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Some unlabelled data examples:

Our problem

< Photo 9

e For training ML models, one often has an i
abundance of unlabeled data, but
obtaining the corresponding labels can be
costly.

e Active learning (AL): Train an accurate ML
model while minimizing labelling cost.
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Data acquisition strategies

» Different data acquisition strategies:
* Query-by-committee
* Expected model change
* Expected error reduction
* Expected variance reduction
* Mutual information
* Uncertainty (used commonly, e.g. margin of confidence)

* Key question: How does performance vary under different data acquisition strategies?

* Related work: Theoretical guarantees for the margin of confidence data acquisition
criteria (Raj and Bach, 2022).



Loss-based data acquisition

Loss-based data acquisition strategies have been increasingly used in recent years.
* In research: Yoo and Kweon (2019), Lahlou et al (2022), ...
* Inindustry: Applied at Meta for integrity violation classifiers.

Approach: Utilise a loss value predictor to select points with high predicted loss value.
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Key question: How does model training converge under loss-based data acquisition?

Our work: A theoretical analysis under the assumption that the loss predictor provides
an unbiased estimate of the conditional expected loss of a data point.



Subset selection problem

* Also known also as coreset selection or data pruning.

* Given a labelled training dataset, the goal is to train a model using
only a small subset of the training data.

* Loss-based strategies may also be relevant in this context!



Algorithm

» Stochastic gradient decent (SGD) algorithm with adaptive filtering
The update rule:

Ocv1 = 0 — 2, Vol (X, ye, 01)

stochastic step size (adaptive filtering)

Case 1: Bernoulli sampling w constant step size Case 2: Bernoulli sampling w adaptive step size
7, = Y w.p. w(xe, Y, 0r) 7, = (X6, Y, 00) [Tt (Xt, Y2, Or)  W.P. (X, Vt, Of)
‘ 0 otherwise

0 otherwise \

/

sampling probability expected step size

* Key question: What conditions on 7 guarantee a convergence rate?



Outline

e Convergence rates for linear classifiers and the hinge loss family of functions
e Convergence rates for more general cases

* An adaptive step-size algorithm



Linearly separable data and linear classifiers

Binary classification: pointsin X X Y with X € R* and Y = {—1,1}

Linear separation: for every (x,y) € X X U, there exists a 8* € R% such that y =
sgn(x'8%)

Separation margin: for some p* € R,, |xT0*| > p*, foreveryx € X

Bounded L2-norm points: forsome R € R, ||x|| < R foreveryx € X

Linear classifiers: classification based
on the value of the margin x "0

/

model parameter




A set of loss function conditions

* Loss function € is assumed to satisfy the following conditions:
* Continuously differentiable and convex on (—oo, 0]
e £'(0) < —c, for some constant c; > 0
 lim ¢'(u) = —c, for some constant c, > 0

U—>—00
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Examples of loss functions

— Log loss:
. —-==- Hinge Loss
4 AN I SR S I N L Squared Hinge Loss

f(u) =log(1+e™%)

Hinge loss:

g £(u) = max{1 — u, 0}
N Squared-hinge loss:
1
0 L(u) = Emax{l —u, 0}?
.0 -0.5 Ma?é?n , 0.5 1.0 1.5 2.0
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A warm-u

Absolute

A

p: two loss-based strategies
error loss Zero-one loss
ly — Sgn(xTG) | l{yxTQSO}
2
1

'yx 6

'yx 6
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A convergence rate bound

* Theorem. For sampling proportional to the zero-one loss with a constant factor w, and
setting y = ¢;p*/(c5R?), we have

ciR?s? 1
Zw p**’

E[YX7 1 £(yexi 0,)] <

 The same bound holds with an additional factor of 2 for sampling proportional to the
absolute error loss with factor w € (0,1/2] and y = 2¢,p*/(c2R?).

 Hereinafter, S is such that ||6; — 8*|| < S.
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A key l[emma

Forall u € R:

e C1: () (W)?R? < a?(u) £ : the training loss function

? : the evaluation loss function

e C2:m(w)(—¢'(w)(p* —w) = BL(w)

Then, by settingy = f/«,

a

E[Z 1 L(ex Qt)] SZ

a 1

For a convex £ and 8,: = (1/t) ¥£_, 0, it holds: E[Z(yxT8,)| < 52 3% 1




Squared hinge loss function

Theorem. Assume that p* > 1 and the training and evaluation loss functions are squared
hinge loss functions. Furthermore, assume that the sampling probability function satisfies,
for some constant § € (0,2], the following conditions: m(u) < /2 forallu < 1 and

(u) > ﬂ*(f(u)) = g(l - 1+u\}%)

where i > V2/(p* — 1).

Then, by setting y = 1/R?, we have

511

~ 1
E[£(yx70,)] < E |1, £(vex! 0,)] < R2S?



Squared hinge loss function (cont’d)

* For sampling according to ", the expected total number of sampled points is
bounded as:

E[Y1-1 7" (€0 )] < min {3 RSu BV, Bn)

* Hence, we have a sublinear expected number of sampled points of order \/n.

15



Outline

* Convergence rates for linear classifiers and hinge loss family of functions
e Convergence rates for more general cases

* An adaptive step size algorithm
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Covering a larger class of loss functions

* Following Liu and Li (2023), the algorithm is an SGD algorithm with the “equivalent” loss
function, whose gradient is:

Vot(0) = Eln(x,y,0)Vet(x,y,6)]

e Assume that 7T is a function of the expected conditional loss:

£(x,0) = E[£(x,y,0) | x]

* Then, £(8) = E[I1(£(x, 68))], where II is the primitive function of .
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A convergence rate bound

Assume that:

e £ is a convex function,

e ?is L-smooth, and

e E[n(2(x,0))IVg2Cx,y, OI1Z] - [Vo 20| < a2.

Then, withy = 1/(L + (%) J1n/2), we have

E[¢(6,)] < E[XF

L, £(60)] <infrl- H(2e)) + 1t (B

\/_San
Vn

)+ (5

LS?
n

).
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Examples of sampling probability functions

m(z) I1(z) 1~ (z)
l—e " r+e * -1 ~ 1/2x for small =
1.2
: ST z<1 V2zr x<1/2
1 2 = <
min{z, 1} { ;1':—%1_'_:1:21 { m—l—%l :1:%’*1;"2
L @ < Tta TFa g THa b
min{(z/b)*,1},a > 0,b > 0 { bu{1+“]$ vz o (i Ty oS g 3
$_1+u. T = a I+1+ub }ﬂ
1 — 1+1”$ T - -]Dg(l + px) ~ 1/(2/p)z for small =
1 — — T — 2./T+ —glugl[l + /) ~ (((3/2)/p)z)?® for small z

14+p/z
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Outline

* Convergence rates for linear classifiers and hinge loss family of functions
e Convergence rates for more general cases

* An adaptive step size algorithm
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Sampling with stochastic Polyak’s step size

Stepsize:y = {(x,y,0)/n(x,y,0) w.p. m(x,y,0), 0 otherwise.

. : £(x,y,0)
(Cny,0) =F mm{nvef(x,y,e)uz 'p}

When (x,y,0) = 1, then {(x,y, 8) is the stochastic Polyak’s step size (Loizou et al
2021), which has been shown to be efficient both theoretically and experimentally.

Note: For simplicity, in the slides, we assume that iélff(x, y,8") = 0 for every x, y.
!/
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Conve reence rate guarantee

Theorem. Assume that € is a convex and L-smooth function, and

B
2(1-c¢)

. IVgt(x,y,0)%
w(x,y,0) > min {p ef(xxyye) 1}.

Then,

1 " 1 1
E [> X7, (e, ve 60| < 2L E[0(x,y,67)] + =522

n

where k = S min{1/(2L), p}.
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Binary classification: linear classifier case

 Sufficient condition for the sampling probability function:

min{pR*h(yx'8),1}

b
m(x,y,0) = 20 =0

where h(u) = £'(u) /£ (u).

* For logistic regression and cross-entropy loss:

1

hu) = (1+e%)?log(l+e™¥)
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Cases when the condition holds true

* Loss-based sampling according to the absolute error loss:

' (u) = w1l — o))

* Uncertainty-based sampling according to:

1
cqt(1—-a)|u|’

* _ ,B . 2
m*(u) = 200 mln{pR

where a € (0,1/2] is a hyper-parameter.
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Experimental

f(x)

—]

results: using true loss values
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Experimental results: using predicted loss values
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Sampling efficiency
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Conclusion

Showed convergence rates for loss- and uncertainty-based active learning
strategies under various conditions.

Showed an algorithm using stochastic Polyak’s step size in expectation.

The results provide insights into sufficient conditions for loss- and uncertainty-
based strategies to guarantee convergence rates.

Future work: Tighter bounds on convergence rates? The effect of loss prediction
noise? Generalisation bounds?
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