CHAPTER 3

Multidimensional Scaling

3.1 Introduction

Multidimensional scaling is one of several multivariate techniques that aim to
reveal the structure of a data set by plotting points in one or two dimensions.
The basic idea can be motivated by a geographical example. Suppose we
are given the distances between pairs of cities and are asked to reconstruct
the two-dimensional map from which those distances were derived. We could
attempt to do this by a process of trial and error by moving points about on
a sheet of paper until we got the distances right. A procedure that does this
automatically is called multidimensional scaling (MDS). The “multi” part of
the name refers to the fact that we are not restricted to constructing maps in
one or two dimensions.

This simple example differs in two important ways from the typical MDS
problem. In the first place, there is no ambiguity about what we mean by the
“distance” between two cities (measured in miles or kilometres in a straight
line), whereas in the typical MDS problem there is often a degree of arbitrari-
ness in the definition of distance which, in some cases, may be based on subjec-
tive assessments rather than precise measurement. Secondly, we know that the
cities can be located on a two-dimensional map (provided that the curvature
of the earth and other topographical features can be ignored), whereas in the
typical MDS problem we would have little idea how many dimensions would
be necessary in order to reproduce, even approximately, the given distances
between objects of interest. Indeed one of the prime objects of the analysis will
be to discover whether such a representation is possible in a small number of
dimensions. Unless this can be done, preferably in one or two dimensions, we
shall not be able to take advantage of the eye’s ability to spot patterns in the
plots. Even if it turns out that more than two dimensions are necessary, the
main way we can view the points is by projecting them onto two-dimensional
space.

The input data for MDS is in the form of a distance matrix representing the
distances between pairs of objects. We have already discussed the construction
of such matrices in Chapter 2 and there is nothing to add here. However,
whereas the choice between distance and proximity was largely a matter of
indifference in cluster analysis, distance is the prime concept in MDS. Thus
although we may start with a proximity or similarity matrix, it may nced to
be converted to a distance matrix in the course of the analysis; the output
will be expressed in terms of distance.
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As we have said, MDS is used to determine whether the distance matrix
may be represented by a map or configuration in a small number of dimensions
such that distances on the map reproduce, approximately, the original distance
matrix {d;;}. For example, we would aim to have the two objects that are
closest together according to the distance matrix closest together on the map,
and so on. As we have posed the problem, the distances on the map would
be in the same metric (scale of measurement) as the original J;;s. This is
often known as classical multidimensional scaling. However, it is often the
case, particularly in social science research, that the values of the é;;5 may be
interpreted only in an ordinal sense as if, for example, the distances come from
subjective similarity ratings. In such cases, it may be more reasonable only to
attempt to produce a map on which the distances have the right rank order.
This is called ordinal or non-metrical multidimensional scaling. In this chapter,
we shall be mainly concerned with ordinal MDS. In the second example in
Section 3.2 below, students were asked to rate the degree of similarity between
pairs of countries on a nine-point scale. Similarity, here, is a subjective thing
for which there is no natural underlying “space” reflected in the similarities.
Part of the interest in the analysis is to try to uncover which attributes of the
countries appear to carry weight in the students’ judgement of similarity.

Returning to classical scaling, suppose that we have four cities labelled A,
B, C, and D and that the distances (in hundreds of miles) between the pairs
of cities are as given by the following matrix:

A [/ —
Bl 2 -
cl 1 3 -
D\5 3 6 -

Using multidimensional scaling (or by inspection), it is possible to represent
this distance matrix exactly in one dimension. A possible solution is given in
Figure 3.1.

C A B D
A A A A
\ | | |
1 2 4 7
Dimension 1

Figure 3.1 A one-dimensional configuration of four cities using classical MDS

We shall denote the distance between objects i and j in the above configu-
ration by d;; and in this case, these distances are precisely equal to the J;;s.
In classical MDS, we seek a configuration such that the d;;s, the inter-point
distances in the configuration, will be approximately equal to the correspond-
ing 4;;8, as given in the distance matrix; whereas in ordinal MDS, the object
is only to find a configuration such that the d;;s are in the same rank order
as the corresponding J,,s.
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Given the Euclidean distances between n objects, it is always mathemat-
ically possible to find a configuration in (n — 1) dimensions that matches
perfectly, but this would be of little use. Our aim will be to obtain a fairly
good approximate representation in a small number of dimensions.

Measures of similarity between variables

We have already remarked in Section 2.7 that one can reverse the roles of
variables and objects. Instead of clustering objects, which was our main con-
cern, we could have clustered variables. This duality arises with all analyses
that start from a data matrix. If we wished to carry out an MDS analysis on
variables, we would need measures of similarity between columns of the data
matrix instead of between the rows.

3.2 Examples

Reproducing a two-dimensional map from air distances between
pairs of cities

MDS was carried out to determine whether a two-dimensional map could be
produced from a matrix of pairwise distances between ten cities in Europe
and Asia. The dissimilarity or distance matrix is shown in Table 3.1.

Table 3.1 Distances between ten cities in air miles

London Berlin Oslo Moscow Paris Rome Beijing Istanbul Gibraltar Reykjavik

London -

Berlin 570 -

Oslo 710 520 -

Moscow 1550 1000 1020 -

Paris 210 540 830 1540 -

Rome 890 730 1240 1470 680 -
Beijing 5050 4570 4360 3600 5100 5050  —

Istanbul 1550 1080 1520 1090 1040 850 4380 -
Gibraltar 1090 1450 1790 2416 960 1030 6010 1870 -
Reykjavik 1170 1480 1080 2060 1380 2040 4900 2560 2050 -

The solution from a classical MDS in two dimensions is shown in Figure
3.2.

The MDS has mapped points in two-dimensional space such that the “straight
line” (Euclidean) distances between the points d;; match the observed dis-
tances d;;. The d;;s are very close to the (rescaled) d;;s. They are not precisely
equal because the §;;5 are not “straight line” distances but distances across
the surface of a sphere.
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Figure 3.2 Two-dimensional plot of 10 cities from a classtcal MDS

Figure 3.2 is recognisable as a map of Europe and Asia. However, in general
a configuration may need to be rotated and/or reflected in order to clarify the
interpretation. Three important points about interpreting MDS solutions are:

i) The configuration can be reflected without changing the inter-point dis-
tances.

ii) The inter-point distances are not affected if we change the origin by
adding or subtracting a constant from the row or the column coordinates.

iii) The set of points can be rotated without affecting the inter-point dis-
tances. This comes to the same thing as rotating the axes.

We must therefore be prepared to look for the most meaningful set of axes
when interpreting an MDS solution. This idea will become clearer when we
come to the next example. To summarise, the interpretation we put upon any
MDS solution must be invariant under reflection, translation, and rotation.

An attempt to determine the dimensions underlying similarity
judgements for pairs of 12 countries

In 1968, a group of 18 students was asked to rate the degree of similarity
between each pair of 12 countries on a scale from 1 (“very different”) to 9
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(“very similar”). The study is described in Kruskal and Wish (1978), but

our analysis is slightly different. The mean similarity ratings were calculated
across students to obtain the similarity matrix in Table 3.2.

Table 3.2 Subjective similarities between pairs of 12 countries

Brazil Congo Cuba Egypt France India Israel Japan China Russia USA Yugo-
slavia

Brazil -

Congo 4.83 -

Cuba 5.28 4.56 -

Egypt 3.44 5.00 517 —

France 4.72 4.00 4.11 4.78 —

India 450 4.83 4.00 5.83 3.44 —

Isracl 3.83 3.33 3.61 4.67 4.00 4.11 -

Japan 3.50 3.39 294 383 4.22 4.50 483 -

China 2.39 4.00 5.50 4.39 3.67 4.11 3.00 4.17 -

Russia 3.06 3.39 5.44 4.39 5.06 4.50 4.17 4.61 5.72 —
USA 539 239 3.17 333 594 428 594 6.06 256 5.00 -
Yugo- 3.17 3.50 5.11 4.28 4.72 4.00 444 4.28 506 667 3.56 -

slavia

Ordinal MDS was applied to this similarity matrix, because the similarities
are based on subjective judgements. The resulting solution in two dimensions
is shown in Figure 3.3 below.

We have to consider whether we can identify what is varying as we move
along the two axes. Thus, for example, what do those countries on the right
of the diagram have more of than those on the left, or those at the top than
those at the bottom? Nothing very obvious seems to emerge from such com-
parisons but we must remember that the orientation is arbitrary and maybe
the message will be clearer if we consider other rotations. The dotted axes
shown on Figure 3.3 correspond to a rotation that does seem to have an in-
terpretation in terms of meaningful variables. Kruskal and Wish (1978), note
that variation in the direction of the axis that runs from bottom left to top
right corresponds to a tendency to be pro-Western or pro-Communist. '1'hose
at the top right are the more pro-Communist and those at the bottom left
are the more pro-Western. Variation in the direction at right angles separates
the developed (top left) from the developing (bottom right) countries. It thus
appears that when making their judgements in 1968, the students were tak-
ing account, consciously or unconsciously, of two types of difference, and the
analysis has helped us to identify what those two dimensions were.

It is worth adding two cautionary remarks about this example. The similar-
ities were obtained by averaging the assessments of the 18 students. Implicitly,
therefore, we are assuming that all are using the same two dimensions and
that they are giving them the same relative weight. This may not be the
case and it would be useful to have a method of discovering whether this was
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Figure 3.3 Two-dimensional plot of countries from ordinal MDS

true. Such methods, known as Individual Scaling or Three-Way Scaling, are
available but are outside the scope of this book (see, for example, Borg and
Groenen (2005) or Kruskal and Wish (1978)).

The second remark is that the identification of interpretable axes for a plot
is not always the best way of discerning interesting patterns. It may be that
we can identify clusters of points which have practical significance, as in the
acoustic confusion example in Section 3.7, or, as in the colour data example in
Section 3.6, the clue may be in the “horseshoe” shape of the two-dimensional
plot.
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3.3 Classical, ordinal, and metrical multidimensional scaling

We now pose the problem of multidimensional scaling in more formal terms
so that we can outline the algorithms used to arrive at a solution.

Classical scaling

In classical MDS, the aim is to find a configuration in a low number of dimen-
sions such that the distances between the points in the configuration, d;;, are
close in value to the observed distances ¢;;. The method treats the distances
as Euclidean distances. We saw in Chapter 2 how to go from a data matrix
to a Euclidean distance matrix; here we have to go in the reverse direction
and recover the data matrix from the distances. We cannot recover everything
because information about location and orientation is lost in the process of
calculating distances, but we can determine the configuration. This problem
can be tackled algebraically, and it turns out that the solution gives us a se-
ries of approximations starting with one dimension, then two, and so on. It
also happens, however, that the mathematics involved is equivalent to that
for another problem for which the solution is already known. This establishes
an interesting link with principal components analysis that we shall discuss
in Chapter 5. We shall return to this link in that chapter but we can prepare
the ground by expressing the classical MDS problem in a slightly different
way. If we start with an n X p data matrix, we first construct a distance table
and then might seek to find a two- or three-dimensional map on which the
inter-point distances are as close as possible to the original distances. Another
way of putting this is to say that we are looking for a new data matrix, with
two or three columns, which is close to the original matrix in the sense that
it gives rise to (nearly) the same distance matrix.

Having found a solution, we may wish to have a measure of how good the
fit is. This would be particularly useful for helping us to judge how many
dimensions are necessary to get a good enough fit. An obvious way to do this
is to look at the sum of squares >, .(di; — 8i;)%. (This is mathematically
appropriate since the fits obtained are best in a least squares sense.) However,
the simple sum of squares depends on the scale in which the distances are
measured. It is, therefore, preferable to normalize the sum of squares and, in
order to reduce it to the same units as the distances, to take the square root.
Our goodness-of-fit measure is then

< (dij — 6i5)?
\/ZK§<—d2) (3.1)

This measure is called the stress or, sometimes, the normalised stress. There
are other ways of calculating a normalised stress measure. For example, an
alternative measure of stress may be obtained by replacing d;; with 4;; in the
denominator of equation (3.1). Values of stress that are close to zero would
indicate that the MDS solution is a good fit to the original J;;s.
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Ordinal (non-metrical) scaling

Very often it is not the actual value of §;; that is important or meaningful, but
its value in relation to the distances between other pairs of objects. This is
particularly true when the d;;s are the result of an experiment where subjects
are asked to give their subjective assessments of the distance between objects.
In such cases, the d;;s can be interpreted only in an ordinal sense. In ordinal
MDS, the aim is to find a configuration such that the d;;s are in the same
rank order as the original §;;s. So, for example, if the distance apart of objects
1 and 3 rank fifth among the d,;s then they should also rank fifth in the MDS
configuration. The emphasis in this chapter, as noted in Section 3.1, is on
ordinal MDS. A

In ordinal MDS, we construct fitted distances, often called disparities, d;;,
from the d;;s such that the ds are in the same rank order as the d;;s (for
dissimilaritics) or reverse rank order (for similaritics). We can think of the
ciijs as “smoothed” versions of the d;;s. This smoothing process is carried
out using a method called least-squares monotonic regression (“monotonic”
means that the regression curve is either non-decreasing or non-increasing).
Using this method, the d;;s are regressed on the §,;5. In a plot of d;; versus
di;, we would like to see a monotonic curve (one where the lines joining ad-
jacent points are flat/increasing if d;; are dissimilarities or flat/decreasing if
d;; are similarities). If the d;;s and the ¢;;s have the same rank order, then
the plot will show such a monotonic curve and the d;;s will not require any
smoothing. Usually, however, there will be some departures from monotonic-
ity and some smoothing will be necessary. The aim of monotonic regression
is to fit a monotonic curve to the points (di;, d;;), while making the sum of
squared vertical deviations as small as possible (as in least-squares linear re-
gression). The point on the monotonic curve, (iij, is the fitted or predicted
value of d;; from the monotonic regression. In judging how good the fit is, we
are now interested in how close the distances, d;;, are to the disparities, JM,
rather than the observed distances, §;;. This is because we are only aiming
to reproduce the rank order of the observed distances and not the distances
themselves. Hence, our measure of fit is obtained by cleverly replacing §;; by
dij in the formula for the stress (CZ” and ¢;; having the same rank order).
Thus in ordinal MDS, the stress is calculated as

Sies(dij — dij)?
Doy dzzj

This is also known as Kruskal’s stress, type I (which we shall refer to simply as
stress). The optimum configuration is determined by minimising this measure
of stress or some variant of it.

The points (J;5,d;;) are shown by a cross in Figure 3.4. Note that while
the first and second points (counting from left to right) follow a monotonic
pattern, the third does not. To achieve monotonicity, the values of d;; for the
second and third points are replaced by their mean. Similarly, the values of

(3.2)
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d;; for the fourth and fifth points are replaced by their mean. This leads to

the monotonic regression curve consisting of the series of solid lines shown in
the plot. The vertical dotted lines represent the distances d;; — d;;.

/

dij

Figure 3.4 Ezample of monotonic regression

Metrical scaling

Classical scaling could be described as metrical scaling since, in contrast to
non-metrical scaling, the fitted and original distances are expressed in the
same metric. However, the term metrical scaling usually seems to be reserved
for something which may most naturally be thought of as related to non-
metrical (ordinal) scaling in another way. In classical scaling, we supposed that
the distances were Euclidean distances. In ordinal scaling, we made use only
of the rank order of the §;;s. This was tantamount to assuming that we had
to make a monotonic transformation of the §;;s to turn them into Euclidean
distances. In metrical scaling, we assume that they can be transformed into
Euclidean distances by some other parametric transformation. In some fields,
there may be good reasons for supposing that such transformations exist, but
we are not aware of any convincing arguments for introducing them in social
science applications. However, we mention two special cases because they are
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closely linked to classical scaling. Interval scaling refers to the case where
it is supposed that a linear transformation will turn the 4;;s into Euclidean
distances. Instead of fitting a monotonic regression to the distances to obtain
the disparities, we would now fit a linear regression. The disparities would then
become the points on the regression line instead of points on the monotonic
regression curve. The formula for stress remains the same except that the d;;s
would now be obtained from the least squares regression line. In the special
case of ratio scaling, when the regression goes through the origin, we are back
to the situation we faced in classical scaling because multiplying the d;;s by
a constant does not change the metric — if they were Euclidean before they
will be Euclidean afterwards and vice versa. The difference here lies in the
function which is being minimised. The Kruskal’s stress formula applied in
this case aims to achieve the closest degree of proportionality between the
given distances and those fitted. Classical scaling aims to achieve the closest
fit in a least squares sense. The two methods will often give very similar results
and we shall use ratio scaling in one of the examples below.

3.4 Comments on computational procedures

Given the number of dimensions, k, the aim of MDS is to find a configuration
in &k dimensions such that the stress criterion used is minimised.

Most ordinal MDS computer packages start with an initial configuration in
k dimensions, and then iteratively improve the configuration by moving the
points short distances in such a manner as to reduce the stress slightly on each
iteration. When further changes to the configuration do not reduce the stress
(or not by more than some pre-specified tolerance level), the procedure ends
and that configuration is the MDS solution. Typically, the method of steepest
descent is used. Kruskal and Wish (1978) give the analogy of a blindfolded
parachutist trying to find the lowest point in a terrain by following the gradient
downhill.

Unfortunately, it is possible that a local minimum rather than the global
minimum will be found. Repeating the process with different starting config-
urations to see whether the same minimum is found is one way of checking
for this, but there is no absolute guarantee that there may not be some even
smaller minimum lurking in a region of the space which has not been explored.

The MDS solution achieved depends on

i) the choice of initial configuration

ii) the stress criterion used

For example, the program PROXSCAL (available in SPSS), with which
many of the calculations in this chapter were done, arrives at a solution which
minimises a stress function with d;; replaced with J;; in the denominator of
the formula for Kruskal’s stress type I. There are other variants of stress which
measure the differences between the distances and the disparities in slightly
different ways.

Full discussion of such computational issues is outside the scope of this
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book, but the reader should be aware that different packages may give slightly
different solutions. If the solutions are very different, this suggests that either
there is no strong structure in the data, or that at least one of the solutions is
a local rather than a global optimum, or that complete convergence has not
been achieved for one or both solutions.

3.5 Assessing fit and choosing the number of dimensions

There are a number of ways of assessing the fit of a MDS solution. One method
involves comparing the stress obtained for the solution with the guidelines
shown in Table 3.3. These were developed by Kruskal (1964) and are based
on empirical experience rather than theoretical criteria. These should always
be used flexibly with an eye on the interpretability of the solution to which
they lead.

Table 3.3 Guidelines for assessing fit using stress

Stress (Kruskal’s type I)  Assessment of fit

0.20 poor
0.05 good
0.00 perfect

Another method that may be used to choose the number of dimensions is
to examine a scree plot in which the stress is plotted against the number of
dimensions. As the number of dimensions increases the stress decreases, but
there is a trade-ofl between improving fit and reducing the interpretability
of the solution. In the scree plot, we look for an “elbow” which is the point
at which increasing the number of dimensions has little further effect on the
stress. Again there is a strong subjective element in using this method, but
experience shows that it often works well. See, for example, Figure 3.5 below.

There are also a number of useful diagnostic plots. In the case of ordinal
scaling, the plots involve all pairs of 6;;,d;; and d;;, that may be examined to
evaluate the fit of a MDS solution.

i) Plot of d;; (the inter-point distance in the configuration) versus dy; (the
disparity or fitted value of d;; obtained from the monotonic regression
on d;;). If the MDS solution is a good fit, this plot should show a linear
relationship with a 45 degree slope and only a small amount of scatter
about the line. If little smoothing of the d;;s was necessary to produce
the czijs, then they should be in almost the same rank order and close in
value since they are measured on the same scale. See, for example, Figure
3.7.

ii) Plot of d;; (the inter-point distance in the configuration) versus d;; (the

observed distance or dissimilarity or similarity). If the solution is a good
fit, d;; and §;; should have approximately the same (or the reverse) rank
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order and this plot should show a monotonic curve, either increasing (for
dissimilarities) or decreasing (for similarities). See, for example, Figure
3.8.

iii) Plot of d; (the disparity or fitted value of the inter-point distance, d;;)
versus d;; (the observed distance or dissimilarity or similarity). The a?ijs
are the “smoothed” versions of the d;;s constructed to have the same rank
order as ¢;; (for dissimilarities) or reverse rank order (for similarities). If
a large amount of smoothing were required to achieve a monotonic curve
(that is, if the solution were a poor fit), this plot would show a number
of large horizontal steps where the smoothing took place. When the fit is
good there will only be small steps. See, for example, Figure 3.9.

For metrical scaling, the cZijs are made to be proportional to the §;;5. There-
fore, the plots involving 4;; are redundant, leaving only the plot of d;; versus

di; to be examined.

3.6 A worked example: dimensions of colour vision

We now illustrate these ideas and methods on an example which was originally
analysed by other means before the development of multidimensional scaling
methods.

An experiment was conducted where subjects were asked to look at a screen
which had two circular opaque glass windows. These windows were lit from two
projectors behind the screen. Different colour filters could be inserted in the
projectors. Fourteen colour filters were used, transmitting light of wavelengths
434my to 674mu. Each stimulus was combined with each other stimulus in a
random order. The subjects were then asked to rate the degree of “qualitative
similarity” between each pair of colour filters on a five-point scale. Further
details, and the original analysis, will be found in Ekman (1954). The simi-
larity matrix constructed by Ekman is given in Table 3.4. An ordinal MDS of
these similarities was carried out.

This is a case where we might guess in advance that a one-dimensional solution
would be possible because the difference in wavelength between two colours
is a continuous metric measuring how far apart the colours are. However, the
scree plot given in Figure 3.5 shows that there is a big reduction in stress
in passing from one to two dimensions, so there must be other factors which
come into play when making subjective assessments of colour. The “elbow”
at two dimensions indicates that there is little reduction in stress after two
dimensions. Therefore, we select a two-dimensional solution. This solution has
stress of 0.03 (3%) which according to Kruskal’s guidelines is a good fit.

In the two-dimensional configuration (Figure 3.6), the points appear on a
curve to give a “horseshoe” effect — a common phenomenon. At one extreme,
are the violets (colours 1 and 2) and at the other are the reds (colours 11-
14). As we go round the horseshoe, we encounter the colours in strict order
of wavelength. However, it appears that subjects were making more subtle
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Table 3.4 Similarities between colours based on subjective judgements

Colour 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 — 86 .42 42 .18 .06 .07 .04 .02 .07 .09 .12 .13 .16
2 &8 - 50 44 22 09 .07 .07 .02 .04 .07 .11 .13 .14
3 42 50 - R1 47 17 10 .08 .02 .01 .02 .01 .05 .03
4 42 44 8 - b4 25 10 .09 .02 .01 .01 .01 .02 .04
5 A8 .22 .47 b4 — 61 .31 .26 .07 .02 .02 .01 .02 .01
6 06 .09 .17 .25 .61 - 62 45 14 .08 .02 .02 .02 .01
7 07 or 10 10 31 62 - 73 .22 14 05 .02 .02 .01
8 .04 07 08 .09 .26 45 .73 - 33 .19 .04 .03 .02 .02
9 02 .02 .02 .02 .07 .14 .22 .33 — b8 37 .27 .20 .23
10 07 04 01 01 .02 .08 .14 .19 58 - 74 50 .41 .28
11 .09 07 .02 .01 .02 .02 .05 .04 37 74 - 76 .62 .55
12 12 .11 .01 .01 .01 02 .02 .03 27 b0 76 - .85 .68
13 13 .13 .05 .02 .02 .02 .02 .02 .20 .41 .62 .85 - .76
14 16 .14 .03 .04 .01 .01 .01 .02 .23 .28 .55 .68 .76 -

0.25]

0.20]

§ 0.15]

0.10]

0.05]

Number of dimensions

Figure 3.5 Scree plot of stress by number of dimensions, colour data

judgements in that reds are seen as closer to violets than to greens (colours
6-8), even though reds and greens are closer in terms of their wavelengths.
Reference back to Table 3.4 conlirms that this is not an accidental artefact
of the MDS solution. There is clearly some other aspect of the perception of
colour influencing the subject’s comparisons than is conveyed by wavelength

alone.

The three diagnostic plots are typical of what one finds with a reasonably
good fit. On Figure 3.7, the points lie close to the 45 degree line; the curve in
Figure 3.8 shows marked monotonicity, and Figure 3.9 has horizontal steps of
short length reflecting the near monotonicity shown by the previous figure.
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Figure 3.6 Two-dimensional configuration plot from an ordinal MDS of colour data

Before leaving this example, it is interesting to return to the one-dimensional
solution plotted in Figure 3.10. The colours do not appear in order of their
wavelength though there is a clear separation between the “blue” end of the
spectrum (colours with low numbers) and the “red” (colours with high num-
bers). Within those two groups, however, there seems to be some inversion of
the order one would have expected. The fit, of course, was not good in this
case. The stress was 0.28, which on Kruskal’s criterion, indicates a poor fit.

The clear conclusion of our analysis is that colour perception involves more
than is conveyed by the wavelength of the light. To return to the title of
Ekman’s paper, there appear to be two dimensions of colour vision.

3.7 Additional examples and further work

In this section, we give four further examples to illustrate the methods. We
shall not carry out an exhaustive analysis on any of them, but focus on par-
ticularly interesting features which the individual examples show. You are
invited to use these examples to explore the other options available in the
various software packages. Two of the examples have already occurred in the
chapter on cluster analysis, and our main interest in these cases will be to
compare the two methods when applied to the same data.
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Figure 3.7 Plot of di; (inter-point distance in the configuration) versus di; (fitted
value of di; ) from a two-dimensional ordinal MDS of colour data

Economic and demographic indicators for 25 countries

Table 3.5 shows the values of five economic and demographic indicators for a
sample of 25 countries. The data refer to 1990 and they come from the United
Nations Statistical Yearbook of 1997. The indicators are annual percentage
population growth rate (Increase), life expectancy in years (Life), infant mor-
tality rate per 1000 (IMR), total fertility rate (TFR), and Gross Domestic
Product per capita in US dollars (GDP).

Ratio MDS was applied to these data. Since the data are in the form of
a data matrix, the first stage of a MDS is to convert the data to a distance
matrix showing the pairwise distances between countries. Since the variables
differ greatly in terms of their variances, the variables are first standardized to
have a variance of 1. Euclidean distances are then computed. Since we apply
ratio MDS, the fitted distances will be proportional to the actual distances.
You should try ordinal scaling and compare the results.

One aim of a MDS of these data might be to determine whether coun-
tries can be placed on a scale of development based on these five indicators.
Therefore, the one-dimensional solution is of particular interest. Developed
countries are generally characterised by low growth rate, high life expectancy,
low infant mortality, low fertility and high GDP. If countries can be located
on a single dimension of development, developed countries should be placed
at one extreme with less developed countries (characterised by high growth
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Figure 3.8 Plot of d;; (inter-point distance in the configuration) versus d,; (observed
similarity) from a two-dimensional ordinal MDS of colour data
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Figure 3.10 MDS solution for colour data in one dimension

Table 3.5 Economic and demographic indicators for 25 countries, 1990, UN Statis-
tical Yearbook of 1997

Country Increase Life IMR TFR GDP
Albania 1.2 69.2 30 2.9 659.91
Argentina 1.2 68.6 24 2.8 4343.04
Australia 1.1 747 7 1.9 17529.98
Austria 1.0 73.0 7 1.5 20561.88
Benin 3.2 45.9 86 7.1 398.21
Bolivia 2.4 57.7 75 4.8 812.19
Brazil 1.5 64.0 58 2.9 3219.22
Cambodia 2.8 50.1 116 5.3 97.39
China 1.1  66.7 44 2.0 341.31
Colombia 1.7 66.4 37 2.7 1246.87
Croatia —-1.5 67.1 9 1.7 5400.66
El Salvador 2.2 639 46 4.0 988.58
France 04 73.0 7 1.7  21076.77
Greece 06 750 10 1.4 6501.23
Guatemala 2.9 624 48 5.4 831.81
Iran 2.3 67.0 36 5.0 9129.34
[taly —0.2 742 8 1.3 19204.92
Malawi 3.3 45.0 143 7.2 229.01
Netherlands 0.7 744 7 1.6 18961.90
Pakistan 3.1 60.6 91 6.2 385.59
Papua New Guinea 1.9 55.2 68 5.1 839.03
Peru 1.7 64.1 64 3.4 1674.15
Romania —0.5  66.6 23 1.5 1647.97
USA 1.1 725 9 2.1  21965.08
Zimbabwe 4.4 524 67 5.0 686.75

rate, low life expectancy, high infant mortality, high fertility and low GDP)
placed at the other extreme.

The stress (Kruskal type I) value for the one-dimensional solution was 0.17,
suggesting a poor fit. The locations of the countries on a single dimension
are given in Table 3.6. We find that the countries lie approximately where
we would expect. At one extreme, we have the less developed mainly African
and Asian countries, while at the other we have European countries, the USA
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and Australia. Since the one-dimensional fit is poor, however, you should go
on to examine a two-dimensional solution to see whether a second dimension
improves the fit and adds any new insight into the structure of the data.

Table 3.6 Coordinate for each country from a one-dimensional ratio MDS of Eco-
nomic and demographic indicators (arranged in increasing order)

Country Coordinate
Malawi —2.027
Benin —1.616
Cambodia —1.414
Zimbabwe —1.302
Pakistan —1.133
Bolivia —0.798
Papua New Guinea —0.783
Guatemala, —0.706
El Salvador —0.344
Peru —0.277
Iran —0.167
Brazil —0.112
Colombia, 0.036
China 0.188
Albania 0.220
Argentina 0.327
Romania 0.786
Greece 0.921
Australia 1.049
USA 1.105
Netherlands 1.158
Austria 1.164
Croatia 1.167
France 1.230
Italy 1.328

The stress value for the two-dimensional solution is 0.05, indicating a much
better {it than the one-dimensional solution. Figure 3.11 shows the plot of
di; versus d;;. The strong linear relationship between the distances in the
configuration and the smoothed distances is a further indication that the
data are well represented in two dimensions. As noted in Section 3.5, with
ratio MDS the other two diagnostic plots, involving §;;, are redundant since
;7 and czij have been made to be proportional.

The two-dimensional configuration is shown in Figure 3.12. The location of
countries on dimension 1 is almost the same as in the one-dimensional solution.
Dimension 1 could be interpreted as a measure of overall development. On the
second dimension, Romania and Croatia stand out from the other countries. If
you look at the profiles of these countries in Table 3.5, you can see that they
both have characteristics associated with developed countries (low growth
rate, moderately high life expectancy, fairly low infant mortality and very
low fertility), which places them on the left-hand side of the first dimension
together with other developed countries. However, they have very low GDPs
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compared to other developed countries. Those countries located at the other
end of the second dimension generally have high GDPs. Thus, the second
dimension is largely a function of GDP.

2.5

dij

(1,‘7'

Figure 3.11 Plot of d;; versus dij from a two-dimensional ratio MDS of economic
and demographic indicators
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Figure 3.12 Configuration of countries from a two-dimensional ratio MDS of eco-
nomic and demographic indicators
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Persian archers

In Chapter 2, similarities between pairs of 24 archers (Table 2.13) were analysed
using cluster analysis. The data are described in Section 2.8. The similarities
may also be analysed using ordinal MDS.

From the scree plot in Figure 3.13, there is a suggestion of an elbow at two
dimensions, indicating that a two-dimensional solution may be adequate, but
three or four dimensions might improve the representation of the dissimilari-
ties between the archers. The configuration for the two-dimensional solution
is plotted in Figure 3.14.

Stress

T T T T
1 2 3 4

Number of dimensions

Figure 3.13 A scree plot for an ordinal MDS of data on 24 Persian Archers

Archaeologists want to know how the bas-reliefs were carved. Were they
the work of a single sculptor, several independent sculptors, or of one or more
teams of sculptors?

Figure 3.14 shows five archers (20 to 24) clustered together to the left of
centre near the bottom; eight archers (1-8) spread out upwards and slightly
diagonally on the left; the remaining archers (9 to 19) are spread out on the
right. Roaf (1983), p. 14-16, as we noted in Chapter 2, concluded that there
could have been three teams of sculptors. One working on the top section of
the staircase (1 to 8), another on the centre section (9 to 19) and a third on the
bottom section (20 to 24), these last five being so similar that they could be the
work of a single sculptor. Within this broad clustering into groups, adjacent
archers on the staircase tend to be close to each other in the configuration.

You may suggest explanations of why archers 1 to 8 are strung out in a
line in Figure 3.14, why archer 2 appears relatively close to archers 20 to
24, and why archer 12 is distant from the others. Then turn to Figure 3.15
where lines have been added joining points (archers) with similarity of 15 or
more. Such additions to the plot of the MDS solution can clarify whether the
relative positions of individual points in the configuration reflect their true
similarities. Points close together on the map but with low similarities will be
major contributors to the stress.
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Figure 3.14 24 Persian archers plotted in the two-dimensional space found through
ordinal MDS
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Figure 3.15 24 Persian archers plotted in the two-dimensional space found through
ordinal MDS, with lines drawn between pairs of archers with similarity > 15
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Dialect words in 25 English villages

The data set on which this example is based was given in Section 2.5 where it
formed the basis for demonstrating the various techniques of cluster analysis.
We showed there that there was a fairly clear cluster structure in which the
villages in each cluster were close together geographically as one would have
expected. Given that the villages can be represented on a map in two dimen-
sions, it is natural to ask whether one would obtain a similar map if linguistic
similarity were used as a measure of distance. We would then be able to see
whether the pattern of villages on the linguistic map was similar to their ge-
ographical situations. If this turned out to be the case, we would infer that
the result of easier interchange between villages close together led to them
having more words in common. But major topographical features, like rivers,
roads and railways might make for greater similarity along the main lines of
communication. There are no mountain barriers in that part of England, but
a river like the Trent might well prove a barrier to easy communication.

Bearing these points in mind, you should carry out an ordinal MDS on
the similarities in two dimensions. The stress is 0.14 which is not a partic-
ularly good fit in two dimensions, but given the particular interest of the
two-dimensional plot in this case, it is given in Figure 3.16.

This should be compared with the map in Figure 2.6. The orientation is
not the conventional one with north at the top of the diagram. The most
northerly village on the map is V4 which occurs on the extreme right of the
figure. The orientation will therefore be approximately correct if we rotate the
figure anti-clockwise through 90 degrees. In that case, the Huntingdon village
(V22) will be on the right, as for the conventional view. Rotating the figure
has thus produced something fairly close to the map given in Chapter 2. This
is shown in Figure 3.17.

A careful comparison of the “map” provided by your analysis with the
true map will show a fairly good, but by no means exact, correspondence.
This suggests that geographical factors play a major role in explaining the
distribution of dialect words. It must be remembered, of course, that the
measure of linguistic similarity we have used is based on a fairly small sample
(60) of words.

In view of the relatively poor fit of the two-dimensional map, it is worth
looking at the diagnostic plot of d;; versus d;;. This is given in Figure 3.18.
Although the fit is not as good as in some of the other examples, there is a
broad correspondence between the d;; and the CZM.
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Figure 3.16 Two-dimensional representation of 25 English villages
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Figure 3.18 Plot of d;; versus (zij for the dialect data

Acoustic confusion of letters of the alphabet

In psychological experiments on memory, subjects may be asked to listen to
and remember letters of the alphabet in some sequence. There is a risk that
they may fail to give the right letters, not because of a failure of memory, but
because they did not hear them clearly. Conrad (1964) reports the results of
an experiment to investigate acoustic confusion in identifying letters of the
alphabet. Three hundred post office employees wrote down the letters they
thought they heard when letters were spoken against a background noise at
a rate of one every five seconds.

Morgan (1973) calculated the similarities given in Table 3.7 by averaging
the number of times the first letter was confused with the second, and the
number of times the second was confused with the first, each letter being
presented a total of 1440 times. The object of using MDS is to discover what
led to letters being confused with each other.

Figure 3.19 shows the minimum values of Kruskal’s stress type I for one-
through six-dimensional solutions obtained from an ordinal MDS. There is un-
fortunately no clear elbow, and it is not until you come to the four-dimensional
solution that the stress falls below 0.1. A two-dimensional solution will not be
adequate, but that does not mean that it will be of no use.
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Table 3.7 Similarities between letters (average of number of times each was confused
with the other), acoustic data

letter W g ¢ q P t b d e u v h f

1 W * 6 6 8 & 10 35 2r 18 30 21 18 13
2 g 6 * 41 142 185 128 182 151 242 222 172 5 3
3 c 6 41 * 73 385 274 203 90 129 78 81 22 8
4 q 8 142 73 * 446 265 137 106 118 153 61 32 0
5 P 8 185 385 446 * 786 237 235 283 95 125 27 13
6 t 10 128 274 265 786 * 227 201 287 40 72 32 18
7 b 35 182 203 137 237 227 * 322 379 139 290 18 8
8 d 27 151 90 106 235 201 322 * 418 101 252 17 5
9 e 18 242 129 118 283 287 379 418 * 190 174 53 15
10 u 30 222 78 153 95 40 139 101 190 * 426 28 6
11 v 21 172 81 61 125 72 290 252 174 426 * 18 4
12 h 18 5 22 32 27 32 18 17 53 28 18 * 81
13 f 13 3 8 0 13 18 8 5 15 6 4 81 *
14 s 7 7 20 10 7 15 4 9 23 8 4 194 824
15 X 3 3 11 3 7 7 3 5 25 15 1 191 483
16 1 38 6 2 7 6 2 9 6 11 3 3 16 41
17 j 13 20 16 19 26 14 35 24 10 31 25 23 13
18 k 21 5 11 20 45 19 13 12 16 25 23 43 37
19 m 25 25 18 10 33 15 21 16 72 28 12 18 35
20 n 39 34 26 12 29 20 23 27 112 35 31 55 40
21 a & 39 11 11 16 20 27 28 26 38 26 104 19
22 o 77 27 5 9 13 40 14 10 27 25 20 50 28
23 i 22 13 8 13 13 15 15 14 114 55 9 4 7
24 r 9 10 3 10 1 10 3 5 19 5 6 8 18
25 y 16 12 12 5 4 9 8 7 12 8 11 4 12
26 z 97 5 8 14 34 10 26 14 10 12 21 53 121

letter S x 1 j k m n a o) i T y 4
1 W 7 3 38 13 21 25 39 83 77T 22 9 16 97
2 g 7 3 6 20 5 25 34 39 27 13 10 12 5
3 c 20 11 2 16 11 18 26 11 5 8 3 12 8
4 q 10 3 7 19 20 10 12 11 9 13 10 5 14
5 P 7 7 6 26 45 33 29 16 13 13 1 4 34
6 t 15 7 2 14 19 15 20 20 40 15 10 9 10
7 b 4 3 9 3 13 21 23 27 14 15 3 8 26
8 d 9 5 6 24 12 16 27 28 10 14 5 7 14
9 e 23 25 11 10 16 72 112 26 27 114 19 12 10
10 u 8 15 3 31 25 28 35 38 25 55 5 8 12
11 v 4 1 3 25 23 12 31 26 20 9 6 11 21
12 h 194 191 16 23 43 18 55 104 50 4 8 4 53
13 f 824 483 41 13 37 35 40 19 28 7 18 12 121
14 s * 575 60 40 41 44 49 42 44 24 20 15 120
15 x 575 * 13 8 15 11 15 9 7 5 11 6 78
16 I 60 13 * 74 68 115 76 203 101 86 193 123 47
17 j 40 8 T4 * 222 46 106 161 87 14 18 118 150
18 k 41 15 68 222 * 82 144 246 101 13 27 31 80
19 m 44 11 115 46 82 * 846 151 339 83 65 69 48
20 n 49 15 76 106 144 846 * 360 89 77 52 58 58
21 a 42 9 203 161 246 151 360 * 594 20 36 28 26
22 o 44 7 101 87 101 339 89 594 * B4 B6 22 53
23 i 24 5 8 14 13 83 77 20 54 * 202 164 7
24 ro 20 11 193 18 27 65 52 36 56 292 * 194 30
25 y 15 6 123 118 31 69 58 28 22 164 194 * 41
26 7z 120 78 47 150 80 48 58 26 53 7 30 41 *
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Figure 3.19 A scree plot of stress against the number of dimensions used for the
acoustic data

The configuration of letters for the two-dimensional solution is shown in
Figure 3.20.
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Figure 3.20 Two-dimensional configuration of acoustic data from an ordinal MDS
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The tightest cluster consists of ¢, ¢,p, b, e, d, v, g, and ¢, u. Referring back to
Table 3.7, you can see that these letters including ¢ and v all do have relatively
high similarities with each other. You can easily see that most members of
this group share the “ee” sound, and it is presumably that fact which leads to
them frequently being confused. It is not so obvious why ¢ and u also come
in this group, although ¢ and u do have something in common.

This example shows that even when there is a rather poor fit, some meaning
can still be extracted from the analysis. You may care to investigate solutions
in three or more dimensions to see whether further meaningful groupings
oceur.
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