ST418      Half Unit
Non-Linear Dynamics and the Analysis of Real Time Series

This information is for the 2016/17 session.

Teacher responsible

Prof Leonard Smith TW1 11.01A

Availability

This course is available on the MSc in Applicable Mathematics, MSc in Econometrics and Mathematical Economics, MSc in Statistics, MSc in Statistics (Financial Statistics), MSc in Statistics (Financial Statistics) (Research) and MSc in Statistics (Research). This course is available with permission as an outside option to students on other programmes where regulations permit.

Pre-requisites

It is recommended that students have completed Time Series (ST422).

Course content

An introduction to the analysis of actual time series observations of real-world processes. The course casts both modern nonlinear methods and more traditional linear methods in a geometric approach. It introduces the properties of nonlinear mathematical models, covers chaos and the dynamics of uncertainty, and demonstrates the fundamental limitations in applied analysis which arise from model inadequacy. Fundamental aspects of  predictability are addressed. Decision support under uncertainty is considered, with examples of economic impacts of forecasting, including weather and climate. The student will leave with a toolkit for the analysis and modelling of real data, with insights into how to evaluate which methods to employ (linear/non-linear, deterministic/stochastic) in a given problem, how to interpret the results in context, and how to avoid over interpreting nice theorems in practical circumstances. Concrete applications in economics (price time series, electricity demand, energy futures) and environment (weather, climate) as well as analytically tractable illustration from mathematics are considered.

Teaching

20 hours of lectures and 10 hours of computer workshops in the LT. 1 hour of lectures in the ST.

Week 6 will be used as a reading week.

Indicative reading

K Beven, Environmental Modelling: An uncertain Future? Routledge (2009); H Kantz & T Schreiber, Non-linear Time Series Analysis; E Ott, T Sauer & J A Yorke (Eds), Coping with Chaos: Analysis of Chaotic Data and The Exploitation of Chaotic Systems; E Ott, Chaos in Dynamical Systems; R Tsay, Analysis of Financial Time Series; L.A. Smith, Chaos: A Very Short Introduction. Oxford University Press (2007)

Assessment

Exam (70%, duration: 2 hours) in the main exam period.
Project (30%) in the ST.

Key facts

Department: Statistics

Total students 2015/16: 4

Average class size 2015/16: 5

Controlled access 2015/16: No

Lecture capture used 2015/16: Yes (LT)

Value: Half Unit

Guidelines for interpreting course guide information

Personal development skills

  • Problem solving
  • Communication
  • Application of numeracy skills
  • Specialist skills