions, power series and series in normed spaces.
Teaching
20 hours of lectures and 10 hours of classes in the MT. 2 hours of lectures in the ST.
Formative coursework
Written answers to set problems will be expected on a weekly basis.
Indicative reading
A comprehensive pack of lecture notes will be provided.The following may prove useful:
 Robert G Bartle & Donald R Sherbert, Introduction to Real Analysis
 W A Sutherland, Introduction to Metric and Topological Spaces
 Tom Apostol, Mathematical Analysis, second edition.
 Walter Rudin, Principles of Mathematical Analysis, third edition.
Assessment
Exam (100%, duration: 2 hours) in the main exam period.
Key facts
Department: Mathematics
Total students 2016/17: 127
Average class size 2016/17: 11
Capped 2016/17: No
Value: Half Unit
PDAM skills
 Selfmanagement
 Team working
 Problem solving
 Application of information skills
 Communication
 Application of numeracy skills
 Specialist skills
Course survey results
(2014/15  2016/17 combined)
1 = "best" score, 5 = "worst" scoreThe scores below are average responses.
Response rate: 80%
Question 
Average  

Reading list (Q2.1) 
2.2  
Materials (Q2.3) 
1.7  
Course satisfied (Q2.4) 
2  
Lectures (Q2.5) 
2  
Integration (Q2.6) 
1.7  
Contact (Q2.7) 
2  
Feedback (Q2.8) 
1.9  
Recommend (Q2.9) 
