CHAPTER 8

Factor Analysis for Binary Data

8.1 Latent trait models

In this chapter, we move to the top right-hand cell of Table 7.1 and discuss
methods based on models where the manifest variables are categorical. We
start with the case where they are all binary — that is, where they are based
on responses of the kind yes/no or right/wrong. Some methods appropriate
when there are more than two categories will be given in Chapter 9. The
word “trait” in the name of these models is often used because it arises from
one of the principal applications for which they were devised, namely the
measurement of psychological traits. In this book, they are used in a much
broader context and so it seemed appropriate to make this clear in the title
of the chapter. Nevertheless, we have also retained the original terminology
to keep the link with a very important field of application.

Conceptually there is no difference between the problems treated here and
those in the previous chapter on factor analysis. We start with a probabil-
ity model linking the observed variables to a set of latent variables. We then
discuss how to fit the models, judge their goodness-of-fit, interpret their pa-
rameters, and so forth. The difference lies in the special problems posed by
having to deal with a data matrix consisting of binary items. The basic ob-
jectives are the same, namely:

i) to explore the interrelationships between the observed responses

ii) to determine whether the interrelationships can be explained by a small
number of latent variables

iii) to assign a score to each individual for each latent variable on the basis
of the responses

The binary data matrix

We have already met a data matrix for categorical data in the discussions
of cluster analysis, multidimensional scaling and, in passing, correspondence
analysis. If the responses are binary, the xs simply record whether the response
was positive or negative. A convenient convention, also used in earlier chapters,
is to use 1 to indicate a “success” or a positive response, that is “correct”
or “yes” as the case may be, and 0 for the “failure” or negative response.
This convention has the advantage in the present context that if we sum the
responses in any row of the data matrix, we get the total number of positive
responses. This is a useful summary measure in its own right and we shall
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use it in the subsequent analyses. The response coded 1 is sometimes referred
to as the keyed response. A typical row of the data matrix might then be as
follows:

00101110011

The methods about to be described all start from a data matrix consisting
of a set of rows like that above, one for each individual or object. However, the
restriction to binary data sometimes makes it possible to express the matrix
in a more compact and informative way.

Any row of the data matrix is referred to as a score pattern or a response
pattern. If there are p variables there are 2P possible response patterns. When
p = 3, for example, they are

000, 001, 010, 011, 100, 101, 110, 111.
If the sample size is much larger than 2P, many of the response patterns will
be repeated. It is, therefore, much more economical to present the matrix as a

list of the possible response patterns together with their associated frequencies
as follows:

000 175

001 64
010 17
100 12
011 9
101 3
110 33
111 98

The second column records how many times each response pattern occurs
in the sample. This grouped form of the data matrix is used whenever the
sample size is large. However, when the number of variables p is large, many
response patterns may not occur at all, in which case they are omitted from
the table to save space.

Latent trait methods were introduced in educational testing where most of
their development has taken place; this is now a highly specialised field with a
substantial literature of its own. Our emphasis in this chapter will be mainly
on their general use as tools for social research in the factor analysis tradition.

An example

To illustrate the various steps in the analysis, we shall use a data set with
only four variables extracted from the 1986 British Social Attitudes Survey
(McGrath and Waterton, 1986). The data are the responses given by 410
individuals to four out of seven items concerning attitude to abortion. A
small proportion of non-response occurs for each item, the proportions being
(0.03, 0.03, 0.05, 0.04). In order to avoid the distraction of having to deal with
missing values, we have slightly adjusted the data to eliminate missing values.
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An analysis that includes all respondents and uses a factor analysis (FA)
model for binary items that takes account of missing values was carried out
by Knott, Albanese, and Galbraith (1990). The results were not substantially
different from those reported here. After eliminating the missing values, we
are left with 379 respondents. For each item, respondents were asked if the
law should allow abortion under the circumstances presented under each item.
The four items used in the analysis are given below:

1. The woman decides on her own that she does not [WomanDecide]

2. The couple agree that they do not wish to have the child [CoupleDecide]

3. The woman is not married and does not wish to marry the man [NotMarried]

4. The couple cannot afford any more children [CannotAfford]

The frequency of each response pattern is given in Table 8.1.

Table 8.1 Frequencies of response patterns, attitude towards abortion

Response patterns  Frequency

1111 141
0000 103
0111 44
0011 21
0001 13
1110 12
0010 10
0100 9
0110 7
1011 6
0101 6
1101 3
1100 3
1000 1
1010 0
1001 0
Total 379

We find that the percentage of individuals agreeing that abortion should be
legal under circumstances described by the items 1 to 4 are 43.8, 59.4, 63.6, and
61.7%, respectively. If we were doing a factor analysis, we would next compute
the correlations between pairs of variables and inspect the result, looking for
evidence of positive correlations which suggest that there might be one or
more common underlying factors. In the case of binary data, the corresponding
things to look at are the pairwise associations between variables. We can do
this by constructing 2 x 2 contingency tables. For example, Table 8.2 cross-
tabulates the first two items that show a strong association. A similar analysis
for other pairs of variables produces similar results. This suggests that it would
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Table 8.2 Cross-tabulation of items 1 and 2, attitude towards abortion

Yes No

Yes 159 7
No 66 147

be worth asking whether these associations can be attributed to one or more
common factors. This is what a latent trait model enables us to do. If we can
identify common factors, we may then wish to go on to compute scores for
individuals on the latent dimensions.

8.2 Why is the factor analysis model for metrical variables invalid
for binary responses?

Since the approach for binary and metrical variables has been so similar up
to this point, it is natural to think of treating the binary data as if they
were metrical. What is to prevent us from computing the product moment
correlations and doing a factor analysis in the usual way? There is no practical
bar to doing just that, and one sometimes finds such factor analyses in the
research literature. However, such an analysis is inappropriate because it is
based on a model which assumes that the observed or manifest variables
(z1,...,2p) are metrical rather than binary. To see why this is so, we briefly
return to the factor analysis model. The model was written as:

Ty = oo+ o fi+ -+ ugfy e (i=1,...,p), (8.1)

where p denotes the total number of observed items, xz; denotes the ith met-
rical observed item, f = (fi,..., f,) denotes the vector of latent variables and
¢; denotes the residual. We assuimne that the residual follows a normal distri-
bution with mean 0 and variance o2, the latent variables are assumed to be
independent with standard normal distributions f; ~ N(0,1) for all j. Since
f and e; can take any value and are independent of each other, x; can also
take any value. Therefore, the linear factor model is invalid for categorical
variables in general and for binary variables in particular.

We need a different model to relate the latent variables f to the manifest
variables. Two approaches have been adopted to meet this need. The oldest
is to try to retain as much as possible of the factor analysis method. This is
done by imagining a fictitious variable for each ¢ which is partially revealed
to us by x;. This enables us to retain the factor model for the (unobserved)
fictional variable. This method is still widely used and we shall describe it in
Section 8.7.

A better approach is to start, as we did in factor analysis, with the idea
of a regression model. We want an appropriate model for the regression of
each x; on the latent variables. The usual regression method used for an
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observable binary response on a set of observable explanatory variables is
known as logistic regression. It takes its name from the logistic function used
in the regression equation.

In order to motivate the choice of this function, we first remind ourselves
that the regression of z; on the latent variables is the expected value of x;
given the fs. Since z; is binary, the expected value of z; given the fs is the
same as Pr(z, = 1 | f) = m(f) where m;(f) is the conditional probability
that binary variable, x;, equals one given the values of the ¢ latent variables
fis.++y fq- We, therefore, have to specify the form of the probability m;(f) as

a function of fi,..., f;. The function chosen is known as the link function.
An identical linear link function would be the simplest giving:
mi(f) = a0+ f1 + - Faig fy (i=1,...,p). (8.2)

But such a linear relationship between the probability of a correct response
and the latent variables has two flaws.

i) The left-hand side of equation (8.2) is a probability that takes values
between 0 and 1, and the right-hand side is not restricted in any way and
can take any real value.

il) We might expect that the rate of change in the probability of a cor-
rect /positive response will not be the same for the whole range of f =
(f1,..., fq). In that case, a curvilinear relationship might be more appro-
priate.

To take into account both those points, we need to introduce a different link
function between the probability and the latent variables. That link should
map the range [0, 1] onto the range (—oo, +00). It should also be a monotonic
function of each f. Possible links are the logit and the normit. We shall use
the logit link mainly because it possesses theoretical and practical advantages
(see Section 8.3). The logit model for binary data presented in Section 8.3 is
one of the many item response models developed within the Item Response
Theory (IRT) approach. IRT developed mainly in connection with educational
measurement. Bock and Moustaki (2007) gives an overview of Item Response
Theory models. We shall also, in Section 8.7, briefly discuss the use of the
normit link (also known as the probit) as an alternative when we consider the
underlying variable (UV) approach for analysing binary variables with factor
models.

8.3 Factor model for binary data using the Item Response Theory
approach

The logistic regression model introduced in Chapter 6, Section 6.12, can be
adapted for the factor analysis of binary data, to give the logit model defined
as:
. mi(f) !
logltm(f) = lOg6 m = o + Zaijfj. (83)

Jj=1
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By transforming m;(f) using the logit transformation, we have been able to
write the model as linear in the latent variables which will greatly facilitate
the interpretation. The probability m;(f) denotes the probability of “success”
and the ratio m;(f)/(1 —m;(f)) is also known as the odds of “success”. We can
rearrange equation (8.3) to get an expression for m;(f):

_explaio + 3075 a4y fj)

1 + exp(azo + E?:l i f3)
It may easily be checked that this expression behaves in the right way, namely
that it lies between 0 and 1 and is monotonic in each f.

An important special case is obtained by putting ¢ = 1. It is this case

with which item response analysis is mainly concerned. Thus, we have the
unidimensional latent trait model:

mi(f1) =

mi(f) (8.4)

exp(azo + 41 f1)
1+ exp(aso + asn f1)

The unidimensional latent trait model is also known as the two-parameter
model. In the psychometric literature, 7;(f1) is referred to as the item char-
acteristic curve or item response function (IRF). It shows how the probability
of a correct response increases with ability, say.

The logit model with one latent variable is plotted on Figure 8.1 for a;p =
0.5 and for different positive values of the parameter a;; and on Figure 8.2
for different values of oo and for ay; = 0.5.

— o1 = 0.0 /o7
""" vy = 0.5 /7
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Figure 8.1 Item characteristic curves for different values of the discrimination co-
efficient a;1 and a0 = 0.5



ITEM RESPONSE THEORY APPROACH 215

04
|

02

0.0
|

Figure 8.2 Item characteristic curves for different values of the “difficulty” parame-
ter auo and a1 = 0.5

It is clear that the parameter ;1 determines the steepness of the curve over
the middle of the range. This means that a given change in the value of f;
will produce a larger change in the probability of a positive response when
this parameter is large than when it is small. For this reason, it is known in
educational testing as the discrimination parameter. Increasing the parameter
ap increases the probability for all values of f; and so it is referred to as the
difficulty parameter.

We summarise and complete the specification of the factor model for binary
data by listing the assumptions on which it depends as follows:
i) Conditional independence: the respouses to the p observed items are inde-
pendent conditional on the latent variables. In other words, the latent variables
(factors) account for all the associations among the observed items. Since the
latent variables are unobserved, the assumption of conditional independence
can only be tested indirectly by checking whether the model fits the data.
A latent variable model is accepted as a good fit when the latent variables
account for most of the association among the observed responses.
ii) The link function: logitm; (f) = auo + Z?;l o5 f;, where Pr(z; =1 f) =
mi(f); (i = 1,...,p). A possible alternative would be the normit link, see
Section 8.7, which gives very similar results in practice.
iii) The latent variables or factors fi,..., f; are independent with standard
normal distributions. That is f; ~ N(0,1) for (j = 1,...,¢q). The choice of
the normal distribution for the latent variables has rotational advantages as
we will see later but other distributions could be used. Fortunately, research
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has shown that the form of the distribution of the latent variables does not
have much influence on the interpretation of the results of an analysis.

The Rasch model

A special case of the unidimensional model is obtained when all the discrim-
ination parameters are equal (a1 = @91 = -+ = ap1). This model was first
discussed by Rasch (Rasch 1960) and it is usually written as:

exp(aio + Bi)
Pries = s B =T = T oo+ 000
Since the a1 are all equal, ;1 fr has been replaced by Sk, where fi. is the value
of f for individual k, (k = 1,...,n). This formulation is useful in educational
testing where the ability of each individual in the sample is of interest. In other
applications the interest is generally in the population from which the sample
has been drawn and f is treated as a variable with a probability distribution.
The Rasch model is still quite popular in educational testing because of its
simplicity and its attractive theoretical properties. In particular:
i) The total score >V |z, is sufficient for 8, — that is, it contains all the
information in the data about the 3 if the model is true.
ii) The total number of positive/correct responses for item i, » ,_; T Is
sufficient for «;p.

Fitting the logit model

Recall that in factor analysis, we fitted the model by choosing the parameter
values to make the covariance matrix predicted by the model as close as
possible to the observed matrix. For that model, the joint distribution was
completely determined by the covariances so, in effect, we were making the
observed and predicted distributions as close as possible. We do essentially
the same thing when fitting the latent trait model. We choose the parameter
values which make the frequency distribution across responses predicted by
the model as close as possible to the observed one. As in factor analysis,
there are various ways in which this distance can be measured but the one
for which software is currently available is based on the likelihood function —
the maximum likelihood method.

Interpretation of model parameters

In the latent trait model for each observed item ¢, we have ¢ + 1 parameters
to estimate, the intercept ayp and the factor loadings ajq,..., ;. We have
already noted that «;q is called the difficulty parameter in educational testing
because of its effect on the probability of a positive response. This effect can
be seen more clearly if we consider the position when f = 0. Since the fs are
assumed to have standard normal distributions, an individual at this point
in the latent space may be described as the “median” individual because, on
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each dimension, half the population lie on either side. In those circumstances
we find,

Priz; = 1| £ = 0) = m(0) = —P(@i0)

1 + exp(ouo)

This is the probability that the median individual will respond correctly or
positively to item i. For example all four curves in Figure 8.1 have the same
aip = 0.5 and hence the same value m;(0) = 0.62. For practical purposes, 7;(0)
is more directly interpretable than a;g.

The a8 (j =1,...,q) are factor loadings, but we have already noted that
they are known in educational testing as discrimination parameters. The larger
the value of «;;, the greater is the effect of factor j on the probability of a pos-
itive response to item %; equivalently, the higher the value of a;; for an item,
the greater the difference in the probabilities of getting a correct/positive re-
sponse between two individuals who are located at some distance apart on the
latent dimensions. As a result, it will be easier to discriminate between those
two individuals on the evidence of their responses to that item. The factor
loadings a;; are not bounded in any way, and for some items they may take
very large values, indicating a very steep slope for the item response curve.
This phenomenon is known as a “threshold effect”, and we shall meet it again
in Chapter 10. Large estimates of the discrimination parameters often have
large standard errors, which means that their values are poorly determined.
The maximum likelihood estimates for the attitude to abortion data are given
in Table 8.3 along with their asymptotic (i.e., estimated using large sample
theory) standard errors for a one-factor model.

Table 8.3 Parameter estimates and standard errors in brackets and standardized
loadings for the one-factor model, attitude to abortion

Item dio S.e. dil S.e. Stdil ﬁ'Z(O)

WomanDecide —0.72 (0.33) 4.15 (0.85) 097 0.33
CoupleDecide 1.11  (0.35) 4.50 (0.81) 0.98 0.75
NotMarried 218 (0.61) 6.21 (1.54) 0.99 0.90
CannotAfford 1.15  (0.28) 349 (0.50) 096  0.76

The last column of the table gives the estimated probabilities that the
median individual will respond positively to items 1-4. Item 1 stands out
from the other items by being much less likely to be answered positively by
the median individual. The loadings in the &;; column are all positive and
very large, suggesting an underlying factor which is common to all items.
In this context, one might identify this with a pro/anti-abortion attitude.
It should be noted that the standard errors are all fairly large in relation
to the differences in the estimates. This should caution us against placing
undue weight on small inequalities among the loadings. In the present case,
the broad conclusion we have drawn about a common factor seems unlikely
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to be sensitive to the effects of sampling variation. Taking the loadings at
their face value, it appears that “the couple being unmarried” is the best
discriminator between a pro- and an anti-abortion attitude and “inability to
afford the baby” the worst discriminator.

The column headed stéyy requires some further explanation. In factor analy-
sis, when the correlation matrix is analysed, the factor loading «;; is the cor-
relation between the observed item z; and the latent variable f;. This was
very convenient as an aid to interpretation. In the latent trait case, the load-
ings cannot be interpreted as correlation coefficients; indeed, as we have seen,
the loadings are not bounded by 0 and 1 as a correlation would be. However,
it is possible to transform to standardized loadings that can be interpreted
as correlation coefficients in exactly the same way as in factor analysis. This
transformation arises naturally out of the alternative way of analysing binary
items which we shall consider in Section 8.7. We shall defer consideration
of this point to later, but here we merely observe that all the standardized
loadings are close to one, indicating a close link between each item and the
common factor.

8.4 Goodness-of-fit

The goodness-of-fit of the model can be checked in several different ways.

i) Global goodness-of-fit test

One way is to use a standard goodness-of-fit test to compare the observed and
expected frequencies across the response patterns. Strictly, we compare ob-
served frequencies and estimates of the expected frequencies under the model
being tested — but conventionally, these estimates are referred to as “ex-
pected frequencies” when carrying out likelihood ratio or Pearson chi-squared
goodness-of-fit tests as below. In fact, since we fit the models by choosing the
parameter values so that these distributions are as close as possible, the mini-
mum closeness would be an obvious measure to use for goodness-of-fit. A test
based on such a measure is the log-likelihood-ratio test. The log-likelihood-
ratio test statistic, G2, is defined as:

O(r)
G*=2) 0O(r)log, —=
7; ( ) ge E(,r,)
where r represents a response pattern, and O(r) and E(r) represent the ob-
served and expected frequencies, respectively, of response pattern r. An al-
ternative is to use the Pearson chi-squared goodness-of-fit test statistic, X?,

given by:

(8.5)

2"

2 O(r) — E(r))?
-3 QO BOP 6

r=1
If the model holds, both statistics are distributed approximately as x? with
degrees of freedom equal to the number of different response patterns minus
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the number of independent parameters minus one (27 — p(qg + 1) — 1). If the
sample size n is much bigger than the total number of distinct responses given
by 2P, then the observed and expected frequencies will be reasonably large and
the approximation on which the test is based will be valid. However, when
the number of binary variables is large, many response patterns will have
expected frequencies which are very small. It is usually recommended that
all expected frequencies should be at least five for either test to be valid. If,
for example, p = 20, there are 2P = 1048576 possible response patterns, and
even with a sample size of several thousands there will be many expected
frequencies which are exceedingly small. In those cases, the chi-squared test
and the log-likelihood-ratio test will not follow a chi-squared distribution, and
so from the practical point of view these tests cannot be used. The problem
can be overcome to some extent by pooling response patterns with expected
frequencies less than 5, but that might quickly lead to a situation where no
degrees of freedom are left to perform the test. In such cases, we need another
approach.

For the attitude to abortion data set in Table 8.6, the five response patterns
with small expected frequencies were pooled. The log-likelihood-ratio statistic,
is G2 = 17.85 and the chi-squared statistic is X2 = 15.09, both on three
degrees of freedom. (This is not the seven degrees of freedom from the formula
2P — 2p — 1, because pooling of categories has taken place.)

Both measures indicate a not very good fit (the 1% significance level for
chi-squared with three degrees of freedom is 11.35). We could go on to fit a
two-factor model, but first it is worth trying to diagnose the reason for the
poor fit. The first step is obviously to look for large discrepancies between ob-
served and expected score patterns. These are given in the first two columns
of Table 8.6. There are no obviously large deviations except, perhaps, at the
two extremes. In a sparse table with many more response patterns it would
be much more difficult to judge this, and then other approaches are needed.

ii) Goodness-of-fit for margins

Rather than look at the whole set of response patterns, we can look at the
two-way margins. That is, we can construct the 2 x 2 contingency tables ob-
tained by taking the variables two at a time. We have already done this at the
beginning of the chapter when we looked at the pairwise associations among
variables. The reason for doing that was to bring out the parallel with factor
analysis. The two-way tables provided the same sort of information for binary
variables as the correlations do for factor analysis. The two-way margins are
the cell frequencies in these two-way tables. Comparing the observed and ex-
pected two-way margins is therefore analogous to comparing the observed and
expected correlations when judging the fit of a factor model. The comparison
is made using what we call chi-squared residuals. These are the contributions
to the chi-squared statistic for the 2 x 2 table which would arise from the cell.
Thus if O is the observed frequency and E the expected frequency, then the
residual is (O — E)?/E. Tables 8.4 and 8.5 give the observed and expected fre-
quencies for the two-way and for some of the three-way margins respectively
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for the attitude to abortion data when the one-factor model is fitted. The
last column of the tables gives the chi-squared residual as a measure of the
discrepancy between the observed and the predicted frequency. From Table
8.4, we see that 147 respondents responded negatively to items 1 and 2; the
model predicted 143.74 responses for that cell giving a residual equal to 0.07.
The same calculations are done for all the pairs of items. The residuals com-
puted for each cell are not independent and therefore they cannot be summed
to give an overall test distributed as chi-squared. Valid tests are, however,
provided in Bartholomew and Leung (2002), Maydeu-Olivares and Joe (2005)
and Cai et al. (2006). As a rule of thumb, if we consider the residual in each
cell as having a x? distribution with one degree of freedom, then a value of the
residual greater than 4 is indicative of poor fit at the 5% significance level. To
be able to have a better idea of the discrepancies in the margins, given that
the value 4 is only indicative, in the examples later in the chapter, we also
report residuals greater than 3. A study of the individual margins provides
information about where the model does not fit. For the abortion data, all the
residuals are very small. On the evidence from the margins, we have no reason
to reject the one-factor model. The overall significant result we obtained from
the global goodness-of-fit tests cannot therefore be attributed to the relation-
ships between the pairs and triplets of items.

iii) Proportion of G* explained

We have remarked at several points in the book that even an incomplete
summary of multivariate data can be useful. The same is true of a multivariate
model. Even though it may leave something unexplained, it may nevertheless
capture some important and interesting features of the data. This is the case
with the one-factor model which is serving as our example in this section.
This raises the question of whether we can quantify the degree to which a
simple model explains the associations between the binary variables. The same
general idea proved useful in PCA and FA, where the proportion of variance
explained served a similar purpose. Thus, we observed that the proportion of
the total variance accounted for by a set of components might be used as a
guide to whether the fs were an adequate summary. The same idea can be
used here, but we now talk in terms of the proportion of the log-likelihood-
ratio statistic for the independence model, which is explained by the model
with ¢ factors. The independence model would be appropriate if there were no
agsociations between the binary variables x1,...,xz,. The log-likelihood-ratio
statistic, GZ, for this model can be regarded as a measure of the associations
between the xs. The log-likelihood-ratio statistic, Gg, for the model with ¢
latent variables is a measure of the residual associations between the xs which
have not been explained by the model.

The percentage of G2 cxplained is given by

2 2

G3 -G
%G* = —L—1 x 100
G
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Table 8.4 Chi-squared residuals for the second order margins for the one-factor
model, aititude towards abortion

Response Ttem Ttem Observed Expected O — E (O — E)*/E

i 7 frequency frequency
(0) (E)
(0,0) 2 1 147 143.74 3.26 0.07
3 1 131 133.17 —2.17 0.04
3 2 117 119.69 —2.69 0.06
4 1 129 133.68 —4.68 0.16
4 2 114 116.09 —2.09 0.04
4 3 116 111.79 4.21 0.16
(0,1) 2 1 7 11.30 —4.30 1.64
3 1 7 5.94 1.06 0.19
3 2 21 19.42 1.58 0.13
4 1 16 11.99 4.01 1.34
4 2 31 29.58 1.42 0.07
4 3 29 33.88 —4.88 0.70
(1,0) 2 1 66 69.89 —3.89 0.22
3 1 82 80.46 1.54 0.03
3 2 37 35.35 1.65 0.08
4 1 84 79.95 4.05 0.21
4 2 40 38.95 1.05 0.03
1 3 22 27.32 —5.32 1.01
(1,1) 2 1 159 154.07 4.93 0.16
3 1 159 159.43 —0.43 0.00
3 2 204 204.54 —0.54 0.00
4 1 150 153.38 —3.38 0.07
4 2 194 194.38 —0.38 0.00
4 3 212 206.01 5.99 0.17

Table 8.5 Chi-squared residuals for the third order margins for the one-factor model,
response (1,1,1) to items (3,7, k), attitude towards abortion

Item Item Ttem Observed Expected O — E (O — E)?/E

i i k  frequency frequency

(0) (E)
1 2 3 153 151.18 1.82 0.02
1 2 4 144 145.86 —1.86 0.02
1 3 4 147 150.15  —=3.15 0.07
2 3 4 185 185.01 —0.01 0.00
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and measures the extent to which the model with ¢ latent variables explains
the associations.

For the attitude to abortion data, the percentage of G2 explained is 96.88%,
indicating that the one latent variable model is a much better fit than the
independence model or, in other words, there is 96.88% reduction in the log-
likelihood-ratio statistic when the one-factor model was fitted.

The above three ways of checking model fit have been discussed in detail in
the paper by Bartholomew and Tzamourani (1999).

iv) Model selection methods

Another approach, already mentioned in the connection with factor analysis
for metrical variables, is based on the use of model selection criteria such as
the Akaike information criterion or the Bayesian information criterion (see

Sclove 1987).

8.5 Factor scores

Obtaining factor scores for the latent trait model is slightly more complicated
than it was for PCA or FA. In PCA, the scores came “ready-made” as linear
combinations of the manifest variables. In FA, the position was complicated
by the fact that there was no unique value of each f associated with the set
of xs. We therefore used a predicted value which turned out to be a linear
combination of the xs for which the coefficients were calculated by the stan-
dard software. Following the same idea for the latent trait model, we would
look for a suitable predictor of each f given the zs. Using regression ideas
as before, this would suggest using the conditional mean value or conditional
expectation:

E(f;|x1,.-..2p) (j=1,...,9). (8.7)
Unfortunately, these means are not linear combinations of the xs, although
they can easily be computed. However, it turns out that (for the logit link
function) they are monotonic functions of what we shall call component scores
which are given by:

14
Xj :Zalﬂxl (j: ].,,q) (88)
i=1

In the one-factor case, both the regression function of equation (8.7) and
the components give the same ranking to the individuals in the sample. These
components are very simply calculated using the estimated weights obtained
from fitting the model. For most practical purposes, it makes no difference
whether we use the components or the conditional expectations.

For the logit link function, the component score, X;, includes all the in-
formation in the data about the latent variables regardless of the assumption
made about the distribution of f;, whereas the posterior mean E(f; | z1,...,2p)
itself will vary according to whether we assume the distribution of f; to be
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normal or some other distribution. This invariance property is a good reason
for preferring the component score.

On the other hand, when a distribution is assumed for the fs it is possible
to estimate not only the conditional means, E(f; | #1,...,%p), but also the
conditional standard deviations, o(f; | z1,...,2p) for (j = 1,...,¢). The
estimated standard deviations should be taken into account in judging the
ranking of the response patterns when the conditional means are used.

Table 8.6 gives the estimated conditional means and component scores for
all the response patterns for the attitude to abortion data. It also gives the ex-
pected frequency for each pattern. The sixth column gives the total score of the
response pattern. As we can see, the estimated conditional mean, E (f | x),
and the component score give the same ranking to the individuals. In this par-
ticular example, the total score also gives a similar ranking to the individuals,
though there are some ties. The reason for this is that all the four items have
similar discriminating power. There is also a column headed 6(f | x). This
is the estimated conditional standard deviation of the latent variable about
its conditional mean. This tends to be larger at the extremes but is fairly
constant over the middle range. In all cases it is quite large, indicating that
the factor scores are subject to a good deal of uncertainty.

Table 8.6 Factor scores listed in increasing order, attitude towards abortion

Observed Expected E(f|x) &(f|x) Component Total Response

frequency frequency score (X1) score pattern

103 100.0 —1.19  0.55 0.00 0 0000
13 16.6 —-0.61 0.32 349 1 0001
1 1.7 —0.55  0.30 415 1 1000

9 9.1 —-0.52  0.29 450 1 0100
10 12.3 —-0.38 0.26 6.21 1 0010
0 1.3 -0.29 0.24 7.64 2 1001

6 7.4 —-0.27  0.24 799 2 0101

3 1.0 —0.24 024 865 2 1100
21 14.8 —0.18 0.24 9.70 2 0011
0 2.0 —-0.14 0.25 10.37 2 1010

7 12.3 —-0.12  0.26 1071 2 0110

3 1.9 —0.01 0.28 12.14 3 1101

6 6.2 0.14 0.32 13.86 3 1011
44 41.1 017 0.32 14.20 3 0111
12 7.2 024 0.34 14.87 3 1110
141 143.9 095 0.61 1835 4 1111




224 FACTOR ANALYSIS FOR BINARY DATA

8.6 Rotation

As with the factor analysis model, the solution is not unique when we fit
more than one latent variable. An orthogonal rotation of the factors coupled
with corresponding rotation of the estimated loadings &;; leaves the likelihood
unchanged. We are therefore free to search for a rotation which is more readily
interpretable. The cautionary remarks made in Chapter 7 apply with equal
force here. In particular, rotation does not produce a new solution so much as
express the original solution in a different way. The main use of rotation is to
search for “simple structure”. In principle, the same kind of rotations could be
used for latent trait models as for factor analysis. However, the uncertainties of
estimation increase rapidly with the number of factors. It is doubtful whether
there is any value in trying to fit more than two factors with the sample sizes
that are commonly available. In any case, we have concentrated in this book
on solutions which are capable of being represented in up to two dimensions.
Our treatment is therefore consistent with this general approach. For practical
purposes, rotation can be carried out in two dimensions graphically, as in
Chapter 7.

8.7 Underlying variable approach

In this section we will discuss the alternative approach for constructing and
fitting a factor analysis model to binary items. This approach is called the
underlying variable (UV) approach. As we explained in Section 8.2, the UV
approach is closer in spirit to factor analysis.

In the UV approach, the observed binary variables are assumed to be realisa-
tions of fictitious continuous underlying variables. Those underlying variables
are unobserved but they should not be confused with the latent variables.
They might be better described as incompletely observed variables, because
all we observe is whether or not they exceed some threshold.

For each binary variable x;, it is assumed that there is an incompletely
observed continuous variable z7 which is normally distributed with mean p;
and variance o?.

The connection between x; and z} is as follows: when the underlying vari-
able z} takes values below a threshold value 7;, the binary item x; takes the
value 1, otherwise x; takes the value 0. The parameters 7; are called threshold
parameters. Since no other information is available about =7 (i = 1,...,p), its
mean and variance are arbitrary and can be set to zero and one respectively
without loss of information.

The essence of the method is to treat the z]s as if they had been generated
by the classical factor analysis model. That is, we suppose that:

x;‘:ozflf}—|—Oé;-k2f2+"'+oé;kqfq+€i (i:l,_..,p), (8.9)

where the o7 are the factor loadings, the f; are the latent variables, and the
e; are the residuals with zero mean and variance o*f (i=1...,;;5=1,...,9).
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In factor analysis, the x}s are observable variables, whereas here they are
underlying, incompletely observed variables.

All that we need to fit a factor model is the matrix of correlations. The
correlation can be estimated from each pair of the binary ;s and hence soft-
ware such as LISREL, Mplus, and EQS can be used to fit the factor model.
Correlations estimated in this way are called fetrachoric correlations.

There are a number of subtle differences between the fitting of a factor
model to tetrachoric correlations and fitting it to product moment correla-
tions. The thresholds are estimated from the univariate marginal distribution
of the underlying variable, x}, and the correlations from the bivariate mar-
ginal distributions of the z;s for given thresholds. This amounts to saying that
the method uses less of the information in the data. The UV approach does
make the assumption of conditional independence through the independence
of the residual terms, e;, and it also assumes that the univariate and bivariate
distributions of the underlying variables are normal.

The results of carrying out a factor analysis on tetrachoric correlations are
very similar to those obtained using the logit latent variable model. This is no
accident, because it can be shown that the two types of model are equivalent
for binary data. A mathematical proof of this equivalence will be found in
Bartholomew and Knott (1999), p.87-88. The logit model and the UV normit
model give similar results because the normal and logistic distributions are
so similar in shape. There is an exact equivalence between the parameter
estimates for the normit UV and the normit IRF model given by:

Ti

Q0 = —

(ex7

and .
_ G4y
Q5 = — .

2

The same equivalence holds approximately for the normit UV and the logit
IRF models.

Furthermore, we can standardize the factor loadings a,;s to represent cor-
relations between the latent variables f;s and the binary variables x;s.

The standardized as are given by:

g4 *
=2 -, (8.10)
\2uj=105; +1

This is the standardization we referred to in Section 8.3 and which was given
in Table 8.3.

Staij =
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8.8 Example: sexual attitudes

In order to illustrate the full range of analyses, including the fitting of two
factors, we shall take an example extracted from the 1990 British Social At-
titudes Survey (Brook, Taylor, and Prior 1991). It concerns contemporary
sexual attitudes. The questions addressed to 1077 individuals were as follows.
Should divorce be easier?

Do you support the law against sexual discrimination?

View on pre-marital sex: not at all wrong...always wrong

View on extra-marital sex: not at all wrong...always wrong

AN o

View on sexual relationship between individuals of the same sex: not at all
wrong...always wrong

Should gays teach in school?

Should gays teach in higher education?

Should gays hold public positions?

© XN

Should a female homosexual couple be allowed to adopt children?

10. Should a male homosexual couple be allowed to adopt children?

For those items yielding a binary response (1,2,6,7,8,9,10), a positive re-
sponse was coded as 1 and a negative response as 0. For items 3, 4, and 5 there
were five categories: “always wrong”, “mostly wrong”, “sometimes wrong”,
“rarely wrong” and “not at all wrong”. Responses “sometimes wrong”, “rarely
wrong”, and “not at all wrong” were coded as 1 and responses “always wrong”
and “mostly wrong” as 0. With ten variables, there are 2'° = 1024 possible
response patterns. Not all of these occur, but with a sample size of 1077 the
data matrix takes up a good deal of space. The full data set is given on the
Web site, but the cases with frequencies greater than ten are listed in Table
8.7 in decreasing order of observed frequency as an illustration.

Table 8.8 gives the proportions giving positive and negative responses to
each item.

Since we come to the data with no preconceived ideas about what the latent
variables might be, we begin by fitting a one-factor model to the ten items.
The parameter estimates are listed in Table 8.9. Items 6, 7, and 8 have large
discrimination coefficients, &;1, indicating that the characteristic curves of
those items are very steep. From the std;; column, we see that item 1 has the
weakest relationship with the latent variable, followed by items 2 and 4. The
rest of the items show strong relationships with the latent variable f.

We first investigate the goodness-of-fit of the one-factor model using the
methods described in Section 8.4. They all suggest that the one-factor model
is not a satisfactory fit to the data. The overall goodness-of-fit measures sug-
gested a very bad fit (G? = 427.39, X? = 354.30 on 32 degrees of freedom).
There were also large discrepancies between the observed and expected fre-
quencies for many pairs and triplets of items. Table 8.10 gives all the pairs
and the (1,1,1) triplets of items where the chi-squared residuals were greater
than 3.

The percentage of G2 explained is 77.03%, which shows that the model
goes a long way in explaining the associations, but taken with the very poor



EXAMPLE: SEXUAL ATTITUDES 227

Table 8.7 Response frequencies, sexual attitudes data

Response Frequency Response Frequency
patterns patterns
0110000000 117 1110000000 17
0110111100 95 0111000000 15
0100000000 93 0111011100 15
0110011100 90 0010011100 14
0110111111 40 0110111110 14
0010000000 35 0110011110 13
0100011100 32 1110011100 13
0000000000 29 1110111111 12
0110000100 27 0110011000 11
0110001100 21 0110100000 11
0111111100 19 0010000100 11
0100000100 18 0000011100 10
0111111111 18 Other patterns 287

Table 8.8 Proportions giving positive and negative responses to observed items, sex-
ual attitudes data

Item Response 1  Response 0

1 0.13 0.87
2 0.83 0.18
3 0.77 0.23
4 0.13 0.87
5 0.29 0.71
6 0.18 0.53
7 0.55 0.45
8 0.59 0.41
9 0.19 0.81
10 0.11 0.89

fit indicated by the other tests it is clearly desirable to continue by fitting a
second latent variable.

The two-factor model is a considerable improvement. The percentage of G2
explained increased from 77.03 to 86.8%. The log-likelihood-ratio statistic and
the chi-squared statistic still indicate a poor fit (G? = 268.50, X? = 199.07,
each on 24 degrees of freedom). However, we need to look at the fit on the
margins before making a final judgement.

Comparing the results from the one-factor solution given in Table 8.10, we
find that the two-factor solution is a great improvement for predicting the
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Table 8.9 FEstimated difficulty and discrimination parameters with standard errors
in brackets and standardized loadings for the one-factor model, sexual attitudes data

Ttems &0 s.e. Gi1 s.e. sta;1 7;(0)
1 —1.93 (0.09) 0.11 (0.10) 0.11 0.13
2 1.65 (0.10) 0.53 (0.11) 0.47 0.84
3 1.46  (0.10) 1.00  (0.11) 0.71 0.81
4 —2.01 (0.11) 0.60 (0.10) 0.52 0.12
5 —-1.29 (0.11) 1.79  (0.16) 0.87 0.22
6  —012 (045) 1008 (1.63) 1.00 047
7 1.99  (0.84) 10.05 (3.39) 1.00 0.88
8 1.05 (0.17) 352 (0.30) 096 0.74
9 —2.06 (0.14) 1.64 (0.18) 0.85 0.11
10 -3.72 (0.27) 2.44 (0.25) 0.93 0.02

observed two- and three-way margins. The fit was found to be poor (with
residuals greater than 3) for the margins given in Table 8.11.

Although the fit is still somewhat questionable, the large percentage of G2
explained encourages us to attempt an interpretation of the two-factor model.

Table 8.12 gives the maximum likelihood estimates together with their
asymptotic (estimated using large sample theory) standard errors and the
standardized parameters for the factor loadings. The last column shows very
striking differences in the response of the median individual to the various
questions. The last two items on adoption by homosexual couples show vir-
tually no support for the propositions. There are also small probabilities of
responding positively to items 1, 4, and 5. The marginal observed proportions
given in Table 8.8 give a similar picture but they relate to views in the whole
sample rather than to the median individual. As an aid to interpretation, the
standardized factor loadings are plotted in Figure 8.3.

We see that items 2, 6, 7, and 8 have high loadings on the first factor and
low loadings on the second factor. Items 3, 4 , 9, and 10 have high loadings
on the second factor and low on the first factor. [tem 5 lies somewhere in
between. The interpretation is not entirely clear, but we note that the items
in the first group are concerned with public matters whereas items 2 and 6, at
least, are concerned with private behaviour. However, the inclusion of items 9
and 10 does not fit with this interpretation. We might hope that the plot of the
loadings would suggest a rotation that would help the interpretation. From
Figure 8.3, we see that there is no obvious orthogonal rotation that produces
a simpler pattern than the one revealed from the original factor solution.

The failure to get two clear-cut factors coupled with the poor fit of the
model overall suggests that the analysis should be taken further. The obvious
thing would be to try a three-factor model or to re-analyse the data omitting
the last two items, which seem to differ in some fundamental way from the
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Table 8.10 Chi-squared residuals greater than 3 for all the second order and (1,1,1)
third order margins for the one-factor model, sexual attitudes data

Response Ttems O E O-E (0-FE?/E
(0,0) 53 237 208.20 28.80 3.98
10,9 875 814.79 60.23 4.45

(0,1) 3,1 19 29.08 —10.08 3.49
10, 9 88 144.77 —56.77 22.26

(1,0) 4,3 4 2246 —18.46 15.17
5, 2 23 37.85 —14.85 5.83

5,3 14 36.52 —22.52 13.89

9,6 46 25.95 20.05 15.50

9,7 36 17.88 18.12 18.35

9,8 29 19.87 9.13 4.20

10, 5 23 3417  —-11.17 3.65

10, 6 15 4.13 10.87 28.66

10, 7 12 2.50 9.50 36.16

10, 8 11 3.73 7.27 14.19

10, 9 2 54.36 —52.36 50.44

(1,1) 4,1 29 18.88 10.12 5.42
9,6 154 181.92 —27.92 4.29

9,7 164 189.98 —25.98 3.55

10,9 112 63.09 48.91 37.91

(LL,1) 1,26 50 64.53 —14.53 3.27
1,3,4 29 16.10 12.90 10.34

1,4, 8 22 14.94 7.06 3.33

1,4,10 8  4.18 3.82 3.49

1, 5, 10 20 12.21 7.79 4.97
1,9,10 21 933 1167 14.60

2,3,4 122 10417  17.83 3.05

2,6,9 137 164.02 —27.02 4.45

2,7,9 147 17074 —23.74 3.30

2,9, 10 99 58.25 40.75 28.51
3,9,10 106 60.00 46.00 35.26

4,9, 10 33 17.31 15.67 14.21

5,9, 10 89 50.37 38.63 29.63

6,7,9 153 180.82 —27.82 4.28

6,8,9 151 176.04 —25.04 3.56

6, 9, 10 97 62.74 34.26 18.71
7,9,10 100 62.92 37.08 21.85

8, 9,10 101 62.55 38.45 23.64
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Table 8.11 Chi-squared residuals greater than 3 for the first, second and (1,1,1) third
order margins for the two-factor model, sexual attitudes data

Response  Items 0 E O—-F (0O-E)*/E

(0,0) 7,6 477 4369  40.01 3.66
9,7 451 41358  37.42 3.38

7,7 487 448.17  38.83 3.37

8,7 382 349.33  32.67 3.38

10,7 475 43650  38.49 3.39

(1,0) 4,3 4 1765 —13.65 10.55
5,2 23 3838 —15.38 6.16

5,3 14 28.06 —14.06 7.04

10,3 6 2.62 3.38 4.35

(1,1,1) 1,3,4 29 1951 9.49 4.62

Table 8.12 Estimated difficulty and discrimination parameters with standard errors
in brackets and standardized loadings for the two-factor model, sexual attitudes data

Ttems &0 s.e. Qi1 s.e. Qo s.e. sta;1 stauz 7;(0)
1 —201 (0.11) —0.25 (0.14) 038 (0.13) —022 035 0.12
P 167 (0.09) 051 (0.12) 022 (0.12) 044 0.19 0.84
3 164 (0.12) 040 (0.13) 1.30 (0.16) 024 0.77 0.84
4 —210 (0.12) 011 (0.12) 079 (0.14) 009 062 0.11
5 —1.40 (0.13) 112 (0.14) 1.65 (0.17) 050 0.74 0.20
6  —0.05 (0.34) 812 (1.65) 441 (0.88) 087 048 0.49
7 246 (1.46) 10.26 (5.48) 622 (2.78)  0.85 052 0.92
8 1.06 (0.15) 2.79 (0.26) 1.83 (0.21) 0.80 0.53 0.74
9 —414 (0.71) 011 (0.23) 4.86 (1.20) 0.02 098 0.02
10 —14.82 (202.11) 0.54 (0.77) 10.22 (123.60) 0.05 099 0.00

other items. A third possibility, to which we shall return in Chapter 10, is to
consider a different kind of model; namely, a latent class model.
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Figure 8.3 Plots of standardized loadings, sexual attitudes data

8.9 Additional examples and further work
The Law School Admission Test (LSAT), Section VI

The LSAT example is part of an educational test data set given in Bock and
Lieberman (1970). The LSAT is a classical example in educational testing
for measuring ability traits. This is a test that was designed to measure a
single latent ability scale. The test as given in Bock and Lieberman (1970)
consisted of five items taken by 1000 individuals. The main interest is whether
the attempt to construct items which are indicators solely of this ability has
been successful and, if so, what do the parameter estimates tell us about the
items. From Table 8.13, you will see that 92% of the students answered item
1 correctly but only 55% answered item 3 correctly. That makes item 3 the
most “difficult” among the five items. The full data set is given in Table 8.15.
To investigate whether the five items form a unidimensional scale, you need
to test whether the one-factor model is a good fit to the five items. The overall
goodness-of-fit measures show that the one-factor model is a very good fit to
the data (G = 15.30 and X2 = 11.66 on 13 degrees of freedom). In other
words, the associations among the five items can be explained by a single
latent variable that in this example is an ability which the test is designed to
measure. Since the one-factor model is not rejected by the overall goodness-of-
fit test, there is no need to check the fit on the two- and three-way margins. G2
and X2 measure how well the model predicts the whole response pattern. The
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Table 8.13 Proportions of positive and negative responses for observed items, LSAT
data

Item  Response 1  Response 0

1 0.92 0.08
2 0.71 0.29
3 0.55 0.45
4 0.76 0.24
5 0.87 0.13

first two columns of Table 8.15 show small discrepancies between the observed
frequencies and the expected frequencies under the one-factor model.

Table 8.14 gives the parameter estimates for the one-factor solution. The
last column of the table, 7;(0), gives the probability that the median individual
will respond correctly to any of those five items. The five items have different
difficulty levels. However the median individual has quite a high chance of
getting the items correct indicating that, overall, the items are quite easy.

Table 8.14 Estimated difficulty and discrimination parameters with standard errors
in brackets and standardized loadings for the one-factor model, LSAT data

item Q0 s.e. & s.e. Stéi;1 ﬁi(O)
1 2.77  (0.20) 0.83 (0.25) 0.64 0.94
2 099 (0.09) 0.72 (0.19) 0.59 0.73
3 0.25 (0.08) 0.89 (0.23) 0.67 0.56
4 1.28 (0.10) 0.69 (0.19) 0.57 0.78
5 2.05 (0.13) 0.66 (0.20) 0.55 0.89

The factor loadings &;1 are all positive and of similar magnitude with similar
standard errors. The same is true for the standardized loadings sté;1. That
implies that all five items have similar discriminating power and so a similar
weight is applied to each response. In that case, the component score that
is used to scale individuals on the latent dimension should give results that
are close (similar ranking) to the scores obtained when the total score is used
(sce columns five and six of Table 8.15). This is an cxample where the Rasch
model might be appropriate or you might analyse the five items using a latent
class model that is discussed in Chapter 10. You could compare the ranking
of the individuals obtained from the latent trait model with the allocation of
individuals into two distinct classes.
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Table 8.15 Factor scores in increasing order, LSAT data

Observed Expected E(f|x) 6(f | x) Component Total Response

frequency frequency score (X1) score pattern
3 2.3 —1.90 0.80 0.00 0 00000
6 5.9 —1.47  0.80 0.66 1 00001
2 2.6 —1.45 0.80 0.69 1 00010
1 1.8 —-1.43 0.80 0.72 1 01000
10 9.5 —1.37  0.80 0.83 1 10000
1 0.7 —1.32  0.80 0.89 1 00100
11 8.9 —1.03  0.81 1.35 2 00011
8 6.4 —1.01  0.81 1.38 2 01001
29 34.6 —-094 0.81 1.48 2 10001
14 15.6 —0.92 0.81 1.51 2 10010
1 2.6 —-0.90 0.81 1.55 2 00101
16 11.3 —0.90  0.81 1.55 2 11000
3 1.2 —0.88 0.81 1.58 2 00110
3 4.7 —0.79  0.81 1.72 2 10100
16 13.6 —0.55 0.82 2.07 3 01011
81 76.6 —0.48 0.82 2.17 3 10011
56 56.1 —0.46  0.82 2.21 3 11001
4 6.0 —0.44  0.82 2.24 3 00111
21 25.7 —-0.44 0.82 2.24 3 11010
3 4.4 —0.42  0.82 2.27 3 01101
2 2.0 —0.40 0.82 2.30 3 01110
28 25.0 —0.35 0.82 2.37 3 10101
15 11.5 —0.33 0.82 2.40 3 10110
11 8.4 —0.30 0.82 2.44 3 11100
173 173.3 0.01 0.83 2.89 4 11011
15 13.9 0.05 0.84 2.96 4 01111
80 83.5 0.13 0.84 3.06 4 10111
61 62.5 0.15 0.84 3.10 4 11101
28 29.1 0.17 0.84 3.13 4 11110
298 296.7 0.65 0.86 3.78 5 11111

Workplace industrial relations data

This example is taken from a section of the 1990 Workplace Industrial Rela-
tions Survey (WIRS) dealing with management/worker consultation in firms.
A subset of the data is used here that consists of 1005 firms and concerns
non-manual workers. The questions asked are given below:

Please consider the most recent change involving the introduction of new plant,
machinery and equipment. Were discussions or consultations of any of the type
on this card held either about the introduction of the change or about the way
it was to be implemented?
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Informal discussion with individual workers

Meetings with groups of workers

Discussions in established joint consultative committee

Discussions in specially constituted committee to consider the change

Discussions with union representatives at the establishment

IS o e

Discussions with paid union officials from outside

All six items measure the amount of consultation that takes place in firms
at different levels of the firm structure. Items 1 to 6 cover a range of informal
to formal types of consultation. Those firms which place a high value on
consultation might be expected to use all or most consultation practices. The
six items are analysed here using the latent trait model. We should mention
that the items discussed here were not initially constructed to form a scale
as is the case in the LSAT example and in most educational data. Therefore,
our analysis is completely exploratory. The full data set is given on the Web
site. The proportions giving positive and negative responses to each item are
given in Table 8.16. The most common type of consultation among the 1005
firms is the established joint consultative committee. The one-factor model

Table 8.16 Proportions giving positive and negative responses to observed items,
WIRS data

Item Response 1 Response 0

1 0.37 0.63
2 0.58 0.42
3 0.28 0.72
4 0.24 0.76
5 0.36 0.64
6 0.15 0.85

gives G? = 269.4 and X2 = 264.2 on 32 degrees of freedom. Both goodness-
of-fit measures indicate that the one-factor model is a poor fit to the data.
Table 8.17 gives chi-squared residuals greater than 3 for the second and third-
way margins. The largest discrepancies are found between items 1 and 2. As a
result, the model fails to explain the associations among the six items, judging
by the overall goodness-of-fit measures, and it also fails to explain the pairwise
associations.

You should continue the analysis by fitting one more latent variable that
might account for the big discrepancies between the observed and expected
frequencies. The percentage of G2 explained increases from 49.35% for the
one-factor model to 74.58% for the two-factor model. Clearly, the second la-
tent variable contributes substantially in explaining the associations among
the six items. However, the fit of the two-factor model is still poor if we look
at the G = 146.4 and X? = 131.5 on 24 degrees of freedom. However, the
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Table 8.17 Chi-squared residuals greater than 3 for the second and (1,1,1) third order
margins for the one-factor model, WIRS data

Response  Items (@] E O—FE (0O-E)?*/E
(0,0) 2,1 186 265.75 —79.75 23.93
(0,1) 2,1 233 153.23 79.77 41.52
(1,0) 2.1 444 364.25 79.75 17.46
4,1 172 145.48 26.52 4.84

4,2 61 87.00 —26.00 7.7

(1,1) 2,1 142 221.77  —=79.77 28.69
4,1 69 95.65 —26.65 7.43

4,2 180 154.13 25.87 4.34

(1,1,1) 1,2,3 37 7579 —38.79 19.85
1.,2,4 23 61.75 —38.75 24.32

1,2,5 53 94.85 —41.85 18.46

1,2,6 26 40.32 —14.32 5.08

1,3,4 30 4569 —15.69 5.39

1,4,5 35 5573 —20.73 7.71

2,3,4 93 75.03 17.97 4.31

2,4,5 108 91.39 16.61 3.02

residuals for the two-way margins are all close to zero. The second latent vari-
able accounts for the pairwise associations but the fit is still not satisfactory
on the three-way margins. Table 8.18 gives the residuals greater than 3 for
the (1,1,1) three-way margins. Item 1 appears in all the triplets that show a
bad fit. This is the least formal item, which is also vaguely worded and might
be interpreted differently by different respondents.

Table 8.18 Chi-squared residuals greater than 8 for the third order margins for the
two-factor model, response (1,1,1) to items (1,7, k), WIRS data

Itemi Itemj Itemk O E O-FE (0-E?/E
1 2 3 37 60.53 —23.53 9.15
1 2 4 23 40.65 —17.65 7.66
1 2 5 53 73.99  —20.99 5.95
1 3 6 31 4254 —11.54 3.13
1 5 6 36 49.84 —13.84 3.84

Although the model is not good in predicting the three-way margins, it is
worth looking at the parameter estimates of the two-factor latent trait model
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given in Table 8.19. All the loadings (é&;1) of the first factor except that for
item 1 (the least formal item) are positive and large indicating a “general”
factor relating to amount of consultation which takes place.

Table 8.19 FEstimated difficulty and discrimination parameters with standard errors
in brackets and standardized loadings for the two-factor model, WIRS data

Items &iO s.e. &il s.e. dig S.e. Std“ StdiQ 7?1(0)
1 =093 (0.31) —0.97 (0.48) 2.13 (0.96) —0.38 0.84 0.28
2 0.54 (0.15) 1.51 (0.47) —0.96 (0.36) 0.74 —0.47 0.63
3 —140 (0.14) 1.31 (0.18) 111 (0.18) 0.66 056 0.20
4 =147 (0.11) 1.22 (0.15) 0.12 (0.11) 0.77 0.08 0.19
5 =097 (0.14) 1.58 (0.24) 1.24 (0.21) 0.70 0.55 0.27
6 —239 (0.20) 1.05 (0.16) 1.06 (0.21) 059 059 0.08

The analysis may be repeated with item 1 omitted. The items used in the
analysis are item 2 to item 6 and those names are used here. The one-factor
model gives G? = 50.50 and X? = 46.29 on 17 degrees of freedom. The one-
factor model is rejected. The fit of the two-way margins is very good except
for two pairs, and there is only one large chi-squared residual in the (1,1,1)
three-way margins. These residuals are given in Table 8.20 and all include item
2 which is the second least formal item after item 1 (which is omitted from
the current analysis). The fit is improved when the two-factor model is fitted
giving a G? = 30.16 and X? = 27.53 on 13 degrees of freedom. Those statistics
still reject the two-factor model. However, the fit on the two-way margins is
excellent and the (1,1,1) three-way margins have no residual greater than
0.89. Further analysis of this data set can be found in Bartholomew (1998).

Table 8.20 Chi-squared residuals greater than 3 for the second and the (1,1,1) third
order margins for the one-factor model, WIRS data, item 1 omitied

Response  Items O E O-E (0O-E)?*E

(1,0) 3,1 61 8494 —2394 6.75
(1,1) 4,2 180 156.28  23.72 3.60
(L1,1)  (1,2,3) 93 7709 1591 3.28

The parameter estimates of the one-factor model given in Table 8.21 indi-
cate a clear general factor corresponding to the amount of consultation that
takes place. Note that item 2 has the smallest factor loading, while items 3
to 6 have similar factor loadings. It is quite apparent that items 3 to 6 can
be considered separately to construct a scale measuring the amount of formal
consultation which takes place. Fitting the one-factor model to items 3 to 6
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gives G? = 16.6 and X2 = 14.5 on seven degrees of freedom. All residuals for
the two- and three-way margins are smaller than 1.0.

Table 8.21 FEstimated difficulty and discrimination parameters with standard errors
in brackets and standardized loadings for the one-factor model with ttem 1 omitted,
WIRS data

item dio S.e. dil s.e. Stdil ﬁ'Z(O)
2 0.35 (0.07) 042 (0.10) 0.39 0.59
3 -1.38 (0.14) 169 (0.23) 0.86 0.20
4 —1.40 (0.10) 1.05 (0.14) 0.72 0.20
5 -0.95 (0.13) 197 (0.31) 0.89 0.28
6 —2.29 (0.16) 1.34 (0.18) 0.80  0.09

‘Women’s mobility

These data are from the Bangladesh Fertility Survey of 1989 (Huq and Cleland
1990). The rural subsample of 8445 women is analysed here. The question-
naire contains a number of items believed to measure different dimensions
of women’s status. The particular dimension that we shall focus on here is
women’s mobility or social freedom. Women were asked whether they could
engage in the following activities alone (1=yes, 0=no).

1. Go to any part of the village/town/city
Go outside the village/town/city
Talk to a man you do not know
Go to a cinema/cultural show
Go shopping
Go to a coopcrative/mothers’ club/other club
Attend a political meeting
Go to a health centre/hospital

® NS ot W N

First, the one-factor model was fitted to the eight items to investigate
whether the variables are all indicators of the same type of women’s mo-
bility in society. The one-factor model gives a G2 equal to 364.5 on 39 degrees
of freedom indicating a bad fit. Table 8.22 shows the chi-squared residuals
greater than 3 for the two-way margins and the (1,1,1) three-way margins of
the one-factor model.

The two-factor model is still rejected based on a G? equal to 263.41 on 33
degrees of freedom. The percentage of G? explained increases only slightly
from 94.98% to 96.92%. However, although the contribution of the second
factor is small, the fit on the two-way margins and the (1,1,1) three-way
margins is generally very good; the margins for which the fit is poor are
shown in Table 8.23.
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Table 8.22 Chi-squared residuals greater than 3 for the second and the (1,1,1) third
order margins for the one-factor model, women’s mobility data

Response  Items 0] E O-E (0-E?E
(0,1) 3,2 187 22919 —-42.19 7.76
6, 2 1986  1899.91 86.09 3.90

7,6 532 596.04 —64.04 6.88

8,5 194 245.15  —51.15 10.67

8,7 108 134.51 —26.51 5.22

(1,0) 2,1 52 11729 -65.29 36.35
51 13 3.02 9.99 32.92

5,2 98 77.74 20.25 5.28

53 20 12.10 7.60 1.66

5,4 19 28.75 —9.75 3.31

6, 2 274 196.34 77.66 30.71

6,3 44 32.03 11.97 4.47

7,1 6 1.13 4.87 20.97

7,2 62 36.82 25.18 17.21

7,4 17 8.75 8.25 7.78

7,6 41 93.69 —52.69 29.63

8,1 28 7.15 20.85 60.83

8,3 38 22.74 15.26 10.24

8,4 88 67.82 20.18 6.01

8,5 340 391.82 —51.82 6.85

(1,1) 6, 2 665  756.15 —91.15 10.99
7,6 407 356.45 50.95 7.17

8,5 392 348.29 43.71 5.48

(1,1,1) 1,2,3 2433 2338.67 94.33 3.80
1,2,6 659  751.02 —92.02 11.27

1, 5,8 392 347.45 44.55 5.71

1,6,7 403 355.75 47.25 6.27

2,3,6 653 736.66 —83.66 9.50

2,4,6 637 704.12 —67.12 6.40

3,5, 8 389 343.72 45.28 5.96

3,6, 7 402 352.32 49.68 7.01

4,5, 8 386 341.75 44.25 5.73

4,6, 7 396 351.63 44.37 5.60

5,6,7 304 271.48 32.52 3.89

5, 6,8 326 279.56 46.44 7.72

57,8 276 246.59  29.41 3.51

6,7, 8 318 267.09 50.91 9.70
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Table 8.23 Chi-squared residuals greater than 3 for the second and the (1,1,1) third
order margins for the two-factor model, women’s mobility data

Response  Items 0 E O—-FE (0-E)*/E

(0,1) 8,5 194 23958 —45.58 8.67
8,7 108 137.09 —29.09 6.17

(1,0) 4,3 226 25370 —27.70 3.02
5,1 13 7.12 5.88 4.86

5, 4 19 3325 —14.25 6.10

6, 1 15 3037 —15.37 7.78

7,2 62  78.03 —16.03 3.29

7,3 8§ 1351 —5.51 2.25

7, 6 A1 67.28 —26.28 10.26

8, 1 28  14.42 1358 12.78

8,2 144 16651 —22.51 3.04

8, 4 88  71.84  16.16 3.64

8,5 340 388.56 —48.56 6.07

(1,1) 85 392 35573  36.27 3.70
(1,1,1) 1,58 392 35337  38.63 4.22
2,5,8 351 31627  34.73 3.81

3,5,8 389 34832  40.68 4.75

4,5,8 38 347.28  38.72 4.32

5,7,8 276 24575  30.25 3.72

6,7,8 318 287.55  30.45 3.23

The parameter estimates for the two-factor model are given in Table 8.24.
The eight items are positively correlated with both factors. However, as we
can see from the standardized loadings staj; and staje, items 1 to 4 load
heavily on the first factor where items 4 to 8 load heavily on the second factor.
The loading for item 7 should be interpreted with caution due to its extremely
large standard error. The two factors can be interpreted as measuring different
dimensions of women’s status. Items 5 to 8, and to some extent item 4, indicate
a relatively high level of participation in public life; engaging in any of these
activities would suggest a high degree of social freedom for a woman in rural
Bangladesh. In contrast, items 1 to 3 are less specific indicating a degree of
freedom but not necessarily in the public life sphere. The 7;(0) values show
clearly that a woman who is in the middle of both factors has close to zero
chances of responding positively to items 5 to 8. You should compare the
results obtained here with those obtained in Chapter 10 where a latent class
model is fitted.
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Table 8.24 Estimated difficulty and discrimination parameters with standard errors
in brackets and standardized factor loadings for the two-factor model, women’s mo-
bility data

Items Qo s.e. Gyl s.e. Q0 s.e. stéy;1 stéyo ﬁ'i(O)
1 266 (0.18) 246 (0.28) 098 (0.17) 0.87 034 094
2 —1.58 (0.09) 2.48 (0.21) 1.32 (0.15) 0.83 044 0.17
3 1.56 (0.05) 1.25 (0.08) 0.86 (0.10) 0.69 0.47 0.83
4 —1.17 (0.06) 1.97 (0.16) 2.26 (0.17) 0.62 0.72 0.24
5 —6.58 (0.30) 1.98 (0.23) 3.57 (0.22) 047 0.85 0.00
6 —5.11 (027) 1.32 (023) 3.60 (0.24) 0.33 091 0.01
7 —17.24 (94.82) 2.20 (043) 10.01 (5802) 0.21 097 0.00
8 —4.94 (017) 1.51 (017) 2.80 (015) 045 0.84 0.01

8.10 Software

The software GENLAT (Moustaki 2001) for estimating the logit model is
available on the Web site associated with the book. An important feature of
the software is that it also produces estimated asymptotic standard errors for
the estimates. These are based on asymptotic theory (large samples) and are
only approximations but they often serve to add a note of caution to the in-
terpretation. The program provides the goodness-of-fit measures and scaling
methods discussed in this chapter. Software GLLAMM (Rabe-Hesketh, Pick-
les, and Skrondal 2004), MULTILOG (Thisscn, Chen, and Bock 1991) and
PARSCALE (Muraki and Bock 1997) can also be used to fit factor analy-
sis model for binary data using the IRF approach. The UV approach is im-
plemented in commercial software such as Amos (Arbuckle 2006) LISREL
(Joreskog and Sorbom 1999), Mplus (Muthén and Muthén 2007), and EQS
(Bentler 1996).
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