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Problem

rm

T'o predict the evolution of dynamic networks,
we model it by a network AR(1) process.
Given a sample of adjacency matrix
{X1,---,X,}, our first purpose is to esti-
mate the parameters (a; i)pxp, (Bij)pxp, and
find a proper embedding into a space with lower
dimension (find a simpler representation for
parameters). Thus, the second purpose is to
estimate (0;,7;);_-

Concepts

The adjacency matrix is one way preferred by
mathematicians to represent networks. A net-
work with n nodes can be represented by an
n-by-n matrix X, where node 72 and 7 are con-
nected once X; ; = 1.

a-mixing coeflicient is firstly defined for two

o-algebra A and B:

a(A,B) = sup
AcA,BeB

P(AN B) — P(A)P(B)|.

For time series {X;},_, it is defined as:

x, (n) — Sup CV(Mk, gk—l—n);
k>1

where M; = oc({X;,7 < j}), G; = o({ X, >
j})

Models

We consider an AR(1) dynamic network defined
on p fixed nodes, denoted by {1,---,p}, with
the p X p adjacency matrix X; = (X} ;) at time
t defined by

t _ t—1 t t
Xto= XI2HI(el =0) + I

Z,j — ].),t Z 1,

(1)

innovations ¢! ., 1 < i < j < p, are independent,

2,97

and
P(e ,Lj—l)—oz”,P(sﬁ —1) = B; 4,
P( —0) 1l —a; — By

Thus {X:} is a Markov process, with

t t—1 _ )
P(Xi,j — I‘Xz',j =0) = a4,

1
P(Xf’ —O\Xt =1) =B,

In addition, assume parameters o; i and (; ; 1S
generated from {6;,7;})_, by:

a; 5 = 0,0, Bij=mnin;.

This setting comes from the insights that con-
necting and breaking probability «; ;, 5; ; should
be explained by node 2 and node j’s node-
specific property: 6;,7n; and 6;,m;. Here the
property is in dimension 1, and the dimension
could be higher, the corresponding model is
called dot-product random graph.
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Sparsity 1s an Issue in Network Parameter Es

The sparsity in networks is not like in the linear model, where we assume only a small number of

all features are strong features that actually affect the response variable. Here, sparsity means the

f,jzl E[Xiaj]

p(p—1)/2

expected number of edges divided by the number of all possible edges p, = goes to zero

as p goes to infinity.

- = 2 Y icicp o = A S L Tt
p(p—1)/2 p(p—1) 1<1<g=p oy ;+0i,; p(p—1) 1<i<j=<p 140,/ ai,;

is clear that if o; ; and B; ; are bounded away from 0 (liminf, ,. a;; > 0, liminf, .. B;; > 0),
then the network is not sparse. Asymptotic results under non-sparse settings have been thoroughly
investigated.

One way to understand why sparse is an issue is to treat it as signal processing:

Under our setting, p, =

X =E[X]|+ P

where E[X] = (- (;‘JFJ’B -

(of p(p — 1)/2 number of Bernoulli distribution), while P satisfying E|[P] = 0 is the noise (or error
term).

)pxp 1S the expected value of the adjacency matrix, while X is the realisation

Methods

We estimate v and by conditional Maximum Likelihood Estimation.

O — Z?:l X’faj(l B X’itagl) B\ . zt 1(1 B Xt»J)Xt 1 T — Qi (2)
(2% n — ) 1, ’ 1, ~ .
2=l - Xf,jl) D i 1Xt : X

Next, by using &, we aim to estimate 6. Directly listing all equations &; ; = é\zé’\] for 1 <1< 3 <p
does not necessarily yield solutions, since «; ; are noise versions of «; ;, therefore the matrix (o ;)pxy
are very likely to not be in 1 dimension. (there are p(p—1)/2 number of equations, and only p number
of variables)

We propose a method to solve for 6A’Z consider summation for p number of rows:

p p

Z é\z Z &g 5, ]-7 y P-
J=1,j7#1

Now there are p number of equations and p number of variables. Although it is in the quadratic
form, we prove this is a convex problem, thus having a unique solution.

Given the estimation strategy, we could derive the probability bound for these estimators.

Lemma 1. Fort > 1, Define Y}, = X .(1 — Xj ). Set cy = (i + Bij), then, for any n € N,
oy, (n) < exp{—2cyn}. (3)
Theorem 1. Let n > 4. For any t such that

;3B g

2
3 {logQ (ai,jiﬁi,j)} (&iaj T B’L’,j)

we have the non-asymptotic bound jor the Moment Generating Function of S n)-

0<t<

)

(o -+ B .\ St2nav. B; 1
log E tSio.1} < 15.5t%v°n + 1.4 J——d )L DIy 2 4
og Eexp{tS(o n} < v°n + 1.4nexp it | e B s (4)

(2,3 Bi,5)° i
(@i 5 +5:.4)" [logQ ( w53 +Bi; >]
C' > 0 only depends on a upper bound of a-mizing coefficient of {Xf,j}:io, such that the inequality
below holds for all sufficiently large n.
> a,%p) < 10exp {

I, o
7 (2300, -m
i B )3 2 =
(C1) As n,p — o0, it holds that éazj;&%‘)g% (log ai,jiﬁz’,j) \/n(aiﬁpﬁi’j) > 0.

Furthermore, for any €n, > 0 and €, , = 0 ( ), there exists a constant

(5)

4,5 B, j

Cn(a; ; + Bi;)°es 2’p}

Corollary 1. Let condition (C1) hold. For any k > 0, and any p there exists a constant C,, only
depends on k, such that for all sufficiently large n,

1 — o; i 0; jlogp _
P —EﬁXf-—Wi'ZCm ot <p " 6
( ni \/”(Oéi,j ™ 57:,3')3) 2




