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Problem Setup

Linear Exploratory Factor Model(EFA) A linear EFA model with J indicators and K factors given by

ξ ∼ N (0,Φ),

X|ξ ∼ N (Λξ,Ω),
(1)

where ξ is a K-dimensional vector of common factors,Φ ∈ RK×K has diagonal entries equal to
1 and is symmetric positive definite (Φ ≻ 0), X is a J-dimensional vector of manifest variables,
Λ = (λjk)J×K is the loading matrix, and Ω = (ωij)J×J denotes the residual covariance matrix.
Let θ = (Λ,Φ,Ω) , the model in (1) implies the marginal distribution of X

X ∼ N (0,Σ(θ)),Σ(θ) = ΛΦΛ′ +Ω. (2)

Rotational Indeterminacy Suppose ξ ∼ N (0, I), let ξ̃ = T′ξ , Λ̃ = Λ(T′)−1. Then, Λ̃ξ̃ = Λξ, and
(Λ(T′)−1,T′T,Ω) and (Λ, I,Ω) result in the same distribution for X. Without further constraints,
the problem is unidentifiable.However, it is also an opportunity to find a solution that has simple
loading structure among the equivalent rotation class.

Oblique Rotation Method

1. Calculate the MLE with orthogonal latent covariance based on N samples

θ̂N = (ÂN , I, Ω̂N) ∈ argminθ∈ΘΦ=I
L(Σ(θ)), (3)

where L(Σ(θ)) = log det(2πΣ(θ)) + tr(Σ(θ)−1S),S = (
∑N

i=1 xix
⊤
i )/N.

2. Rotate the estimated loading matrix to find a sparse loading structure.

T̂N = argminT∈MQ(ÂNT
′−1

), Λ̂N = ÂNT̂
′−1
N (4)

where M = {T ∈ RK×K : rank(T) = K, (T′T)kk = 1, k = 1, . . . , K}
Obtain θ̂R = (Λ̂N , T̂

′
NT̂N , Ω̂N).

Lp Rotation Criteria

To fill the gap of dealing with true loading matrices with different sparsity levels, we propose a
family of Lp component loss functions [1]. More specifically, for each value of p ∈ (0, 1], the loss
function takes the form

Qp(Λ) =

J∑
j=1

K∑
k=1

|λjk|p, (5)

Suppose that the true loading matrix with full rank Λ∗ has perfect simple structure, in the sense
that each row has at most one nonzero entry, then any Lp CLF is uniquely minimized by Λ∗. The
minimiser is unique when all the minimisers are equivalent up to column permutation and sign
flip transformations. When the true loading matrix is less sparse than perfect simple structure,
here is an example that the minimiser of Q0.5 contains more zeros than Q1.Let

Λ∗′ =

(
1.20 0 0.15 0 0.25 1.05 0.18

0 0.27 0 1.04 0.15 1.29 0.11

)
.

The following are plots of contours of |Λ∗T−1′|p, where T = [cos(θ1), sin(θ2); sin(θ1), cos(θ2)]. Left:
p = 0.5. Right: p = 1.The point (0, 0), which is indicated by a black cross, corresponds to Λ = Λ∗,
and the point indicated by a red point corresponds to the Λ matrix such that Qp(Λ) is minimised.

As we can see, when p = 0.5, the loss function is minimised by Λ∗. On the other hand, when
p = 1, the minimiser of the loss function does not contain as many zeros as Λ∗

IRGP Algorithm for Lp Rotation

Input: The initial loading matrix estimate Â, parameter ϵ > 0, and an initial value T0. For
iterations t = 0, 1, 2, ..., we iterate between the following two steps:

Step 1: Construct Gt(T) =
∑J

j=1

∑K
k=1w

(t)
jk

(
(ÂT′−1)jk

)2

, where the weights w
(t)
jk are given

by w
(t)
jk = 1

((Â(T′
t)
−1)2jk+ϵ2)

p
2
.

Step 2: Obtain Tt+1 = Proj(Tt − αGt(T)), where the step size α is chosen by line search.

Stop until the convergence criterion is met. Let tmax be the final iteration number.
Output: Ttmax.

Main Results

Link to Lp Penalized Estimation Lp Penalized Estimation based on the loss function L(Σ(θ)) is
defined as

θ̂γ,p ∈ argminθL(Σ(θ)) + γ

J∑
j=1

K∑
k=1

|λjk|p, (6)

where γ > 0 is a tuning parameter.

Proposition 1. Consider a fixed p ∈ (0, 1] and a fixed dataset. Suppose the solution path θ̂γ,p

converges to θ̂0,p when γ → 0+. Then, θ̂0,p can also be obtained by oblique rotation method.

Proposition 1 indicates instead of obtaining a solution path, one can choose a small γ which
induces less bias in penalised estimation. Since the solution of penalised estimation converges
to rotation solution, one can select methods according to their efficiency.

Consistency, Selection Consistency and Inference The proposed estimator can recover true sparse
loading matrix Λ∗ and the corresponsing true intercorrelation matrix Φ∗ under the following
three conditions.

C1. ÂNÂ
′
N

pr→ Λ∗Φ∗Λ∗′ and Ω̂N
pr→ Ω∗, where the notation “

pr→" denotes convergence in
probability.

C2. rank(Λ∗Φ∗Λ∗′) = K.

C3. Define D1 and D2 to be the sets of column permutation and sign flip transformations.
(Λ∗,Φ∗) ∈ argminΛ,ΦQp(Λ) such that ΛΦΛ′ = Λ∗Φ∗Λ∗′. In addition, for any other
(Λ†,Φ†) ∈ argminΛ,ΦQp(Λ) such that ΛΦΛ′ = Λ∗Φ∗Λ∗′, there exist D ∈ D1 and D̃ ∈ D2,
such that Λ†DD̃ = Λ∗ and D̃−1D−1Φ†(D−1)′(D̃−1)′ = Φ∗.

Theorem 1. Suppose that for a given p ∈ (0, 1] conditions C1 through C3 hold. Then there exist
DN ∈ D1 and D̃N ∈ D2, such that Λ̂N,pDND̃N

pr→ Λ∗ and D̃−1
N D−1

N Φ̂N,p(D
−1
N )′(D̃−1

N )′
pr→ Φ∗,

where
(Λ̂N,p, Φ̂N,p) ∈ argminΛ,ΦQp(Λ), such that ΛΦΛ′ = ÂNÂ

′
N .

Based on Theorem 1, we can achieve model selection by a Hard-Thresholding procedure,
provided the threshold parameter c is smaller than min{|λ∗

jk| : λ∗
jk ̸= 0}.In practice, we choose

c based on the Bayesian Information Criterion.
Given the selection consistency, we can construct confidence interval for loadings using a stan-
dard inference procedure for CFA which is asymptotically valid.

Experiments

Estimation Consistency, Real Data Example We illustrate the consistency of our method by Big-
Five Personality Test1. We selected the subset of male respondents from the United Kingdom,
which has a sample size N = 609. In the analysis, the number of factors is set to be K = 5. The
true loading matrix summarizes the answer key of the online survey.

True Loadings
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Entry-wise Confidence Interval Coverage(ECIC) Rate, Simulation We illustrate the validity of the pro-
posed post-selection inference methods by 500 simulations. The true loading matrix is of size
30× 5, sparse and with very few cross-loadings. Following is the boxplots of ECICjk. The label
0 means that λ∗

jk = 0 and the label 1 means that λ∗
jk ̸= 0.
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For both p = 0.5 and p = 1, the ECICjks are close to the 95% nominal level, supporting the
consistency of the proposed procedure for constructing confidence intervals.

[1] Robert I Jennrich. “Rotation to simple loadings using component loss functions: The oblique case”. In: Psy-
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