ST418      Half Unit
Non-Linear Dynamics and the Analysis of Real Time Series

This information is for the 2015/16 session.

Teacher responsible

Prof Leonard Smith TW1 11.01A


This course is available on the MSc in Applicable Mathematics, MSc in Econometrics and Mathematical Economics, MSc in Statistics, MSc in Statistics (Financial Statistics), MSc in Statistics (Financial Statistics) (Research) and MSc in Statistics (Research). This course is available with permission as an outside option to students on other programmes where regulations permit.


Students must have completed Time Series (ST422).

Course content

An introduction to the analysis of actual time series observations of real-world processes. The course casts both modern nonlinear methods and more traditional linear methods in a geometric approach. It introduces the properties of nonlinear mathematical models, covers chaos and the dynamics of uncertainty, and demonstrates the fundamental limitations in applied analysis which arise from model inadequacy. Fundamental aspects of  predictability are addressed. Decision support under uncertainty is considered, with examples of economic impacts of forecasting, including weather and climate. The student will leave with a toolkit for the analysis and modelling of real data, with insights into how to evaluate which methods to employ (linear/non-linear, deterministic/stochastic) in a given problem, how to interpret the results in context, and how to avoid over interpreting nice theorems in practical circumstances. Concrete applications in economics (price time series, electricity demand, energy futures) and environment (weather, climate) as well as analytically tractable illustration from mathematics are considered.


20 hours of lectures and 10 hours of computer workshops in the LT. 1 hour of lectures in the ST.

Week 6 will be used as a reading week.

Indicative reading

K Beven, Environmental Modelling: An uncertain Future? Routledge (2009); H Kantz & T Schreiber, Non-linear Time Series Analysis; E Ott, T Sauer & J A Yorke (Eds), Coping with Chaos: Analysis of Chaotic Data and The Exploitation of Chaotic Systems; E Ott, Chaos in Dynamical Systems; R Tsay, Analysis of Financial Time Series; L.A. Smith, Chaos: A Very Short Introduction. Oxford University Press (2007)


Exam (70%, duration: 2 hours) in the main exam period.
Project (30%) in the ST.

Student performance results

(2011/12 - 2013/14 combined)

Classification % of students
Distinction 31.4
Merit 40
Pass 28.6
Fail 0

Key facts

Department: Statistics

Total students 2014/15: Unavailable

Average class size 2014/15: Unavailable

Controlled access 2014/15: No

Value: Half Unit

Guidelines for interpreting course guide information

Personal development skills

  • Problem solving
  • Communication
  • Application of numeracy skills
  • Specialist skills