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Our problem

• For training ML models, one often has an 
abundance of unlabeled data, but 
obtaining the corresponding labels can be 
costly.

• Active learning (AL): Train an accurate ML 
model while minimizing labelling cost.

• A well-designed data acquisition strategy is 
essential for active learning !

Some unlabelled data examples:
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Data acquisition strategies

• Different data acquisition strategies:
• Query-by-committee 
• Expected model change
• Expected error reduction
• Expected variance reduction
• Mutual information
• Uncertainty (used commonly, e.g. margin of confidence)

• ⋮

• Key question: How does performance vary under different data acquisition strategies?

• Related work: Theoretical guarantees for the margin of confidence data acquisition 
criteria (Raj and Bach, 2022).
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Loss-based data acquisition
• Loss-based data acquisition strategies have been increasingly used in recent years.

• In research: Yoo and Kweon (2019), Lahlou et al (2022), …

• In industry: Applied at Meta for integrity violation classifiers.

• Approach: Utilise a loss value predictor to select points with high predicted loss value.

• Key question: How does model training converge under loss-based data acquisition?

• Our work: A theoretical analysis under the assumption that the loss predictor provides 
an unbiased estimate of the conditional expected loss of a data point.
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Subset selection problem

• Also known also as coreset selection or data pruning.

• Given a labelled training dataset, the goal is to train a model using 
only a small subset of the training data. 

• Loss-based strategies may also be relevant in this context!
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Algorithm
• Stochastic gradient decent (SGD) algorithm with adaptive filtering

The update rule:

𝜃𝑡+1 = 𝜃𝑡 − 𝑧𝑡∇𝜃ℓ(𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡)

• Key question: What conditions on 𝜋 guarantee a convergence rate? 

stochastic step size (adaptive filtering)

Case 1: Bernoulli sampling w constant step size 

𝑧𝑡 = ቊ
𝛾 w. p.  𝜋(𝑥𝑡, 𝑦𝑡, 𝜃𝑡)
0 otherwise

Case 2: Bernoulli sampling w adaptive step size 

𝑧𝑡 = ቊ
𝜁(𝑥𝑡, 𝑦𝑡, 𝜃𝑡)/𝜋(𝑥𝑡, 𝑦𝑡, 𝜃𝑡) w. p.  𝜋(𝑥𝑡, 𝑦𝑡, 𝜃𝑡)

0 otherwise

sampling probability expected step size
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Outline

• Convergence rates for linear classifiers and the hinge loss family of functions

• Convergence rates for more general cases

• An adaptive step-size algorithm 
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Linearly separable data and linear classifiers
• Binary classification: points in 𝒳 ×  𝒴 with 𝒳 ⊆ 𝐑𝑑  and 𝒴 = −1,1

• Linear separation: for every 𝑥, 𝑦 ∈ 𝒳 ×  𝒴, there exists a 𝜃∗ ∈ 𝐑𝑑  such that 𝑦 =
sgn(𝑥⊤𝜃∗)

• Separation margin: for some 𝜌∗ ∈ 𝐑+, 𝑥⊤𝜃∗ ≥ 𝜌∗, for every 𝑥 ∈ 𝒳

• Bounded L2-norm points: for some 𝑅 ∈ 𝑹, 𝑥 ≤ 𝑅 for every 𝑥 ∈ 𝒳

Linear classifiers: classification based 
on the value of the margin 𝑥⊤𝜃 

model parameter
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A set of loss function conditions

• Loss function ℓ is assumed to satisfy the following conditions:
• Continuously differentiable and convex on (−∞, 0]

• ℓ′ 0 ≤ −𝑐1 for some constant 𝑐1 > 0

• lim
𝑢→−∞

ℓ′ 𝑢 ≥ −𝑐2 for some constant 𝑐2 > 0

𝑢     ( = 𝑦𝑥⊤𝜃 )

ℓ(𝑢)

9



Examples of loss functions
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Log loss:
 

ℓ 𝑢 = log(1 + 𝑒−𝑢)

Hinge loss:
 

ℓ 𝑢 = max{1 − 𝑢, 0}

Squared-hinge loss:

ℓ 𝑢 =
1

2
max 1 − 𝑢, 0 2



A warm-up: two loss-based strategies

𝑦𝑥⊤𝜃

|𝑦 − sgn(𝑥⊤𝜃) |

2

Absolute error loss

𝑦𝑥⊤𝜃

1{𝑦𝑥⊤𝜃≤0}

1

Zero-one loss
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A convergence rate bound

• Theorem. For sampling proportional to the zero-one loss with a constant factor 𝜔, and 
setting 𝛾 = 𝑐1𝜌∗/(𝑐2

2𝑅2), we have

   𝐄 σ𝑡=1
𝑛 ℓ(𝑦𝑡𝑥𝑡

⊤𝜃𝑡) ≤
𝑐2

2𝑅2𝑆2

𝑐1
2𝜔

1

𝜌∗2. 

• The same bound holds with an additional factor of 2 for sampling proportional to the 
absolute error loss with factor 𝜔 ∈ (0,1/2] and 𝛾 = 2𝑐1𝜌∗/(𝑐2

2𝑅2).

• Hereinafter, 𝑆 is such that 𝜃1 − 𝜃∗ ≤ 𝑆.
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A key lemma

For all 𝑢 ∈ 𝐑:

• C1: 𝜋 𝑢 ℓ′ 𝑢 2𝑅2 ≤ 𝛼෨ℓ 𝑢

• C2: 𝜋 𝑢 −ℓ′ 𝑢 𝜌∗ − 𝑢 ≥ 𝛽෨ℓ(𝑢)

Then, by setting 𝛾 = 𝛽/𝛼,

    𝐄 σ𝑡=1
𝑛 ෨ℓ(𝑦𝑡𝑥𝑡

⊤𝜃𝑡) ≤  𝑆2 𝛼

𝛽2 

For a convex ෨ℓ and ҧ𝜃𝑡: = (1/𝑡) σ𝑠=1
𝑡 𝜃𝑠, it holds:  𝐄 ෨ℓ(𝑦𝑥⊤ ҧ𝜃𝑛) ≤ 𝑆2 𝛼

𝛽2

1

𝑛
   

෨ℓ : the evaluation loss function

ℓ : the training loss function
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Squared hinge loss function

Theorem. Assume that 𝜌∗ > 1 and the training and evaluation loss functions are squared 
hinge loss functions. Furthermore, assume that the sampling probability function satisfies, 
for some constant 𝛽 ∈ 0,2 , the following conditions: 𝜋 𝑢 ≤ 𝛽/2 for all 𝑢 ≤ 1 and

   𝜋 𝑢 ≥ 𝜋∗ ℓ 𝑢 ≔
𝛽

2
1 −

1

1+𝜇 ℓ(𝑢)
 

where 𝜇 ≥ 2/(𝜌∗ − 1).

Then, by setting 𝛾 = 1/𝑅2, we have

  𝐄 ℓ(𝑦𝑥⊤ ҧ𝜃𝑡) ≤ 𝐄
1

𝑛
σ𝑡=1

𝑛 ℓ(𝑦𝑡𝑥𝑡
⊤𝜃𝑡) ≤ 𝑅2𝑆2 1

𝛽

1

𝑛
. 
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Squared hinge loss function (cont’d)

• For sampling according to 𝜋∗, the expected total number of sampled points is 
bounded as:

  𝐄 σ𝑡=1
𝑛 𝜋∗(ℓ(𝑦𝑡𝑥𝑡

⊤𝜃𝑡)) ≤ min
1

2
𝑅𝑆𝜇 𝛽 𝑛,

1

2
𝛽𝑛  

• Hence, we have a sublinear expected number of sampled points of order 𝑛.
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Outline

• Convergence rates for linear classifiers and hinge loss family of functions

• Convergence rates for more general cases

• An adaptive step size algorithm 
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Covering a larger class of loss functions

• Following Liu and Li (2023), the algorithm is an SGD algorithm with the “equivalent” loss 
function, whose gradient is:

∇𝜃
෨ℓ 𝜃 = 𝐄 𝜋 𝑥, 𝑦, 𝜃 ∇𝜃ℓ 𝑥, 𝑦, 𝜃

• Assume that 𝜋 is a function of the expected conditional loss: 

ℓ 𝑥, 𝜃 ≔ 𝐄 ℓ 𝑥, 𝑦, 𝜃 𝑥

• Then, ෨ℓ 𝜃 = 𝐄[Π(ℓ 𝑥, 𝜃 )], where Π is the primitive function of 𝜋.
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A convergence rate bound

Assume that:

• ℓ is a convex function,

• ෨ℓ is 𝐿-smooth, and 

• 𝐄 𝜋 ℓ 𝑥, 𝜃 ∇𝜃ℓ 𝑥, 𝑦, 𝜃 2 − ∇𝜃
෨ℓ 𝜃

2
≤ 𝜎𝜋

2. 

Then, with 𝛾 = 1/(𝐿 +
𝜎𝜋

𝑅
𝑛/2), we have

 𝐄 ℓ ҧ𝜃𝑛 ≤ 𝐄 σ𝑡=1
𝑛 ℓ 𝜃𝑡 ≤ inf

𝜃
Π−1 ෨ℓ 𝜃 + Π−1 2𝑆𝜎𝜋

𝑛
+ Π−1 𝐿𝑆2

𝑛
. 
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Examples of sampling probability functions
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Outline

• Convergence rates for linear classifiers and hinge loss family of functions

• Convergence rates for more general cases

• An adaptive step size algorithm 
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Sampling with stochastic Polyak’s step size

• Step size: 𝛾 = 𝜁(𝑥, 𝑦, 𝜃)/𝜋(𝑥, 𝑦, 𝜃) w. p. 𝜋(𝑥, 𝑦, 𝜃), 0 otherwise.

• 𝜁 𝑥, 𝑦, 𝜃 = 𝛽 min
ℓ(𝑥,𝑦,𝜃)

∇𝜃ℓ 𝑥,𝑦,𝜃 2 , 𝜌  

• When 𝜋 𝑥, 𝑦, 𝜃 ≡ 1, then 𝜁 𝑥, 𝑦, 𝜃  is the stochastic Polyak’s step size (Loizou et al 
2021), which has been shown to be efficient both theoretically and experimentally.

• Note: For simplicity, in the slides, we assume that inf
𝜃′

ℓ 𝑥, 𝑦, 𝜃′ = 0 for every 𝑥, 𝑦.
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Convergence rate guarantee

Theorem. Assume that ℓ is a convex and 𝐿-smooth function, and 

   𝜋 𝑥, 𝑦, 𝜃 ≥
𝛽

2 1−𝑐
min 𝜌

∇𝜃ℓ 𝑥,𝑦,𝜃 2

ℓ 𝑥,𝑦,𝜃
, 1 . 

Then,

  𝐄
1

𝑛
σ𝑡=1

𝑛 ℓ(𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡) ≤
𝜌𝛽

𝑐𝜅
𝐄 ℓ 𝑥, 𝑦, 𝜃∗ +

1

2𝑐𝜅
𝑆2 1

𝑛
 

where 𝜅 = 𝛽 min{1/(2𝐿), 𝜌}. 
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Binary classification: linear classifier case

• Sufficient condition for the sampling probability function:

𝜋 𝑥, 𝑦, 𝜃 ≥
𝛽

2 1 − 𝑐
min{𝜌𝑅2ℎ 𝑦𝑥⊤𝜃 , 1}

where ℎ 𝑢 = ℓ′(𝑢)/ℓ(𝑢).

• For logistic regression and cross-entropy loss: 

ℎ 𝑢 =
1

1 + 𝑒𝑢 2 log(1 + 𝑒−𝑢)
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Cases when the condition holds true

• Loss-based sampling according to the absolute error loss: 

 
 𝜋∗ 𝑢 = 𝜔(1 − 𝜎 𝑢 ) 

• Uncertainty-based sampling according to:

 𝜋∗ 𝑢 =
𝛽

2(1−𝑐)
min 𝜌𝑅2 1

𝑐𝑎+ 1−𝑎 |𝑢|
, 1

where 𝑎 ∈ 0,1/2  is a hyper-parameter.
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Experimental results: using true loss values

ℳ

𝑥

𝑓(𝑥)
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Experimental results: using predicted loss values

ℳ

𝑥

𝑓(𝑥)

ℒ

ℓ(𝑥)

(𝑥, 𝑓(𝑥))

Loss predictor: 
random forest



Sampling efficiency
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Conclusion

• Showed convergence rates for loss- and uncertainty-based active learning 
strategies under various conditions.

• Showed an algorithm using stochastic Polyak’s step size in expectation.

• The results provide insights into sufficient conditions for loss- and uncertainty-
based strategies to guarantee convergence rates.

• Future work: Tighter bounds on convergence rates? The effect of loss prediction 
noise? Generalisation bounds?
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