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Online Learning and Bandits

• The learner sequentially interacts with the environment, with limited feedback 

• The goal is to adapt to the environment in a very fast manner! 

• for  

• an action set , possibly with other contextual information  are revealed to the learner 

• learner chooses some action   possibly dependent on the previous history! 

• environment reveals a reward  

• environment (partially) reveals 

t = 1,2,⋯, T

𝒜t 𝒳t

at ∈ 𝒜t

rt = rt(at)

rt( ⋅ )

An Introduction

contextual vs. non-contextual

bandit feedback
semi-bandit/full feedback 

(~online learning)



Online Learning and Bandits

• Clinical trials 

• Recommender systems (news, advertisement, etc) 

• Resource allocation (e.g., wireless networks, routing) 

• Social network influence maximization 

• Navigation system, Shortest path routing 

• ….etc

Real-world applications



Two Types of Bandits

• Stochastic bandits. 

•  follows a fixed distribution, i.e., for each ,    

• Here,  is the history up to previous time 

• Usually, this can be rewritten as  , where  is a martingale difference noise 

• There are two main goals in stochastic bandits: regret minimization and pure exploration 

• Adversarial bandits. — not considered in this talk 

• The environment (“adversary”) arbitrarily chooses  in advance! 

• The learner then plays against the adversary (~ two-player zero-sum game) ==> randomisation!!

rt a ∈ 𝒜 rt(a) |σ(ℋt−1) ∼ 𝒟a

ℋt−1 := (a1, r1, ⋯, at−1, rt−1)

rt(a) = μa + ηt,a ηt,a

(r1( ⋅ ), r2( ⋅ ), ⋯, rT( ⋅ ))

Stochastic and Adversarial



Multi-armed Bandits

• ,   suppose . 

• Suboptimality gap:   ~ difficulty of the bandit instance! 

• For K-armed bandits, we have the following Regret decomposition lemma:  

 

• In other words, we need to look out for number of pulls of suboptimal arms!! 

𝒜 = {a1, a2, ⋯, aK}, K < ∞ μa1
≤ ⋯ ≤ μaK−1

< μaK
=: μ⋆

Δa := μ⋆ − μa

Regπ(T) = ∑
a∈𝒜

Δa𝔼[Na(T)], Na(T) :=
T

∑
t=1

1[at = a]

Most Basic Bandit Setting!



Multi-armed Bandits

• A policy  is consistent if . 

• Instance-wise Lower Bound (Lai & Robbins, 1985).  For any consistent , 
 

• Minimax Lower Bound (Vogel, 1960).   For unit variance Gaussian K-armed bandits,  
 

• pf. change-of-measure, Le-Cam’s method, Bregtanolle-Huber inequality!!  (~ info theory, 
nonparametric statistics)

π Regπ(T) = o(Tα), ∀α > 0

π
lim inf

T→∞

Regπ(T)
log T

≳ ∑
a∈𝒜,Δa>0

1
Δa

min
π

max
B

Regπ(T; B) ≥
1
27

(K − 1)T .

Regret lower bounds



Multi-armed Bandits

• Exploration ~ try to estimate the environment as efficiently as possible 
=> constructing some “confidence sequence” 

• Exploitation ~ “act as if our estimates are as nice as plausibly possible” 
=> Optimism in the Face of Uncertainty (OFU) 

Upper Confidence Bound (UCB) Algorithm: 

 at = argmax
a∈𝒜,{μa′￼ ∈ 𝒞a′￼,t, ∀a′￼∈ 𝒜}μa = argmaxa∈𝒜 ̂μa(t − 1) +

2 log(1/δt)
Na(t − 1)

𝒞a′￼,t := μa′￼
: μa′￼

≤ ̂μa′￼
(t − 1) +

2 log(1/δt)
Na(t − 1)

Optimism Principle for Stochastic Bandits and UCB (Auer et al., Mach. Learn. 2002)

exploration bonus for arms not pulled sufficiently enough



Multi-armed Bandits

Upper Confidence Bound (UCB) Algorithm: 
at = argmaxa∈𝒜 ̂μa(t − 1) +

2 log(1/δt)
Na(t − 1)

𝒞a′￼,t := μa′￼
: μa′￼

≤ ̂μa′￼
(t − 1) +

2 log(1/δt)
Na(t − 1)

Optimism Principle for Stochastic Bandits and UCB (Auer et al., Mach. Learn. 2002)

Regret of UCB (Auer, 2002). 
With , 

  

Instance-wise asymptotically optimal! 

(recall our lower bound)

δ−1
t = 1 + t(log t)2

RegUCB(T) ≲ ∑
a∈𝒜,Δa>0

log T
Δa



Linear Bandits

•  that is compact and possibly infinite!   

• Linear realizability. There exists a fixed  such that  

• This can be interpreted as contextual linear bandit! (Chu et al., AISTATS’11) 

• The learner observes a context vector  for each action  

• Linear realizability. , with  

• Minimax regret lower bounds.  ( )         ( )

𝒜 ⊂ ℝd

θ⋆ ∈ ℬd(S) rt(a) = ⟨θ⋆, a⟩ + ηt,a

xa,t ∈ ℝd a ∈ [K]

rt(a) = ⟨θ⋆, xt,a⟩ + ηt,a 𝔼[ηt,a |xt,a] = 0

Ω(d T) |𝒜 | ≤ ∞ Ω( dT) |𝒜 | = K < ∞

Auer (Mach. Learn. 2002); Dani, Hayes, and Kakade (COLT’08)



LinUCB/OFUL: OFU for Linear Bandits

• Estimate mean of each arm ==> Estimate   ~ confidence sequence (CS) 

=> A random sequence of sets  s.t.  

• Theorem (Elliptical CS for linear bandits). 

, where 

 is the design matrix and  is the (regularized) MLE. 

• Pf. self-normalized vector martingale (Method of mixtures, supermartingale construction)

θ⋆

{𝒞t(δ)}t≥1
ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

𝒞t(δ) := θ : ∥θ − ̂θ t∥Vt
≲ βt(δ) ≜ log

1
δ

+ d log (1 +
ST
d )

Vt :=
1
S2

Id +
t−1

∑
s=1

xsx⊤
s

̂θ t := V−1
t

t−1

∑
s=1

rsxs

Chu, Li, Reyzin, and Schapire (AISTATS’11); Abbasi-Yadkori, Pal, and Szepesvari (NIPS’11)



LinUCB/OFUL: OFU for Linear Bandits

• Recall the UCB for K-armed bandits: 

 

• Take the first formulation and convert it to our linear bandit setting: 

 <= LinUCB/OFUL 

• Thanks to the ellipsoidal form, above can be equivalently rewritten as follows: 

at = argmax
a∈𝒜,{μa′￼ ∈ 𝒞a′￼,t, ∀a′￼∈ 𝒜}μa = argmaxa∈𝒜 ̂μa(t − 1) +

2 log(1/δt)
Na(t − 1)

xt = argmaxa∈𝒜,θ∈𝒞t(δ)⟨a, θ⟩

xt = argmaxa∈𝒜⟨xa, ̂θ t⟩ + βt(δ)∥xa∥V−1
t

Chu, Li, Reyzin, and Schapire (AISTATS’11); Abbasi-Yadkori, Pal, and Szepesvari (NIPS’11)

exploration bonus for arms not pulled sufficiently enough



LinUCB/OFUL: OFU for Linear Bandits

• Regret of OFUL.  for ,  

• pf. Relies on the confidence sequence + Cauchy-Schwartz + elliptical potential lemma 

• cf. Regret of SupLinUCB.  for 

𝒪(d T log T) |𝒜 | ≤ ∞

𝒪( dT log(KT)) |𝒜 | = K < ∞

Chu, Li, Reyzin, and Schapire (AISTATS’11); Abbasi-Yadkori, Pal, and Szepesvari (NIPS’11)

This is a elimination-based algorithm



Logistic Bandits 101

• Useful in modeling exploration-exploitation dilemma with binary/discrete-valued 
rewards and items’ feature vectors 

• e.g., news recommendation (‘click’, ‘no click’), online ad placement (‘click’, ‘show 
me later’, ‘never show again’, ‘no click’) 

• Naive reduction to linear bandits is quite suboptimal[Li et al., WWW’10; ICMLW’11]!

Motivation



Logistic Bandits 101

For : 

1. The learner observes a potentially infinite (contextual) arm-set  

2. The learner chooses  according to some policy 

3. Receive a binary reward  
•  is unknown to the learner 

•  is the logistic function,  is its first derivative 

Goal: 

Minimize , where .

t ∈ [T]

𝒳t ⊂ ℝd

xt ∈ 𝒳t

rt ∼ Ber(μ(⟨xt, θ⋆⟩))
θ⋆

μ(z) := (1 + e−z)−1 ·μ(z) = μ(z)(1 − μ(z))

RegB(T) :=
T

∑
t=1

{μ(⟨xt,⋆, θ⋆⟩) − μ(⟨xt, θ⋆⟩)} xt,⋆ := argmaxx∈𝒳t
⟨x, θ⋆⟩

Problem Setting



Logistic Bandits 101

Assumption 1.   

Assumption 2.   => today’s main quantity of interest! 

We consider the following quantities describing the difficulty of the problem: 

 

They can scale exponentially in  [Faury et al., ICML’20]

∞

⋃
t=1

𝒳t ⊆ Bd(1)

θ⋆ ∈ Bd(S)

κ⋆(T) := ( 1
T

T

∑
t=1

·μ(⟨xt,⋆, θ⋆⟩))
−1

, κ𝒳(T) := max
t∈[T]

max
x∈𝒳t

1
·μ(⟨x, θ⋆⟩)

.

S

Assumptions



Logistic Bandits 101

Theorem 2. [Local Lower-Bound; Abeille et al., AISTATS’21]  Let  and . Then, for any problem instance  
and for , there exists  such that: 

𝒳t = Sd(1) θ⋆
T ≥ d2κ⋆(θ⋆) ϵT > 0

min
π: policy

max
∥θ−θ⋆∥2≤ϵT

𝔼[RegB
θ,π] ≥ Ω d

T
κ⋆(θ⋆)

.

 is minimax optimal (taken from L. Faury’s slides)d T/κ⋆(T)

• More linear (smaller ), the easier! 

• Transient regret (small ): 

• Exploration of “detrimental” arms 

• Permanent regret (large ): 

• Sub-linear regret, as the estimate is 
sufficiently close to  

• Linear bandit with local slope around , 

·μ

t

t

θ⋆

θ⋆
·μ(⟨x⋆, θ⋆⟩) ∼

1
κ⋆(T )



Logistic Bandits 101
State-of-the-Arts, so-far



Logistic Bandits 101

• OFULog [Abeille et al., AISTATS’21]. Non-convex confidence-set-based UCB algorithm 

 

• OFULog-r [Abeille et al., AISTATS’21]. Convex relaxation of OFULog ~ loss-based confidence set 

 

• ada-OFU-ECOLog [Faury et al., AISTATS’22]. Online Newton step [Hazan et al., 2007]-based algorithm 

 

Can we construct tighter (improved dependency in ) loss-based confidence set?? Can we make 
UCB great again (i.e., UCB-type algorithm that matches or beats ada-OFU-ECOLog)?

dS
3
2

T
κ⋆(T )

+ min {d2S3κ𝒳(T ), R𝒳(T )}

dS
5
2

T
κ⋆(T )

+ min {d2S4κ𝒳(T ), R𝒳(T )}

dS
T

κ⋆(T )
+ d2S6κ(T )

S

State-of-the-Arts, so-far



Generalized Linear Models
Problem Setting



Generalized Linear Models
Problem Setting

Consider the Generalized Linear Model (GLM):

dp(r |x; θ⋆) = exp ( r⟨x, θ⋆⟩ − m(⟨x, θ⋆⟩)
g(τ)

+ h(r, τ)) dν,

with dispersion parameter , base measure , context , and unknown parameter 
.

τ > 0 ν x ∈ X
θ⋆ ∈ Θ



Generalized Linear Models
Problem Setting

Consider the Generalized Linear Model (GLM):

dp(r |x; θ⋆) = exp ( r⟨x, θ⋆⟩ − m(⟨x, θ⋆⟩)
g(τ)

+ h(r, τ)) dν,

with dispersion parameter , base measure , context , and unknown parameter 
.

τ > 0 ν x ∈ X
θ⋆ ∈ Θ

Assumptions. ,  ,   compact & convex,   is convex and 
three-times differentiable.

X ⊆ 𝔹d(1) ∅ ≠ Θ ⊆ 𝔹d(S) Θ m( ⋅ )

Properties. ,  𝔼[r |x, θ⋆] = m′￼(⟨x, θ⋆⟩) =: μ(⟨x, θ⋆⟩) Var[r |x, θ⋆] = g(τ) ·μ(⟨x, θ⋆⟩)

Examples. : Gaussian,  : Bernoulli,  : Poissonμ(z) = z μ(z) = (1 + e−z)−1 μ(z) = ez
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Generalized Linear Bandits
Confidence Sequence (CS) for the Unknown Parameter

Goal: For , obtain  s.t.  δ ∈ (0,1) {𝒞t(δ)}t≥1 ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ



Generalized Linear Bandits
Confidence Sequence (CS) for the Unknown Parameter

Goal: For , obtain  s.t.  δ ∈ (0,1) {𝒞t(δ)}t≥1 ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

Setting. : adaptively collected observations satisfying , where 
.

{(xs, rs)}s≥1 𝔼[rs |Σs] = μ(⟨xs, θ⋆⟩)
Σs := σ({x1, r1, ⋯, xs−1, rs−1, xs})



Generalized Linear Bandits
Confidence Sequence (CS) for the Unknown Parameter

Goal: For , obtain  s.t.  δ ∈ (0,1) {𝒞t(δ)}t≥1 ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

Setting. : adaptively collected observations satisfying , where 
.

{(xs, rs)}s≥1 𝔼[rs |Σs] = μ(⟨xs, θ⋆⟩)
Σs := σ({x1, r1, ⋯, xs−1, rs−1, xs})

We consider CS of the form , where𝒞t(δ) := {θ ∈ Θ : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2}
ℒt(θ) :=

t−1

∑
s=1

{ℓs(θ) ≜
−rs⟨xs, θ⟩ + m(⟨xs, θ⟩)

g(τ) }, ̂θ t := argminθ∈Θℒt(θ) .

where  is the cumulative log-likelihood loss til time , with Lipschitz constant .ℒt(θ) t − 1 Lt



New, State-of-the-Art CS for GLMs!

Theorem 3.1. We have , where 

 

 

Bernoulli:  => -free for Bernoulli!!! 

     <=>   prior work [Lee et al., AISTATS’24]:  

Rmk. For self-concordant GLMs, one can have an ellipsoidal form of the CS.

ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

𝒞t(δ) := {θ ∈ Θ : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2}
βt(δ)2 := log

1
δ

+ d log (e ∨
2eSLt

d )
βt(δ)2 ≲δ d log

St
d

poly(S)

𝒪δ (S+d log
St
d )

Contribution #1

20

Proof via PAC-Bayes



Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]
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Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
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[ℒt(θ)] ≥ log

1
δ
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1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]

2. By Ville’s inequality [Ville, 1939], we have ℙ (∃t ≥ 1 : 𝔼θ∼ℚ[Mt(θ)] ≥
1
δ ) ≤ δ

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound

Anytime-valid Markov’s inequality 
for supermartingales
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SURVEY
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Proof of Theorem 3.1
Step 2. Novel choice of of “prior” and “posterior” & Lipschitzness

From P. Alquier’s MLSS lecture slides



ℚ = Unif(Θ), ℙt = Unif ( Θ̃ t ≜ (1−c) ̂θ t+cΘ)
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ℚ = Unif(Θ), ℙt = Unif ( Θ̃ t ≜ (1−c) ̂θ t+cΘ)
=> DKL(ℙt | |ℚ) = log

vol(Θ)

vol( Θ̃ )
= log

vol(Θ)
vol(cΘ)

= d log
1
c

Also, 𝔼θ∼ℙt
[ℒt(θ)] = ℒt( ̂θ t) + 𝔼θ∼ℙt

[ℒt(θ) − ℒt( ̂θ t)] ≤ ℒt( ̂θ t) + 2SLtc,
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ℚ = Unif(Θ), ℙt = Unif ( Θ̃ t ≜ (1−c) ̂θ t+cΘ)
=> DKL(ℙt | |ℚ) = log

vol(Θ)

vol( Θ̃ )
= log

vol(Θ)
vol(cΘ)

= d log
1
c

Also, 𝔼θ∼ℙt
[ℒt(θ)] = ℒt( ̂θ t) + 𝔼θ∼ℙt

[ℒt(θ) − ℒt( ̂θ t)] ≤ ℒt( ̂θ t) + 2SLtc,

All in all, with probability at most , there exists a  such thatδ t ≥ 1

ℒt(θ⋆) − ℒt( ̂θ t) ≥ log
1
δ

+ d log
1
c

+ 𝔼θ∼ℙt
[ℒt(θ)] − ℒt( ̂θ t) ≥ log

1
δ

+ d log
1
c

+ 2SLtc

Choose  and we are done.c = min {1,d/(2SLt)}
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Step 2. Novel choice of of “prior” and “posterior” & Lipschitzness

Remark. Originally 
considered in portfolio 
optimization [Blum and Kalai, 1999] 
and fast rates in online learning 
[Hazan et al., 2007; Foster et al., COLT’18].



Generalized Linear Bandits

For : 

1. The learner observes a potentially infinite (contextual) arm-set  

2. The learner chooses  according to some policy 

3. Receive a reward  
•  is unknown to the learner 

Goal: Minimize the regret 

 where .

t ∈ [T]

𝒳t ⊂ X

xt ∈ 𝒳t

rt ∼ GLM(xt, θ⋆; μ( ⋅ ))
θ⋆

RegB(T) :=
T

∑
t=1

{μ(⟨xt,⋆, θ⋆⟩) − μ(⟨xt, θ⋆⟩)} xt,⋆ := argmaxx∈𝒳t
μ(⟨x, θ⋆⟩)

Problem Setting



Generalized Linear Bandits

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits 

1. Compute  and  - tighter confidence sequence (Theorem 3.1)! 

2.  

3. Play  and observe/receive a reward  

Theorem 4.1.  OFUGLB attains the following regret bound for self-concordant generalized linear 
bandits w.p. at least : 

̂θ t 𝒞t(δ)

(xt, θt) = argmaxx∈𝒳t,θ∈𝒞t(δ) μ(⟨x, θ⟩)

xt rt ∼ GLM(xt, θ⋆; μ( ⋅ ))

1 − δ

Reg(T) ≲ d
g(τ)T
κ⋆(T)

log
SLT

d
log

R ·μST
d

permanent term

+ d2RsR ·μ g(τ)κ(T)

transient term

Contribution #2

Nontrivial proof!!



• Linear Bandits:   

• => matches state-of-the-art [Flynn et al., NeurIPS’23] 

• Logistic Bandits:   

• => first -free regret with computationally tractable, purely optimistic approach!! 

• => improves upon prior state-of-the-art [Lee et al., AISTATS’24] 

• => similar guarantee in a concurrent work [Sawarni et al., arXiv’24], but is intractable and involves 
explicit warmup + their guarantees only apply to bounded GLBs. 

• Poisson Bandits:   

• => state-of-the-art regret guarantee

𝒪̃ (σd T)

𝒪̃ (d T/κ⋆(T) + d2κ(T))
poly(S)

𝒪̃ (dS T/κ⋆(T) + d2e2Sκ(T))

Generalized Linear Bandits
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits



Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits
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Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

Previously: use self-concordance control lemma to obtain 
∥θ⋆ − ̂θt∥Ht( ̂θt) = 𝒪(SβT(δ))
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Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

Previously: use self-concordance control lemma to obtain 
∥θ⋆ − ̂θt∥Ht( ̂θt) = 𝒪(SβT(δ))

Here: maximally avoid self-concordance control => use “exact” Taylor expansion, 

, where  and 

.

∥θ⋆ − ̂θt∥G̃t( ̂θt,νt) = 𝒪(βT(δ)) G̃t( ̂θt, νt) = λI +
1

g(τ)

t−1

∑
s=1

α̃s( ̂θt, νt)xsx⊤
s

α̃s(θ, ν) = ∫
1

0
(1 − v) ·μt(θ + v(ν − θ))dv

26



Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits
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Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

BUT, the remaining term of Cauchy-Schwartz,  , how to apply elliptical 

potential lemma?
∑

t

∥xt∥2
G̃t( ̂θt,νt)−1

G̃t( ̂θt, νt) = λI +
1

g(τ)

t−1

∑
s=1

α̃s( ̂θt, νt)xsx⊤
s
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Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

BUT, the remaining term of Cauchy-Schwartz,  , how to apply elliptical 

potential lemma?
∑

t

∥xt∥2
G̃t( ̂θt,νt)−1

G̃t( ̂θt, νt) = λI +
1

g(τ)

t−1

∑
s=1

α̃s( ̂θt, νt)xsx⊤
s

Main proof novelty: designate the “worst-case” ’s such that 

, where 

θ̄t

∑
t

∥xt∥2
G̃t( ̂θt,νt)−1 ≤ ∑

t

min {1, ·μ(θ̄s)∥xt∥2
H̄−1

t } Ht = 2g(τ)λI +
t−1

∑
s=1

·μs(θs)xsx⊤
s

27



Experiments for Logistic Bandits

• One may wonder, does shaving off dependencies on  really help in practice? 

• Synthetic experiments show that this is indeed beneficial, by a large margin!!

S

Better than most of existing approaches
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• Synthetic experiments show that this is indeed beneficial, by a large margin!!

S

Better than most of existing approaches
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