BAYESIAN MODELING FOR BENEFIT-RISK BALANCE ANALYSIS: ROSIGLITAZONE FOR TYPE II DIABETES

K. Vamvourellis, K. Kalogeropoulos, L. Phillips

Regulating Diabetes Treatments

1999 Rosiglitazone gets US approval

2000 Rosiglitazone gets European approval

2007 New evidence for risks arises [Nissen and Wolski, 2007]

2010 European regulators revert their recommendation

2011 US regulators partially revert their recommendation

2013 US regulators undo reversion

How to assess a drug?

- measurements Y_{ij} from a clinical trial for $j:1,\ldots,J$ favorable/unfavorable effects on $i:1,\ldots,N$ subjects
- the goal is to combine Y_{ij} 's into a single value, termed drug preference score

Standard practice is to use MCDA to do this, e.g. [Mussen et al., 2007]

MCDA in practice

- Transform each variable to [0, 100] with a linear mapping $c_j(\cdot)$
- a if Y_{ij} is continuous we assume $Y_{ij} \sim \mathcal{N}(\mu_j, \sigma_j^2)$ and take $c_j(Y_{ij}) = c_j(\mu_j)$,
- b if Y_{ij} is binary we assume $Y_{ij} \sim \text{Bernoulli}(\mu_j)$ and take $c_j(Y_{ij}) = c_j(\mu_j)$
- Construct the *preference score* the weighted sum $S = \sum_{j} w_{j} \cdot c_{j}(\mu_{j})$ where w_{j} are appropriate weights
- 3 Compare the *preference score* for a control and treatment group, s^C and s^T respectively.

Note that $c_j(\cdot)$ and w_j are given by subject matter experts and reflect their clinical judgement

Issues

- The above model assumes independence of effects
- Not realistic, e.g. for Nausea and Dyspepsia.

Goal: Calculate $P(s^C < s^T | y)$ taking into account

- dependencies between effects
- individual variability

Parameter uncertainty - a Bayesian approach

The previous procedure ignores sampling variability so [Phillips et al., 2013] proposed the following Bayesian approach:

- Assume independence between effects.
- Assign U(0,1) and $\propto 1$ priors on μ_j for binary and continuous cases respectively. Assume σ_j^2 known from the sample variance.
- The posterior for $\mu = (\mu_1, \dots, \mu_J)$ is then a product of either $\mathcal{N}(\bar{Y}_j, \frac{S_j^2}{N})$ or $\text{Beta}(T_j + 1, N T_j + 1)$, where $T_j = \sum_i Y_{ij}$.
- Calculate $P(s^T > s^C | y)$ using Monte Carlo
 - ① draw K samples of μ^C and μ^T from their posterior,
 - 2 for each sample compute the corresponding s^T and s^C ,
 - 3 report the relative frequency of the event $s^T > s^C$.

Model for Mixed-type Data

For binary data:

$$\begin{cases} Y_{ij} \sim \text{Bernoulli}(\eta_j), \ i = 1, \dots, N, \ Y_{ij} \text{ independent, for fixed } j \\ h_j(\eta_j) = \mu_j + Z_{ij}, \end{cases}$$

For continuous variables:

$$Y_{ij} = \mu_j + Z_{ij}, \ i = 1, \dots, N.$$
 (2)

where the distribution of Z is assumed¹ to be

$$Z_{i:} \sim \mathcal{N}_J(0_J, \Sigma),$$
 (3)

(1)

where Σ is a $J \times J$ covariance matrix, 0_J is a row J-dimensional vector with zeros and Z_i : are independent $\forall i$.

¹other options are available, e.g. a multivariate t

Challenges

- Parametrisation according to covariance is non likelihood identifiable.
- Related work [Talhouk et al., 2012, Chib and Greenberg, 1998] on the probit model. The diagonal elements of Σ are set to 1. A Gibbs sampler is provided by [Talhouk et al., 2012].
- We extend to the case of mixed variable and adapt to MCDA setting.
 - Both logit and probit links can be used
 - Random walk metropolis step for each Z_i , Gibbs steps elsewhere.
 - Implemented in Python and Stan.

Model Objectives

The aim is to sample from (for control and treatment groups)

$$\pi(\mu, \Sigma, Z|Y) \propto f(Y|Z, \mu, \Sigma)\pi(Z|\Sigma)\pi(\mu)\pi(\Sigma)$$
 (4)

so that we can in turn sample from score posterior.

We can then

- compute $P(s^T > s^C | y)$ as before.
- ② compute $P(s_{N+1}^T > s_{N+1}^C | y)$ for a future individual N+1 based on

$$\pi(Z_{N+1}|y) = \int \int \pi(Z_{N+1}|\mu, \Sigma)\pi(\mu, \Sigma|y) \ d\mu \ d\Sigma$$

of $\widehat{\mu}, \widehat{\Sigma}$. compute $P(s_{N+1}^T > s_{N+1}^C | y, \widehat{\mu}, \widehat{\Sigma})$ based on Bayes or ML estimators of $\widehat{\mu}, \widehat{\Sigma}$.

²This can be done by frequentist approach, e.g. in Mplus [Muthen and Muthen, 1998]

Gibbs Algorithm for Mixed Data

• $\pi(\mu|\Sigma,Z) \sim (\mu_n,\Sigma_n)$ for conjugate prior $\mu \sim (\mu_0,\Sigma_0)$ where

$$\mu_n = (\Sigma_0^{-1} + n\Sigma^{-1})^{-1}(\Sigma_0^{-1}\mu_0 + n\Sigma^{-1}\bar{Z})$$

$$\Sigma_n = (\Sigma_0^{-1} + n\Sigma^{-1})^{-1}$$

• $\pi(R|\mu,Z)$

$$D = \text{diag}(d_1, \dots, d_J), \text{ where } d_i^2 \sim ((k+1)/2(R^{-1})_{ii}/2)$$

$$\pi(\Sigma|W) = (\Sigma; 2+N, W'W + I_J - \xi^{-1}M'M)$$

$$R = D\Sigma D \text{ where } D = \text{diag}(d_1, \dots, d_J) \text{ with } d_i = (\Sigma_{ii})^{-1/2}$$

- Set $\Sigma = SRS$ where $S = \text{concatenation}(\sigma, \mathbf{1})$
- $\pi(Z|\mu, \Sigma, Y)$ We sample each row z_i separately using a Metropolis-Hastings algorithm. The proposal comes from the conditional Normal $N(z|y, \mu, \Sigma)$ and the becomes

$$\pi(z|y,\mu,\Sigma) \propto f(y|z) \cdot \pi(z|\mu,\Sigma)$$

$$= \prod_{j=1}^{J} \prod_{k=1}^{N} h^{-1}(z_{kj})^{y_{kj}} (1 - h^{-1}(z_{kj}))^{(1-y_{kj})} \cdot N(z|\mu,R)$$

$$= \prod_{j=1}^{J} \prod_{k=1}^{N} \eta_{kj}^{y_{kj}} (1 - \eta_{kj})^{(1-y_{kj})} \cdot N(Z|\mu,\Sigma)$$

• sample each column separately

$$\sigma_j^2 \sim \mathrm{IG}(\alpha, \beta), (\text{conjugate prior})$$

$$p(\sigma_j^2|y_j,\mu) \sim \text{IG}(\alpha + \frac{n}{2};\beta + \frac{1}{2}\sum_{i=1}^n (y_j - \mu)^2)$$

Posterior Samples for Rosiglitazone Group

Dataset from clinical trial to compare Rosiglitazone to two existing treatments

MCDA Total Score

Future work

- Develop sequential Monte Carlo as alternative, e.g. SMC² [Chopin et al., 2011].
- Develop algorithms for model choice (via Bayes factors) or predictive performance assessment. Can be done by Sequential Monte Carlo.
- Compare with reduced dimension models such as factor analysis (e.g. separate factors for favourable and unfavourable effects).
- Potential applications in sequential sampling design.