Timing of launches of essential medicines across the world: 1982-2024

Jouni Kuha Department of Statistics, LSE

Joint work with with Olivier Wouters, Brown University

LSE Statistics Research Showcase 7.4.2025

D			
lirug	2110	ch	AC
DIUE	auı		

GLOBAL HEALTH POLICY

By Olivier J. Wouters and Jouni Kuha

Low- And Middle-Income Countries Experienced Delays Accessing New Essential Medicines, 1982–2024

Health Affairs, 43, 1410–1419 (October 2024).

Research questions

- From the time they first become available to patients anywhere in the world, how long does it take for essential medicines to become available in different countries?
- How do these time vary by characteristics of medicines and of countries?

Data

- Purchased from IQVIA
- 119 medicines (or groups of listed alternatives) on the 2023 WHO Essential Medicines List
 - ▶ all that first became available ("launched") somewhere from 1/1982 onwards
 - ...except for medicines for HIV/AIDS, TB, malaria, Ebola, and neglected tropical diseases
- Recorded launches in 75 markets (representing 90 countries)

Example: Simvastatin

- Included in the EML since 2007, for treating Mixed hyperlipidaemia and Coronary atherosclerosis
 - with four therapeutic alternatives: atorvastatin, paravastatin, fluvastatin, lovastatin
- Launches:
 - Ist in the US, 9/1987
 - has by now been launched in all of these markets (except that observation for Vietnam is missing)
 - Iast among these markets was Bangladesh, 1/1999
- Median time to launch across the markets: 2.2 years.

Time (in months) from first launch somewhere to launch in each country

- follow-up time up to a date in late 2023 or early 2024 in most countries
- regarded as censored if not launched by end of follow-up
- 6871 observed launches, 87% of possible launches for this sample (and thus 13% censored)

Notation

- Y_{ij} : time for drug *i* from first launch to launch in market *j*
- Distribution of Y_{ij}:
 - ► $F_{ij}(y) = 1 S_{ij}(y) = P(Y_{ij} \le y)$: cumulative distribution function.
 - *h_{ij}(y)*: hazard function
- ... conditional on (some or all of) covariates $\mathbf{W}_{ij}(t) = (\mathbf{X}_i, \mathbf{Z}_j(t))$
 - medicine-level covariates X_i
 - market-level covariates Z_j(t), which may be time-varying

Covariates

Medicine-level covariates:

- Clinical category: antibiotics, cancer drugs, cardiovascular drugs, or other
- Decade of first launch: 1982–89, 1990–99, 2000–09, or 2010–20

Market-level covariates:

- Income group (World Bank): Low, Lower Middle, Upper Middle, High
 - modal value over the observation period (time-constant), or (in a supplementary analysis) annual value (time-varying)
- macro region
- log population size (time-varying)
- log GDP per capita (time-varying)

Methods 1: Regression modelling

- Proportional hazards model (Cox model) for hazard $h_{ij}(y)$.
- Allowing for the fact that the data are clustered in two (cross-classified) ways: by drug and by market.
 - We do this by stratification (i.e. separate baseline hazards) by one, and estimated standard errors clustered by the other
- Models given drug-level covariates:

$$h_{ij}(y) = h_{0j}(y) \exp(\beta_{\times} \mathbf{X}_i)$$

stratified by market j, and standard errors clustered by drug i

• ... or models given market-level covariates:

$$h_{ij}(y) = h_{0i}(y) \exp(\beta_w \mathbf{W}_j(y))$$

stratified by drug i, and standard errors clustered by market j.

Example: A model given market-level covariates

	Coefficient			Hazard ratio	
	P value	est.	(se)	est.	(95% CI)
log GDP per capita	<0.001	0.418	(0.059)	1.519	(1.353, 1.706)
WHO region (vs. Europe) Africa Americas Eastern Mediterranean South East Asia Western Pacific	<0.001	-0.554 -0.138 -0.729 -0.367 -0.442	(0.327) (0.124) (0.113) (0.288) (0.192)	0.575 0.871 0.482 0.693 0.643	(0.303, 1.090) (0.683, 1.111) (0.386, 0.602) (0.394, 1.219) (0.441, 0.936)
Logarithm of population size (time-varying)	0.006	0.121	(0.044)	1.129	(1.035, 1.231)

Methods 2: Estimates of distributions of times to launch

- Kaplan-Meier estimates of $F_{ij}(y) = 1 S_{ij(y)}$ given different values of categorical covariates
 - and, from these, estimates of (say) median times to launch
- Log-rank tests of equal hazard functions $h_{ij}(y)$ given different values of categorical covariates
 - with *p*-values evaluated over random permutations of values of the covariates to the clusters (drugs or markets)

Example of comparisons: Clinical categories of drugs

EXHIBIT 2

Drug launches

7.4.25

Example of comparisons: Clinical categories of drugs

EXHIBIT 2

Median comparisons: Drug characteristics

DRUG CHARACTERISTICS

Clinical category		
Antibiotics	16	4.9
Cancer	32	4.1
Cardiovascular	12	4.6
Other	59	3.7
Decade of first launch		
1982-89	37	5.4
1990–99	38	4.0
2000-09	29	3.2
2010-20	15	3.4

Median comparisons: WHO region

WHO region		
Africa	3	8.3
Americas	13	4.1
Eastern Mediterranean	9	7.8
Europe	34	2.9
South-East Asia	5	6.8
Western Pacific	11	3.5

The main comparison: Markets by income group

EXHIBIT 4

Drug launches

16,

7.4.25

The main comparison: Markets by income group

Median time to launch of a new essential medicine, in years, by market and drug characteristics, 1982-2024

	No. of markets or drugs	Median (years)
MARKET CHARACTERISTICS		
World Bank income classification		
High income	36	2.7
Upper middle income	20	4.5
Lower middle income	14	6.9
Low income	5	8.0

The main comparison: Markets by income group

Median delays in the launch of new essential medicines, with markets worldwide grouped by quintile, 1982-2024

Interactions: Income group differences over time

	Decade of first launch				
	1982	1990	2000	2010	
	-1989	-1999	-2009	-2020	
High income	4.0	2.9	1.8	1.4	
Upper middle income	6.0	4.3	3.6	4.6	
Lower middle income	7.0	6.8	6.9	8.6	
Low income	9.0	8.2	7.3	6.8	