Online Change Detection via Random Fourier Features

Shakeel Gavioli-Akilagun

LONDON SCHOOL OF ECONOMICS DEPARTMENT OF STATISTICS

イロト イヨト イヨト

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Collaborator

Florian Kalinke @ Karlsruher Institut für Technologie

2

(LSE department of Statistics)

LSE Research Showcase

April 2025

イロト イヨト イヨト イヨト

2/28

1 Introduction & problem statement

2 Kernel two sample tests

Online change detection

Theoretical results

▶ Setup: the sequence $X_1, X_2, ...$ is observed online. The X's are defined on \mathbb{R}^d , and $\exists \eta \in \mathbb{N}$ (possibly infinite) and two measures $\mathbb{P}, \mathbb{Q} \in M_1^+(\mathbb{R}^d)$ for which

$$X_t \stackrel{\text{i.i.d.}}{\sim} \begin{cases} \mathbb{P} & \text{ for } t = 1, \dots, \eta \\ \mathbb{Q} & \text{ for } t = \eta + 1, \eta + 2, \dots \end{cases}$$

Goal: stop the process with minimal delay as soon as η is reached, but not before.

イロト イ団ト イヨト イヨト

▶ Setup: the sequence $X_1, X_2, ...$ is observed online. The X's are defined on \mathbb{R}^d , and $\exists \eta \in \mathbb{N}$ (possibly infinite) and two measures $\mathbb{P}, \mathbb{Q} \in M_1^+(\mathbb{R}^d)$ for which

$$X_t \stackrel{\text{i.i.d.}}{\sim} egin{cases} \mathbb{P} & ext{ for } t = 1, \dots, \eta \ \mathbb{Q} & ext{ for } t = \eta + 1, \eta + 2, \dots \end{cases}$$

Goal: stop the process with minimal delay as soon as η is reached, but not before.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

• Goal: alert the user when unusual activity is detected in front of their house.

$$\begin{split} & \mathcal{H}_{0,n} : X_t \sim \mathbb{P} \text{ for each } t \leq n \text{ and some } \mathbb{P} \in M_1^+ \left(\mathbb{R}^d \right) \\ & \mathcal{H}_{1,n} : \exists \eta < n \text{ s.t } X_t \sim \begin{cases} \mathbb{P} & \text{ if } 1 \leq t \leq \eta \\ \mathbb{Q} & \text{ if } \eta < t \leq n \end{cases}, \text{ and } \mathbb{P}, \mathbb{Q} \in M_1^+ \left(\mathbb{R} \right). \end{split}$$

- **Goal:** construct an extended stopping time *N* which is guaranteed to be "close" to η and which satisfies either of
 - 1. Average run length: $\mathbb{E}_{\infty}[N] \ge \gamma$ for some $\gamma > 1$,
 - 2. Uniform false alarm rate: $\mathbb{P}_{\infty} \left(N \leqslant \infty
 ight) \leqslant lpha$ for some $lpha \in (0,1)$.

< □ > < □ > < □ > < □ > < □ >

$$\begin{split} & \mathcal{H}_{0,n} : X_t \sim \mathbb{P} \text{ for each } t \leqslant n \text{ and some } \mathbb{P} \in M_1^+ \left(\mathbb{R}^d \right) \\ & \mathcal{H}_{1,n} : \exists \eta < n \text{ s.t } X_t \sim \begin{cases} \mathbb{P} & \text{ if } 1 \leqslant t \leqslant \eta \\ \mathbb{Q} & \text{ if } \eta < t \leqslant n \end{cases}, \text{ and } \mathbb{P}, \mathbb{Q} \in M_1^+ \left(\mathbb{R} \right). \end{split}$$

- **Goal:** construct an extended stopping time *N* which is guaranteed to be "close" to η and which satisfies either of
 - 1. Average run length: $\mathbb{E}_{\infty}[N] \ge \gamma$ for some $\gamma > 1$,
 - 2. Uniform false alarm rate: \mathbb{P}_{∞} $(N \leq \infty) \leq \alpha$ for some $\alpha \in (0, 1)$.

$$\begin{split} & \mathcal{H}_{0,n} : X_t \sim \mathbb{P} \text{ for each } t \leqslant n \text{ and some } \mathbb{P} \in M_1^+ \left(\mathbb{R}^d \right) \\ & \mathcal{H}_{1,n} : \exists \eta < n \text{ s.t } X_t \sim \begin{cases} \mathbb{P} & \text{ if } 1 \leqslant t \leqslant \eta \\ \mathbb{Q} & \text{ if } \eta < t \leqslant n \end{cases}, \text{ and } \mathbb{P}, \mathbb{Q} \in M_1^+ \left(\mathbb{R} \right). \end{split}$$

- **Goal:** construct an extended stopping time *N* which is guaranteed to be "close" to η and which satisfies either of
 - 1. Average run length: $\mathbb{E}_{\infty}[N] \ge \gamma$ for some $\gamma > 1$,
 - 2. Uniform false alarm rate: $\mathbb{P}_{\infty}(N \leq \infty) \leq \alpha$ for some $\alpha \in (0, 1)$.

$$\begin{aligned} & \mathcal{H}_{0,n} : X_t \sim \mathbb{P} \text{ for each } t \leq n \text{ and some } \mathbb{P} \in M_1^+ \left(\mathbb{R}^d \right) \\ & \mathcal{H}_{1,n} : \exists \eta < n \text{ s.t } X_t \sim \begin{cases} \mathbb{P} & \text{ if } 1 \leq t \leq \eta \\ \mathbb{Q} & \text{ if } \eta < t \leq n \end{cases}, \text{ and } \mathbb{P}, \mathbb{Q} \in M_1^+ \left(\mathbb{R} \right). \end{aligned}$$

- **Goal:** construct an extended stopping time *N* which is guaranteed to be "close" to η and which satisfies either of
 - 1. Average run length: $\mathbb{E}_{\infty}[N] \ge \gamma$ for some $\gamma > 1$,
 - 2. Uniform false alarm rate: $\mathbb{P}_{\infty}(N \leq \infty) \leq \alpha$ for some $\alpha \in (0, 1)$.

2 Kernel two sample tests

3 Online change detection

4 Theoretical results

(LSE department of Statistics)

< □ > < □ > < □ > < □ > < □ >

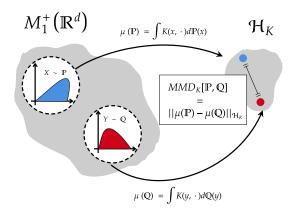
Definition (RKHSs)

A Hilbert space \mathcal{H}_K with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}_K}$ and norm $\|\cdot\|_{\mathcal{H}_K}$ consisting of functions $f : \mathbb{R}^d \mapsto \mathbb{R}$ is called an RKHS if there exists a kernel $K : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ for which

- $K(x, \cdot) \in \mathcal{H}_{K}$ for all $x \in \mathbb{R}^{d}$
- $f(x) = \langle f, K(x, \cdot) \rangle_{\mathcal{H}_{K}}$ for all $x \in \mathbb{R}^{d}$ and all $f \in \mathcal{H}_{K}$ (reproducing property).
- ▶ Kernel methods: represent data as elements of H_K using K(x, ·), do learning in H_K. Due to the reproducing everything can be expressed in terms of K(x, y) ⇒ actually computable.

Maximum Mean Discrepancy

The Maximum Mean Discrepancy (Gretton u. a., 2012, MMD) measures discrepancies between distributions by considering their distance in RKHS norm.



< □ > < □ > < □ > < □ > < □ >

• If $MMD_{\mathcal{K}}[\mathbb{P},\mathbb{Q}] = 0 \Leftrightarrow \mathbb{P} = \mathbb{Q}$ then $\mathcal{H}_{\mathcal{K}}$ is called characteristic. Sriperumbudur u.a. (2010) have shown that $\mathcal{H}_{\mathcal{K}}$ is characteristic if

(C1) $\sup_x \sqrt{K(x,x)} \leq C$ for some C > 0 (bounded) (C2) $K(x,y) = \psi(x-y)$ for some positive definite ψ (translation

C3) supp $(\Lambda) = \mathbb{R}^d$ with $\psi(x) = \int e^{-i\omega'x} d\Lambda(\omega)$ (spectrum support)

Some examples of characteristic kernels include...

Kernel	$\psi(x)$	$\Lambda(\omega)$	$supp(\Lambda)$
Gaussian	$e^{-x^2/(2\sigma^2)}$	$\sigma e^{-\sigma^2 \omega^2/2}$	
Laplace	$e^{-\sigma x }$		
B_{2n+1} —spline	$*_{1}^{(2n+1)}1_{\left[-\frac{1}{2},\frac{1}{2} ight]}(x)$	$\frac{4^{n+1}}{\sqrt{2\pi}} \frac{\sin^{2n+2}(\omega/2)}{\omega^{2n+2}}$	

... to extend to \mathbb{R}^d take products.

- If MMD_K[ℙ, ℚ] = 0 ⇔ ℙ = ℚ then H_K is called characteristic. Sriperumbudur u. a. (2010) have shown that H_K is characteristic if
 (C1) sup_x √K(x,x) ≤ C for some C > 0 (bounded)
 (C2) K(x,y) = ψ(x - y) for some positive definite ψ (translation invariant
 (C3) supp(Λ) = ℝ^d with ψ(x) = ∫ e^{-iω'x} dΛ(ω) (spectrum support)
- Some examples of characteristic kernels include...

Kernel	$\psi(x)$	$\Lambda(\omega)$	$supp(\Lambda)$
Gaussian	$e^{-x^2/(2\sigma^2)}$	$\sigma e^{-\sigma^2 \omega^2/2}$	
Laplace	$e^{-\sigma x }$		
B_{2n+1} —spline	$*_1^{(2n+1)} 1_{\left[-\frac{1}{2},\frac{1}{2}\right]}(x)$	$\frac{4^{n+1}}{\sqrt{2\pi}}\frac{\sin^{2n+2}(\omega/2)}{\omega^{2n+2}}$	

... to extend to \mathbb{R}^d take products.

- If MMD_K[ℙ, ℚ] = 0 ⇔ ℙ = ℚ then H_K is called characteristic. Sriperumbudur u. a. (2010) have shown that H_K is characteristic if
 (C1) sup_x √K(x,x) ≤ C for some C > 0 (bounded)
 (C2) K(x,y) = ψ(x - y) for some positive definite ψ (translation invariant)
 (C3) supp(Λ) = ℝ^d with ψ(x) = ∫e^{-iω'x}dΛ(ω) (spectrum support)
- Some examples of characteristic kernels include...

Kernel	$\psi(x)$	$\Lambda(\omega)$	$supp(\Lambda)$
Gaussian	$e^{-x^2/(2\sigma^2)}$	$\sigma e^{-\sigma^2 \omega^2/2}$	
Laplace	$e^{-\sigma x }$		
B_{2n+1} —spline	$*_{1}^{(2n+1)}1_{\left[-\frac{1}{2},\frac{1}{2} ight]}(x)$	$\frac{4^{n+1}}{\sqrt{2\pi}} \frac{\sin^{2n+2}(\omega/2)}{\omega^{2n+2}}$	

... to extend to \mathbb{R}^d take products.

- If MMD_K[ℙ, ℚ] = 0 ⇔ ℙ = ℚ then H_K is called characteristic. Sriperumbudur u. a. (2010) have shown that H_K is characteristic if
 (C1) sup_x √K(x,x) ≤ C for some C > 0 (bounded)
 (C2) K(x,y) = ψ(x - y) for some positive definite ψ (translation invariant)
 (C3) supp(Λ) = ℝ^d with ψ(x) = ∫e^{-iω'x}dΛ(ω) (spectrum support)
- Some examples of characteristic kernels include...

Kernel	$\psi(x)$	$\Lambda(\omega)$	$supp(\Lambda)$
Gaussian	$e^{-x^2/(2\sigma^2)}$	$\sigma e^{-\sigma^2 \omega^2/2}$	
Laplace	$e^{-\sigma x }$		
B_{2n+1} —spline	$*_{1}^{(2n+1)}1_{\left[-\frac{1}{2},\frac{1}{2} ight]}(x)$	$\frac{4^{n+1}}{\sqrt{2\pi}}\frac{\sin^{2n+2}(\omega/2)}{\omega^{2n+2}}$	

... to extend to \mathbb{R}^d take products.

< □ > < 同 > < 回 > < 回 >

- If MMD_K[ℙ, ℚ] = 0 ⇔ ℙ = ℚ then H_K is called characteristic. Sriperumbudur u. a. (2010) have shown that H_K is characteristic if
 (C1) sup_x √K(x,x) ≤ C for some C > 0 (bounded)
 (C2) K(x,y) = ψ(x - y) for some positive definite ψ (translation invariant)
 (C3) supp(Λ) = ℝ^d with ψ(x) = ∫e^{-iω'x}dΛ(ω) (spectrum support)
- Some examples of characteristic kernels include...

Kernel	$\psi(x)$	$\Lambda(\omega)$	$supp(\Lambda)$
Gaussian	$e^{-x^2/(2\sigma^2)}$	$\sigma e^{-\sigma^2 \omega^2/2}$	\mathbb{R}
Laplace	$e^{-\sigma x }$	$\frac{2}{\pi} \frac{\sigma}{\sigma^2 + \omega^2}$	\mathbb{R}
B_{2n+1} —spline	$*_{1}^{(2n+1)}1_{\left[-\frac{1}{2},\frac{1}{2}\right]}(x)$	$\frac{4^{n+1}}{\sqrt{2\pi}}\frac{\sin^{2n+2}(\omega/2)}{\omega^{2n+2}}$	\mathbb{R}

... to extend to \mathbb{R}^d take products.

< ロ > < 同 > < 回 > < 回 >

Maximum Mean Discrepancy (continued)

Given independent samples {X₁,..., X_n} ~ ℙ and {Y₁,..., Y_m} ~ ℚ a natural estimator of the (squared) MMD is given by

$$\mathsf{MMD}_{K}^{2}[X_{1:n}, Y_{1:m}] = \left\| \mu(\hat{\mathbb{P}}_{1:n}) - \mu(\hat{\mathbb{Q}}_{1:m}) \right\|_{\mathcal{H}}^{2}$$

• Computing the above requires $O(n^2 + m^2)$ basic operations making its use impractical for online problems.

イロト イポト イヨト イヨト

Maximum Mean Discrepancy (continued)

Given independent samples {X₁,..., X_n} ~ ℙ and {Y₁,..., Y_m} ~ ℚ a natural estimator of the (squared) MMD is given by

$$\mathsf{MMD}_{K}^{2}\left[X_{1:n}, Y_{1:m}\right] = \left\|\frac{1}{n}\sum_{i=1}^{n} \mathcal{K}\left(X_{i}, \cdot\right) - \frac{1}{m}\sum_{j=1}^{m} \mathcal{K}\left(Y_{j}, \cdot\right)\right\|_{\mathcal{H}}^{2}$$

• Computing the above requires $O(n^2 + m^2)$ basic operations making its use impractical for online problems.

Maximum Mean Discrepancy (continued)

Given independent samples {X₁,..., X_n} ~ ℙ and {Y₁,..., Y_m} ~ ℚ a natural estimator of the (squared) MMD is given by

$$\mathsf{MMD}_{K}^{2}[X_{1:n}, Y_{1:m}] = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} K(X_{i}, X_{j}) + \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} K(Y_{i}, Y_{j}) - \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} K(X_{i}, Y_{j}).$$

• Computing the above requires $O(n^2 + m^2)$ basic operations making its use impractical for online problems.

Let K satisfy C1-C3. By Bochner's theorem

$$K\left(x,y\right)=\int_{\mathbb{R}^{d}}e^{i\omega'\left(x-y\right)}\mathrm{d}\Lambda\left(\omega\right).$$

Rahimi und Recht (2007) note that as both Λ, K are real the integrand must be real and by Euler's identity can be replaced with cos (ω' (x - y)). Thus

$$K(x,y) = \int_{\mathbb{R}^d} \cos\left(\omega'(x-y)\right) d\Lambda(\omega) = \mathbb{E}_{\omega \sim \Lambda}\left[\cos\left(\omega'(x-y)\right)\right].$$

▶ Then for $r \in \mathbb{N}$ and $\omega_1, \ldots, \omega_r \stackrel{i.i.d}{\sim} \Lambda$ an unbiased estimator for K(x, y) is

$$\hat{K}(x,y) = \frac{1}{r} \sum_{k=1}^{r} \cos\left(\omega'_k(x-y)\right).$$

Let K satisfy C1-C3. By Bochner's theorem

$$K\left(x,y\right) = \int_{\mathbb{R}^d} e^{i\omega'(x-y)} \mathrm{d}\Lambda\left(\omega\right).$$

 Rahimi und Recht (2007) note that as both Λ, K are real the integrand must be real and by Euler's identity can be replaced with cos (ω' (x - y)). Thus

$$\mathcal{K}\left(x,y\right) = \int_{\mathbb{R}^{d}} \cos\left(\omega'(x-y)\right) \mathrm{d}\Lambda\left(\omega\right) = \mathbb{E}_{\omega \sim \Lambda}\left[\cos\left(\omega'(x-y)\right)\right].$$

▶ Then for $r \in \mathbb{N}$ and $\omega_1, \ldots, \omega_r \stackrel{i.i.d}{\sim} \Lambda$ an unbiased estimator for K(x, y) is

$$\hat{K}(x,y) = \frac{1}{r} \sum_{k=1}^{r} \cos\left(\omega'_k(x-y)\right).$$

Let K satisfy C1-C3. By Bochner's theorem

$$K\left(x,y\right)=\int_{\mathbb{R}^{d}}e^{i\omega'\left(x-y\right)}\mathrm{d}\Lambda\left(\omega\right).$$

 Rahimi und Recht (2007) note that as both Λ, K are real the integrand must be real and by Euler's identity can be replaced with cos (ω' (x - y)). Thus

$$K(x,y) = \int_{\mathbb{R}^d} \cos\left(\omega'(x-y)\right) \mathrm{d}\Lambda(\omega) = \mathbb{E}_{\omega \sim \Lambda}\left[\cos\left(\omega'(x-y)\right)\right].$$

▶ Then for $r \in \mathbb{N}$ and $\omega_1, \ldots, \omega_r \stackrel{i.i.d}{\sim} \Lambda$ an unbiased estimator for K(x, y) is

$$\hat{K}(x,y) = \frac{1}{r} \sum_{k=1}^{r} \cos\left(\omega'_k(x-y)\right).$$

For r∈ N and ω₁,..., ω_r ^{i.i.d} ∧ given independent samples {X₁,..., X_n} ~ P and {Y₁,..., Y_m} ~ Q a simple unbiased estimator of MMD²_K [X_{1:n}, Y_{1:m}] is

$$\mathsf{MMD}_{\hat{K}}^{2}\left[X_{1:n}, Y_{1:m}\right] = \left\|\frac{1}{n}\sum_{i=1}^{n}\frac{1}{r}\sum_{k=1}^{r}z_{\omega_{k}}\left(X_{i}\right) - \frac{1}{m}\sum_{j=1}^{m}\frac{1}{r}\sum_{k=1}^{r}z_{\omega_{k}}\left(Y_{j}\right)\right\|_{2}^{2}.$$

where $z_{\omega}(x) = (\cos(\omega' x), \sin(\omega' x))'$.

Importantly, this quantity can be computed in O (*rn* + *rm*) basic operations, and updated in O(*r*) time, making it ideal for online problems.

13/28

イロト イヨト イヨト

~

For r∈ N and ω₁,..., ω_r ^{i.i.d} ∧ given independent samples {X₁,..., X_n} ~ P and {Y₁,..., Y_m} ~ Q a simple unbiased estimator of MMD²_K [X_{1:n}, Y_{1:m}] is

$$\mathsf{MMD}_{\hat{K}}^{2}\left[X_{1:n}, Y_{1:m}\right] = \left\|\frac{1}{n}\sum_{i=1}^{n}\frac{1}{r}\sum_{k=1}^{r}z_{\omega_{k}}\left(X_{i}\right) - \frac{1}{m}\sum_{j=1}^{m}\frac{1}{r}\sum_{k=1}^{r}z_{\omega_{k}}\left(Y_{j}\right)\right\|_{2}^{2}.$$

where $z_{\omega}(x) = (\cos(\omega' x), \sin(\omega' x))'$.

• Importantly, this quantity can be computed in $\mathcal{O}(rn + rm)$ basic operations, and updated in $\mathcal{O}(r)$ time, making it ideal for online problems.

イロト イヨト イヨト

~

 For r∈ N and ω₁,..., ω_r ^{i.i.d} ∧ given independent samples {X₁,..., X_n} ~ P and {Y₁,..., Y_m} ~ Q a simple unbiased estimator of MMD²_K [X_{1:n}, Y_{1:m}] is

$$\mathsf{MMD}_{\hat{K}}^{2}[X_{1:n}, Y_{1:m}] = \left\| \frac{1}{n} \sum_{i=1}^{n} \hat{K}(X_{i}, \cdot) - \frac{1}{m} \sum_{j=1}^{m} \hat{K}(Y_{j}, \cdot) \right\|_{2}^{2}$$

• Importantly, this quantity can be computed in $\mathcal{O}(rn + rm)$ basic operations, and updated in $\mathcal{O}(r)$ time, making it ideal for online problems.

イロト 不得 トイヨト イヨト

Kernel two sample tests

4 Theoretical results

(LSE department of Statistics)

14/28

< □ > < □ > < □ > < □ > < □ >

• Recall, the aim is to test H_0 in an online manner against

$$H_{1,n}: \exists \eta < n \text{ s.t } X_t \sim \begin{cases} \mathbb{P} & \text{ if } 1 \leqslant t \leqslant \eta \\ \mathbb{Q} & \text{ if } \eta < t \leqslant n \end{cases}, \text{ and } \mathbb{P}, \mathbb{Q} \in M_1^+(\mathbb{R}).$$

This can be achieved with the statistic

$$\max_{\tau=1...n-1} \sqrt{\frac{\tau(n-\tau)}{n}} \mathsf{MMD}_{\widehat{K}} \left[X_{1:\tau}, X_{(\tau+1):n} \right].$$

We use a dyadic approximation scheme due to Lai (1995)

$$N = \inf\left\{n \ge 2 \mid \bigvee_{j=0}^{\lfloor \log_2(n) \rfloor - 1} \sqrt{\frac{2^j(n-2^j)}{n}} \mathsf{MMD}_{\hat{K}}\left[X_{1:(n-2^j)}, X_{(n-2^j+1):n}\right] > \lambda_n\right\}$$

15/28

• • • • • • • • • • •

• Recall, the aim is to test H_0 in an online manner against

$$H_{1,n}: \exists \eta < n \text{ s.t } X_t \sim \begin{cases} \mathbb{P} & \text{ if } 1 \leqslant t \leqslant \eta \\ \mathbb{Q} & \text{ if } \eta < t \leqslant n \end{cases}, \text{ and } \mathbb{P}, \mathbb{Q} \in M_1^+(\mathbb{R}).$$

This can be achieved with the statistic

$$\max_{\tau=1...n-1} \sqrt{\frac{\tau(n-\tau)}{n}} \mathsf{MMD}_{\widehat{K}} \left[X_{1:\tau}, X_{(\tau+1):n} \right].$$

We use a dyadic approximation scheme due to Lai (1995)

$$N = \inf\left\{n \ge 2 \mid \bigvee_{j=0}^{\lfloor \log_2(n) \rfloor - 1} \sqrt{\frac{2^j (n - 2^j)}{n}} \mathsf{MMD}_{\hat{K}}\left[X_{1:(n-2^j)}, X_{(n-2^j+1):n}\right] > \lambda_n\right\}$$

April 2025

• • • • • • • • • • •

15/28

• Recall, the aim is to test H_0 in an online manner against

$$H_{1,n}: \exists \eta < n \text{ s.t } X_t \sim \begin{cases} \mathbb{P} & \text{ if } 1 \leqslant t \leqslant \eta \\ \mathbb{Q} & \text{ if } \eta < t \leqslant n \end{cases}, \text{ and } \mathbb{P}, \mathbb{Q} \in M_1^+(\mathbb{R}).$$

This can be achieved with the statistic

$$\max_{\tau=1...n-1} \sqrt{\frac{\tau(n-\tau)}{n}} \mathsf{MMD}_{\widehat{K}} \left[X_{1:\tau}, X_{(\tau+1):n} \right].$$

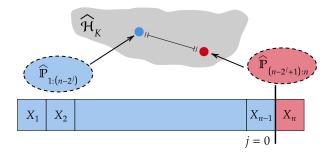
We use a dyadic approximation scheme due to Lai (1995)

$$N = \inf\left\{n \ge 2 \mid \bigvee_{j=0}^{\lfloor \log_2(n) \rfloor - 1} \sqrt{\frac{2^j(n-2^j)}{n}} \mathsf{MMD}_{\hat{K}}\left[X_{1:(n-2^j)}, X_{(n-2^j+1):n}\right] > \lambda_n\right\}$$

Image: A math the second se

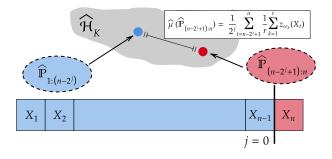
15/28

Having observed data {X₁,..., X_n}, we consider log₂(n) possible sample splits. For every such split we approximate the MMD between empirical measures of the two samples using RFFs, and stop the process at the first n for which at least one such statistic is larger than a given threshold.



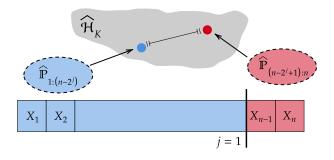
• • • • • • • • • • • • • •

Having observed data {X₁,..., X_n}, we consider log₂(n) possible sample splits. For every such split we approximate the MMD between empirical measures of the two samples using RFFs, and stop the process at the first n for which at least one such statistic is larger than a given threshold.



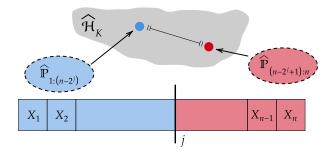
• • • • • • • • • • • • • •

Having observed data {X₁,..., X_n}, we consider log₂(n) possible sample splits. For every such split we approximate the MMD between empirical measures of the two samples using RFFs, and stop the process at the first n for which at least one such statistic is larger than a given threshold.



< □ > < 同 > < 回 > < 回 >

Having observed data {X₁,..., X_n}, we consider log₂(n) possible sample splits. For every such split we approximate the MMD between empirical measures of the two samples using RFFs, and stop the process at the first n for which at least one such statistic is larger than a given threshold.



• • • • • • • • • • • • •

Explicit Algorithm

Algorithm 1: RFF MMD Change Detector **Data:** $X_1, X_2, \ldots, \alpha \in (0, 1)$ Result: Changepoint location and detection time 1 $W \leftarrow \text{empty list}$: **2** for $X_t \in X_1, X_2, \ldots$; /* Main loop */ 3 do $W.c \leftarrow 1$; 4 5 $W.z \leftarrow z_k(X_t)$; $\mathcal{W} \leftarrow \mathcal{W}.append(W)$; 6 for $i \in 1, ..., |\mathcal{W}| - 1$: 7 /* Detect changes */ 8 do $n \leftarrow \sum_{i=i+1}^{|\mathcal{W}|} \mathcal{W}_{i.c};$ 9 $m \leftarrow \sum_{i=1}^{i} W_{i.c}$; 10 $\text{MMD}_{\hat{k}} \leftarrow \left\| \frac{1}{n} \sum_{j=i+1}^{|W|} W_{j,z} - \frac{1}{m} \sum_{j=1}^{i} W_{j,z} \right\|_{0};$ 11 $\alpha' \leftarrow \alpha/(|\mathcal{W}| - 1)$: 12 if $\sqrt{\frac{nm}{n+m}} MMD_{\hat{K}} \ge \lambda$ then 13 **print** Change detected at element X_t ; most likely at i; 14 Drop tail of W : 15 end 16 end 17 while $|\mathcal{W}| \ge 2$; /* Maintain exponential structure */ 18 19 do 20 $W_1 \leftarrow \text{pop } \mathcal{W}$; $W_2 \leftarrow \text{pop } \mathcal{W}$; 21 if $W_1.c = W_2.c$ then 22 $W.c \leftarrow W_{1,c} + W_{2,c}$: 23 $W.z \leftarrow W_{1}.z + W_{2}.z$; 24 25 $\mathcal{W} \leftarrow \mathcal{W}.append(W)$; else 26 break : 27 end 28 29 end

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Time Complexity: $\mathcal{O}(r \log(n))$ per iteration

- Setup: The computation of $z_{\omega_k}(X)$ requires computing 2r trigonometric functions of *d*-dimensional inner products and thus is in $\mathcal{O}(rd)$.
- Change detection: The memoization of all sums allows to implement the change detection in a single sweep over W; at each step, the attributes of one W ∈ W are subtracted from one sum and added to another sum. This gives a total complexity of O(r log(n))
- Maintenance: In the worst case, O(log(n)) merge operations need to be performed. Each merge requires O(r) operations, which yields a total cost of O(r log(n)).

イロト イヨト イヨト イヨト

Time Complexity: $\mathcal{O}(r \log(n))$ per iteration

- Setup: The computation of $z_{\omega_k}(X)$ requires computing 2r trigonometric functions of *d*-dimensional inner products and thus is in $\mathcal{O}(rd)$.
- Change detection: The memoization of all sums allows to implement the change detection in a single sweep over W; at each step, the attributes of one W ∈ W are subtracted from one sum and added to another sum. This gives a total complexity of O(r log(n))
- ▶ Maintenance: In the worst case, $O(\log(n))$ merge operations need to be performed. Each merge requires O(r) operations, which yields a total cost of $O(r \log(n))$.

イロン イ団 とく ヨン イヨン

Time Complexity: $\mathcal{O}(r \log(n))$ per iteration

- Setup: The computation of $z_{\omega_k}(X)$ requires computing 2r trigonometric functions of *d*-dimensional inner products and thus is in $\mathcal{O}(rd)$.
- Change detection: The memoization of all sums allows to implement the change detection in a single sweep over W; at each step, the attributes of one W ∈ W are subtracted from one sum and added to another sum. This gives a total complexity of O(r log(n))
- ▶ Maintenance: In the worst case, O(log(n)) merge operations need to be performed. Each merge requires O(r) operations, which yields a total cost of O(r log(n)).

イロト 不得 トイヨト イヨト

Kernel two sample tests

3 Online change detection

Theoretical results

Numerical studies

< □ > < □ > < □ > < □ > < □ >

Theorem (average run length)

Let N be the extended stopping time defined previously. For any $\gamma>$ 1, if the sequence of thresholds satisfies

$$\lambda_{\textit{n}} \geqslant \sqrt{2} + \sqrt{2 \log \left(4 \gamma \log_2 \left(2 \gamma \right)\right)} \quad \textit{n} \in \mathbb{N}$$

it holds that $\mathbb{E}_{\infty}[N] \ge \gamma$.

Note that the above result does not depend on the number of random Fourier features used to approximate the MMD.

イロト イ団ト イヨト イヨト

Theorem (uniform false alarm rate)

Let N be the extended stopping time defined previously. For any $\alpha \in (0,1)$, if the sequence of thresholds satisfies

$$\lambda_n \ge \sqrt{2} + \sqrt{2\left(\log(n/\alpha) + 2\log\left(\log_2(n)\right) + \log\left(\log_2(2n)\right)\right)} \quad n \in \mathbb{N}$$

then it holds that $\mathbb{P}_{\infty}(N < \infty) \leq \alpha$.

Note that the above result does not depend on the number of random Fourier features used to approximate the MMD.

(日) (四) (日) (日) (日)

Theorem (high probability detection delay)

Let λ_n be as defined in the previous theorem. If supp $(\mathbb{P}) \cup$ supp $(\mathbb{Q}) \subseteq \mathcal{X}$ for some compact set $\mathcal{X} \subset \mathbb{R}^d$,

$$\eta \geq rac{C_1 \log \left(2\eta/\alpha\right)}{MMD_K^2 \left[\mathbb{P}, \mathbb{Q}\right]},$$

and moreover the number of random features is chosen so that

$$\sqrt{r} \ge rac{C_2 + C_3 \sqrt{2 \log (2/\alpha)}}{MMD_{\mathcal{K}}^2 \left[\mathbb{P}, \mathbb{Q}\right]}$$

then with probability at least $1-\alpha$ it holds that

$$\left(\mathsf{N}-\eta
ight)^{+}\leqslant1eerac{\mathsf{C}_{\mathsf{4}}\log\left(2\eta/lpha
ight)}{\mathsf{MMD}_{\mathsf{K}}^{2}\left[\mathbb{P},\mathbb{Q}
ight]}$$

where C_1, C_2, C_3 , and C_4 are absolute constants.

• • • • • • • • • • • •

Kernel two sample tests

3 Online change detection

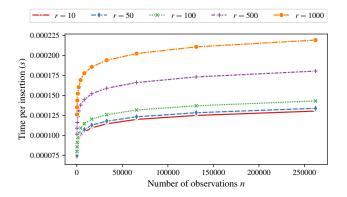
4) Theoretical results

23/28

< □ > < □ > < □ > < □ > < □ >

Runtime Experiments

 Average runtime (10 repetitions) under the null of no change of the RFF-MMD algorithm using r ∈ {10, 50, ..., 1000} random Fourier features in dimension d = 1.



(日) (四) (日) (日) (日)

We compare with three state of the are methods for online change detection...

Name	Time complexity	Approach	Training data
RFF-MMD	$r \log(n)$	$RFF + dyadic \ scheme$	No
ScanB	NW^2	sliding window	Yes
OKCUSUM	NW^2	max over multiple windows	Yes
NewMA	rd	RFF + exponential moving average	No

... for ScanB and OKCUSUM: N denotes the number of windows and W denotes the (max) window size.

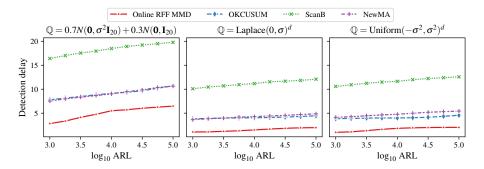
< □ > < □ > < □ > < □ > < □ >

Average Detection Delay Experiments

Average detection delay (1000 repetitions) from 64 samples of

 \[P = \mathcal{N}(\mathbf{0}_{20}, \mathcal{I}_{20})\]
 to the distribution indicated on top. r = 1000 random

 Fourier features are used to approximate the MMD, and thresholds for each
 method are calibated vai Monte Carlo.



Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

References I

- [Gretton u. a. 2012] GRETTON, Arthur ; BORGWARDT, Karsten M. ; RASCH, Malte J. ; SCHÖLKOPF, Bernhard ; SMOLA, Alexander: A kernel two-sample test. In: *The Journal of Machine Learning Research* 13 (2012), Nr. 1, S. 723–773
- [Lai 1995] LAI, Tze L.: Sequential changepoint detection in quality control and dynamical systems. In: Journal of the Royal Statistical Society: Series B (Methodological) 57 (1995), Nr. 4, S. 613–644
- [Rahimi und Recht 2007] RAHIMI, Ali ; RECHT, Benjamin: Random features for large-scale kernel machines. In: Advances in neural information processing systems 20 (2007)
- [Sriperumbudur u.a. 2010] SRIPERUMBUDUR, Bharath K.; GRETTON, Arthur ; FUKUMIZU, Kenji ; SCHÖLKOPF, Bernhard ; LANCKRIET, Gert R.: Hilbert space embeddings and metrics on probability measures. In: *The Journal* of Machine Learning Research 11 (2010), S. 1517–1561

イロト イヨト イヨト イヨト