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Online Learning and Bandits

• The learner sequentially interacts with the environment, with limited feedback 

• The goal is to adapt to the environment in a very fast manner! 

• for  

• an action set , possibly with other contextual information  are revealed to the learner 

• learner chooses some action   possibly dependent on the previous history! 

• environment reveals a reward  

• environment (partially) reveals 

t = 1,2,⋯, T

𝒜t 𝒳t

at ∈ 𝒜t

rt = rt(at)

rt( ⋅ )

An Introduction

contextual vs. non-contextual

bandit feedback
semi-bandit/full feedback 

(~online learning)



Online Learning and Bandits

• Clinical trials 

• Recommender systems (news, advertisement, etc) 

• Resource allocation (e.g., wireless networks, routing) 

• Social network influence maximization 

• Navigation system, Shortest path routing 

• ….etc

Real-world applications



Two Types of Bandits

• Stochastic bandits. 

•  follows a fixed distribution, i.e., for each ,    

• Here,  is the history up to previous time 

• Usually, this can be rewritten as  , where  is a martingale difference noise 

• There are two main goals in stochastic bandits: regret minimization and pure exploration 

• Adversarial bandits. — not considered in this talk 

• The environment (“adversary”) arbitrarily chooses  in advance! 

• The learner then plays against the adversary (~ two-player zero-sum game) ==> randomisation!!

rt a ∈ 𝒜 rt(a) |σ(ℋt−1) ∼ 𝒟a

ℋt−1 := (a1, r1, ⋯, at−1, rt−1)

rt(a) = μa + ηt,a ηt,a

(r1( ⋅ ), r2( ⋅ ), ⋯, rT( ⋅ ))

Stochastic and Adversarial



Multi-armed Bandits

• ,   suppose . 

• Suboptimality gap:   ~ difficulty of the bandit instance! 

• For K-armed bandits, we have the following Regret decomposition lemma:  

 

• In other words, we need to look out for number of pulls of suboptimal arms!! 

𝒜 = {a1, a2, ⋯, aK}, K < ∞ μa1
≤ ⋯ ≤ μaK−1

< μaK
=: μ⋆

Δa := μ⋆ − μa

Regπ(T) = ∑
a∈𝒜

Δa𝔼[Na(T)], Na(T) :=
T

∑
t=1

1[at = a]

Most Basic Bandit Setting!



Multi-armed Bandits

• A policy  is consistent if . 

• Instance-wise Lower Bound (Lai & Robbins, 1985).  For any consistent , 
 

• Minimax Lower Bound (Vogel, 1960).   For unit variance Gaussian K-armed bandits,  
 

• pf. change-of-measure, Le-Cam’s method, Bregtanolle-Huber inequality!!  (~ info theory, 
nonparametric statistics)

π Regπ(T) = o(Tα), ∀α > 0

π
lim inf

T→∞

Regπ(T)
log T

≳ ∑
a∈𝒜,Δa>0

1
Δa

min
π

max
B

Regπ(T; B) ≥
1
27

(K − 1)T .

Regret lower bounds



Multi-armed Bandits

• Exploration ~ try to estimate the environment as efficiently as possible 
=> constructing some “confidence sequence” 

• Exploitation ~ “act as if our estimates are as nice as plausibly possible” 
=> Optimism in the Face of Uncertainty (OFU) 

Upper Confidence Bound (UCB) Algorithm: 

 at = argmax
a∈𝒜,{μa′ ∈ 𝒞a′ ,t, ∀a′ ∈ 𝒜}μa = argmaxa∈𝒜 ̂μa(t − 1) +

2 log(1/δt)
Na(t − 1)

𝒞a′ ,t := μa′ 
: μa′ 

≤ ̂μa′ 
(t − 1) +

2 log(1/δt)
Na(t − 1)

Optimism Principle for Stochastic Bandits and UCB (Auer et al., Mach. Learn. 2002)

exploration bonus for arms not pulled sufficiently enough



Multi-armed Bandits

Upper Confidence Bound (UCB) Algorithm: 
at = argmaxa∈𝒜 ̂μa(t − 1) +

2 log(1/δt)
Na(t − 1)

𝒞a′ ,t := μa′ 
: μa′ 

≤ ̂μa′ 
(t − 1) +

2 log(1/δt)
Na(t − 1)

Optimism Principle for Stochastic Bandits and UCB (Auer et al., Mach. Learn. 2002)

Regret of UCB (Auer, 2002). 
With , 

  

Instance-wise asymptotically optimal! 

(recall our lower bound)

δ−1
t = 1 + t(log t)2

RegUCB(T) ≲ ∑
a∈𝒜,Δa>0

log T
Δa



Linear Bandits

•  that is compact and possibly infinite!   

• Linear realizability. There exists a fixed  such that  

• This can be interpreted as contextual linear bandit! (Chu et al., AISTATS’11) 

• The learner observes a context vector  for each action  

• Linear realizability. , with  

• Minimax regret lower bounds.  ( )         ( )

𝒜 ⊂ ℝd

θ⋆ ∈ ℬd(S) rt(a) = ⟨θ⋆, a⟩ + ηt,a

xa,t ∈ ℝd a ∈ [K]

rt(a) = ⟨θ⋆, xt,a⟩ + ηt,a 𝔼[ηt,a |xt,a] = 0

Ω(d T) |𝒜 | ≤ ∞ Ω( dT) |𝒜 | = K < ∞

Auer (Mach. Learn. 2002); Dani, Hayes, and Kakade (COLT’08)



LinUCB/OFUL: OFU for Linear Bandits

• Estimate mean of each arm ==> Estimate   ~ confidence sequence (CS) 

=> A random sequence of sets  s.t.  

• Theorem (Elliptical CS for linear bandits). 

, where 

 is the design matrix and  is the (regularized) MLE. 

• Pf. self-normalized vector martingale (Method of mixtures, supermartingale construction)

θ⋆

{𝒞t(δ)}t≥1
ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

𝒞t(δ) := θ : ∥θ − ̂θ t∥Vt
≲ βt(δ) ≜ log

1
δ

+ d log (1 +
ST
d )

Vt :=
1
S2

Id +
t−1

∑
s=1

xsx⊤
s

̂θ t := V−1
t

t−1

∑
s=1

rsxs

Chu, Li, Reyzin, and Schapire (AISTATS’11); Abbasi-Yadkori, Pal, and Szepesvari (NIPS’11)



LinUCB/OFUL: OFU for Linear Bandits

• Recall the UCB for K-armed bandits: 

 

• Take the first formulation and convert it to our linear bandit setting: 

 <= LinUCB/OFUL 

• Thanks to the ellipsoidal form, above can be equivalently rewritten as follows: 

at = argmax
a∈𝒜,{μa′ ∈ 𝒞a′ ,t, ∀a′ ∈ 𝒜}μa = argmaxa∈𝒜 ̂μa(t − 1) +

2 log(1/δt)
Na(t − 1)

xt = argmaxa∈𝒜,θ∈𝒞t(δ)⟨a, θ⟩

xt = argmaxa∈𝒜⟨xa, ̂θ t⟩ + βt(δ)∥xa∥V−1
t

Chu, Li, Reyzin, and Schapire (AISTATS’11); Abbasi-Yadkori, Pal, and Szepesvari (NIPS’11)

exploration bonus for arms not pulled sufficiently enough



LinUCB/OFUL: OFU for Linear Bandits

• Regret of OFUL.  for ,  

• pf. Relies on the confidence sequence + Cauchy-Schwartz + elliptical potential lemma 

• cf. Regret of SupLinUCB.  for 

𝒪(d T log T) |𝒜 | ≤ ∞

𝒪( dT log(KT)) |𝒜 | = K < ∞

Chu, Li, Reyzin, and Schapire (AISTATS’11); Abbasi-Yadkori, Pal, and Szepesvari (NIPS’11)

This is a elimination-based algorithm



Logistic Bandits 101

• Useful in modeling exploration-exploitation dilemma with binary/discrete-valued 
rewards and items’ feature vectors 

• e.g., news recommendation (‘click’, ‘no click’), online ad placement (‘click’, ‘show 
me later’, ‘never show again’, ‘no click’) 

• Naive reduction to linear bandits is quite suboptimal[Li et al., WWW’10; ICMLW’11]!

Motivation



Logistic Bandits 101

For : 

1. The learner observes a potentially infinite (contextual) arm-set  

2. The learner chooses  according to some policy 

3. Receive a binary reward  
•  is unknown to the learner 

•  is the logistic function,  is its first derivative 

Goal: 

Minimize , where .

t ∈ [T]

𝒳t ⊂ ℝd

xt ∈ 𝒳t

rt ∼ Ber(μ(⟨xt, θ⋆⟩))
θ⋆

μ(z) := (1 + e−z)−1 ·μ(z) = μ(z)(1 − μ(z))

RegB(T) :=
T

∑
t=1

{μ(⟨xt,⋆, θ⋆⟩) − μ(⟨xt, θ⋆⟩)} xt,⋆ := argmaxx∈𝒳t
⟨x, θ⋆⟩

Problem Setting



Logistic Bandits 101

Assumption 1.   

Assumption 2.   => today’s main quantity of interest! 

We consider the following quantities describing the difficulty of the problem: 

 

They can scale exponentially in  [Faury et al., ICML’20]

∞

⋃
t=1

𝒳t ⊆ Bd(1)

θ⋆ ∈ Bd(S)

κ⋆(T) := ( 1
T

T

∑
t=1

·μ(⟨xt,⋆, θ⋆⟩))
−1

, κ𝒳(T) := max
t∈[T]

max
x∈𝒳t

1
·μ(⟨x, θ⋆⟩)

.

S

Assumptions



Logistic Bandits 101

Theorem 2. [Local Lower-Bound; Abeille et al., AISTATS’21]  Let  and . Then, for any problem instance  
and for , there exists  such that: 

𝒳t = Sd(1) θ⋆
T ≥ d2κ⋆(θ⋆) ϵT > 0

min
π: policy

max
∥θ−θ⋆∥2≤ϵT

𝔼[RegB
θ,π] ≥ Ω d

T
κ⋆(θ⋆)

.

 is minimax optimal (taken from L. Faury’s slides)d T/κ⋆(T)

• More linear (smaller ), the easier! 

• Transient regret (small ): 

• Exploration of “detrimental” arms 

• Permanent regret (large ): 

• Sub-linear regret, as the estimate is 
sufficiently close to  

• Linear bandit with local slope around , 

·μ

t

t

θ⋆

θ⋆
·μ(⟨x⋆, θ⋆⟩) ∼

1
κ⋆(T )



Logistic Bandits 101
State-of-the-Arts, so-far



Logistic Bandits 101

• OFULog [Abeille et al., AISTATS’21]. Non-convex confidence-set-based UCB algorithm 

 

• OFULog-r [Abeille et al., AISTATS’21]. Convex relaxation of OFULog ~ loss-based confidence set 

 

• ada-OFU-ECOLog [Faury et al., AISTATS’22]. Online Newton step [Hazan et al., 2007]-based algorithm 

 

Can we construct tighter (improved dependency in ) loss-based confidence set?? Can we make 
UCB great again (i.e., UCB-type algorithm that matches or beats ada-OFU-ECOLog)?

dS
3
2

T
κ⋆(T )

+ min {d2S3κ𝒳(T ), R𝒳(T )}

dS
5
2

T
κ⋆(T )

+ min {d2S4κ𝒳(T ), R𝒳(T )}

dS
T

κ⋆(T )
+ d2S6κ(T )

S

State-of-the-Arts, so-far



Generalized Linear Models
Problem Setting



Generalized Linear Models
Problem Setting

Consider the Generalized Linear Model (GLM):

dp(r |x; θ⋆) = exp ( r⟨x, θ⋆⟩ − m(⟨x, θ⋆⟩)
g(τ)

+ h(r, τ)) dν,

with dispersion parameter , base measure , context , and unknown parameter 
.

τ > 0 ν x ∈ X
θ⋆ ∈ Θ



Generalized Linear Models
Problem Setting

Consider the Generalized Linear Model (GLM):

dp(r |x; θ⋆) = exp ( r⟨x, θ⋆⟩ − m(⟨x, θ⋆⟩)
g(τ)

+ h(r, τ)) dν,

with dispersion parameter , base measure , context , and unknown parameter 
.

τ > 0 ν x ∈ X
θ⋆ ∈ Θ

Assumptions. ,  ,   compact & convex,   is convex and 
three-times differentiable.

X ⊆ 𝔹d(1) ∅ ≠ Θ ⊆ 𝔹d(S) Θ m( ⋅ )

Properties. ,  𝔼[r |x, θ⋆] = m′ (⟨x, θ⋆⟩) =: μ(⟨x, θ⋆⟩) Var[r |x, θ⋆] = g(τ) ·μ(⟨x, θ⋆⟩)

Examples. : Gaussian,  : Bernoulli,  : Poissonμ(z) = z μ(z) = (1 + e−z)−1 μ(z) = ez
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Problem Setting
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Confidence Sequence (CS) for the Unknown Parameter



Generalized Linear Bandits
Confidence Sequence (CS) for the Unknown Parameter

Goal: For , obtain  s.t.  δ ∈ (0,1) {𝒞t(δ)}t≥1 ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ



Generalized Linear Bandits
Confidence Sequence (CS) for the Unknown Parameter

Goal: For , obtain  s.t.  δ ∈ (0,1) {𝒞t(δ)}t≥1 ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

Setting. : adaptively collected observations satisfying , where 
.

{(xs, rs)}s≥1 𝔼[rs |Σs] = μ(⟨xs, θ⋆⟩)
Σs := σ({x1, r1, ⋯, xs−1, rs−1, xs})



Generalized Linear Bandits
Confidence Sequence (CS) for the Unknown Parameter

Goal: For , obtain  s.t.  δ ∈ (0,1) {𝒞t(δ)}t≥1 ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

Setting. : adaptively collected observations satisfying , where 
.

{(xs, rs)}s≥1 𝔼[rs |Σs] = μ(⟨xs, θ⋆⟩)
Σs := σ({x1, r1, ⋯, xs−1, rs−1, xs})

We consider CS of the form , where𝒞t(δ) := {θ ∈ Θ : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2}
ℒt(θ) :=

t−1

∑
s=1

{ℓs(θ) ≜
−rs⟨xs, θ⟩ + m(⟨xs, θ⟩)

g(τ) }, ̂θ t := argminθ∈Θℒt(θ) .

where  is the cumulative log-likelihood loss til time , with Lipschitz constant .ℒt(θ) t − 1 Lt



New, State-of-the-Art CS for GLMs!

Theorem 3.1. We have , where 

 

 

Bernoulli:  => -free for Bernoulli!!! 

     <=>   prior work [Lee et al., AISTATS’24]:  

Rmk. For self-concordant GLMs, one can have an ellipsoidal form of the CS.

ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

𝒞t(δ) := {θ ∈ Θ : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2}
βt(δ)2 := log

1
δ

+ d log (e ∨
2eSLt

d )
βt(δ)2 ≲δ d log

St
d

poly(S)

𝒪δ (S+d log
St
d )

Contribution #1

20

Proof via PAC-Bayes



Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
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[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]
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Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
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ℚ
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1
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2. By Ville’s inequality [Ville, 1939], we have ℙ (∃t ≥ 1 : 𝔼θ∼ℚ[Mt(θ)] ≥
1
δ ) ≤ δ

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound

Anytime-valid Markov’s inequality 
for supermartingales



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]
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3. “Change”  to  via Donsker-Varadhan variational representation of KL [Donsker & Varadhan, 1983].ℚ ℙt
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for supermartingales
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SURVEY
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Proof of Theorem 3.1
Step 2. Novel choice of of “prior” and “posterior” & Lipschitzness

From P. Alquier’s MLSS lecture slides



ℚ = Unif(Θ), ℙt = Unif ( Θ̃ t ≜ (1−c) ̂θ t+cΘ)
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[Hazan et al., 2007; Foster et al., COLT’18].
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ℚ = Unif(Θ), ℙt = Unif ( Θ̃ t ≜ (1−c) ̂θ t+cΘ)
=> DKL(ℙt | |ℚ) = log

vol(Θ)

vol( Θ̃ )
= log

vol(Θ)
vol(cΘ)

= d log
1
c

Also, 𝔼θ∼ℙt
[ℒt(θ)] = ℒt( ̂θ t) + 𝔼θ∼ℙt

[ℒt(θ) − ℒt( ̂θ t)] ≤ ℒt( ̂θ t) + 2SLtc,
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ℚ = Unif(Θ), ℙt = Unif ( Θ̃ t ≜ (1−c) ̂θ t+cΘ)
=> DKL(ℙt | |ℚ) = log

vol(Θ)

vol( Θ̃ )
= log

vol(Θ)
vol(cΘ)

= d log
1
c

Also, 𝔼θ∼ℙt
[ℒt(θ)] = ℒt( ̂θ t) + 𝔼θ∼ℙt

[ℒt(θ) − ℒt( ̂θ t)] ≤ ℒt( ̂θ t) + 2SLtc,

All in all, with probability at most , there exists a  such thatδ t ≥ 1

ℒt(θ⋆) − ℒt( ̂θ t) ≥ log
1
δ

+ d log
1
c

+ 𝔼θ∼ℙt
[ℒt(θ)] − ℒt( ̂θ t) ≥ log

1
δ

+ d log
1
c

+ 2SLtc

Choose  and we are done.c = min {1,d/(2SLt)}
22
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and fast rates in online learning 
[Hazan et al., 2007; Foster et al., COLT’18].



Generalized Linear Bandits

For : 

1. The learner observes a potentially infinite (contextual) arm-set  

2. The learner chooses  according to some policy 

3. Receive a reward  
•  is unknown to the learner 

Goal: Minimize the regret 

 where .

t ∈ [T]

𝒳t ⊂ X

xt ∈ 𝒳t

rt ∼ GLM(xt, θ⋆; μ( ⋅ ))
θ⋆

RegB(T) :=
T

∑
t=1

{μ(⟨xt,⋆, θ⋆⟩) − μ(⟨xt, θ⋆⟩)} xt,⋆ := argmaxx∈𝒳t
μ(⟨x, θ⋆⟩)

Problem Setting



Generalized Linear Bandits

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits 

1. Compute  and  - tighter confidence sequence (Theorem 3.1)! 

2.  

3. Play  and observe/receive a reward  

Theorem 4.1.  OFUGLB attains the following regret bound for self-concordant generalized linear 
bandits w.p. at least : 

̂θ t 𝒞t(δ)

(xt, θt) = argmaxx∈𝒳t,θ∈𝒞t(δ) μ(⟨x, θ⟩)

xt rt ∼ GLM(xt, θ⋆; μ( ⋅ ))

1 − δ

Reg(T) ≲ d
g(τ)T
κ⋆(T)

log
SLT

d
log

R ·μST
d

permanent term

+ d2RsR ·μ g(τ)κ(T)

transient term

Contribution #2

Nontrivial proof!!



• Linear Bandits:   

• => matches state-of-the-art [Flynn et al., NeurIPS’23] 

• Logistic Bandits:   

• => first -free regret with computationally tractable, purely optimistic approach!! 

• => improves upon prior state-of-the-art [Lee et al., AISTATS’24] 

• => similar guarantee in a concurrent work [Sawarni et al., arXiv’24], but is intractable and involves 
explicit warmup + their guarantees only apply to bounded GLBs. 

• Poisson Bandits:   

• => state-of-the-art regret guarantee

�̃� (σd T)

�̃� (d T/κ⋆(T) + d2κ(T))
poly(S)

�̃� (dS T/κ⋆(T) + d2e2Sκ(T))

Generalized Linear Bandits
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits



Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits
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Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

Previously: use self-concordance control lemma to obtain 
∥θ⋆ − ̂θt∥Ht( ̂θt) = 𝒪(SβT(δ))
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Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

Previously: use self-concordance control lemma to obtain 
∥θ⋆ − ̂θt∥Ht( ̂θt) = 𝒪(SβT(δ))

Here: maximally avoid self-concordance control => use “exact” Taylor expansion, 

, where  and 

.

∥θ⋆ − ̂θt∥G̃t( ̂θt,νt) = 𝒪(βT(δ)) G̃t( ̂θt, νt) = λI +
1

g(τ)

t−1

∑
s=1

α̃s( ̂θt, νt)xsx⊤
s

α̃s(θ, ν) = ∫
1

0
(1 − v) ·μt(θ + v(ν − θ))dv

26



Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits
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Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

BUT, the remaining term of Cauchy-Schwartz,  , how to apply elliptical 

potential lemma?
∑

t

∥xt∥2
G̃t( ̂θt,νt)−1

G̃t( ̂θt, νt) = λI +
1

g(τ)

t−1

∑
s=1

α̃s( ̂θt, νt)xsx⊤
s
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Brief Proof Sketch of Theorem 4.1
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

BUT, the remaining term of Cauchy-Schwartz,  , how to apply elliptical 

potential lemma?
∑

t

∥xt∥2
G̃t( ̂θt,νt)−1

G̃t( ̂θt, νt) = λI +
1

g(τ)

t−1

∑
s=1

α̃s( ̂θt, νt)xsx⊤
s

Main proof novelty: designate the “worst-case” ’s such that 

, where 

θ̄t

∑
t

∥xt∥2
G̃t( ̂θt,νt)−1 ≤ ∑

t

min {1, ·μ(θ̄s)∥xt∥2
H̄−1

t } Ht = 2g(τ)λI +
t−1

∑
s=1

·μs(θs)xsx⊤
s

27



Experiments for Logistic Bandits

• One may wonder, does shaving off dependencies on  really help in practice? 

• Synthetic experiments show that this is indeed beneficial, by a large margin!!

S

Better than most of existing approaches
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• Synthetic experiments show that this is indeed beneficial, by a large margin!!

S

Better than most of existing approaches

28



References

J. Lee, S.-Y. Yun, and K.-S. Jun. Improved Regret Analysis of (Multinomial) Logistic Bandits via Regret-to-Confidence-
Set Conversion. In AISTATS 2024. 

A. Sawarni, N. Das, S. Barman, and G. Sinha. Generalized Linear Bandits with Limited Adaptivity. In NeurIPS 2024. 

H. Flynn, D. Reeb, M. Kandemir, and J. R. Peters. Improved Algorithms for Stochastic Linear Bandits Using Tail 
Bounds for Martingale Mixtures. In NeurIPS 2023. 

J. Ville. Étude critique de la notion de collectif. Monographies des Probabilités. Paris: Gauthier-Villars, 1939. 

M. D. Donsker and S. R. S. Varadhan. Asymptotic Evaluation of Certain Markov Process Expectations for Large 
Times. IV. Communications on Pure and Applied Mathematics, 36(2):183-212, 1983. 

A. Blum and A. Kalai. Universal Portfolios With and Without Transaction Costs. Machine Learning, 35(3):193-205, 1999. 

E. Hazan, Z. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. Machine Learning, 
69(2):169-192, 2007.  

D. J. Foster, S. Kale, H. Luo, M. Mohri, and K. Sridharan. Logistic Regression: The Importance of Being Improper. In 
COLT 2018. 


