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A brief introduction to Variational Inference

▶ Lots of modern statistical inference problems, under the Bayesian
framework, depends on the calculation of the posterior, via the famous
Bayes Rule.

p(z |y) = p(y |z)p(z)
p(y)

,

where y = (y1, . . . , yn) denotes a set of observations and z = (z1, . . . , zm)
denotes a set of latent variables (or parameters); n,m ∈ N>0

▶ The evidence, i.e., p(y), can be difficult to calculate and intractable in
some cases as it involves integrating over z (in discrete probability space it
would be a summation).

p(y) =
∫

z
p(y |z)p(z) dz .
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▶ Solution 1: observe that the evidence is only a function of the data points,
and so

p(z |y) ∝ p(y |z)p(z).

For certain combination of the likelihood p(y |z) and the prior p(z) pair,
the posterior can be identified directly by pattern-matching with the
product on the RHS (e.g., conjugate priors).

▶ Solution 2: further the above proportion and realize that:

p(z0|y)
p(z1|y)

=
p(y |z0)p(z0)

p(y |z1)p(z1)

This equation is exact and tells us the “relative entropy" in the posterior.
This is actually an important factor within the “acceptance probability" in
MCMC methods like M-H algorithm.
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▶ Solution 3: Variational Inference (VI).
Basic Idea: turn the approximation problem into an optimization problem.

q⋆(z) = argminq(z)∈QL(q(z), p(z |y))
Picking the distribution inside the variational family Q that minimizes the
“difference" between it an the posterior density measured by a loss
function L.
▶ Q: the complexity of this “family" is related to the tradeoff between

the accuracy of q⋆ and the difficulty to optimize.
▶ L: often we use the Kullback-Leibler (KL) divergence; we will go

along with KL divergence.

KL(p(x)||q(x)) = Ep(x)[log p(x)]− Ep(x)[log q(x)]
▶ Apply to the VI optimization objective function:

KL(q(z)||p(z |y)) = Eq(z)[log q(z)]− Eq(z)[log p(z , y)] + log p(y).

Question: Can we calculate these quantities exactly? Unfortunately the
answer is No, because the log-evidence log p(y) is intractable.
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▶ Define the evidence lower bound (ELBO) as

ELBO(q(z)) = Eq(z)[log p(z , y)]− Eq(z)[log q(z)]
= log p(y)− KL(q(z)||p(z |y)),

where the equation above shows how ELBO is smaller or equal to the
log-evidence (because KL(q(z)||p(z |y)) ≥ 0)).

▶ Minimizing KL-divergence between q(z) and p(z |y) is equivalent to
maximizing the ELBO since the log-evidence is fixed.

▶ Rewriting the ELBO gives us additional intuitions:

ELBO(q(z)) = Eq(z)[log p(y |z)]− KL(q(z)||p(z))

▶ To maximize the ELBO, we want to maximize the first term and
minimize the second term on the RHS.

▶ Max first term: we want to place densities q(·) on regions where the
log-likelihood is high.

▶ Min second term: we want to make q(·) similar to the prior.
▶ We thus see the familiar likelihood-prior tradeoff in Bayesian

statistics.
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Variational Families

▶ Mean Field Variational Family

z = {z1, . . . , zm}, q(z) =
m∏
i=1

qi (zi ).

▶ The latent variables are mutually independent and each governed by
its own variational density qi (zi ). Easy to
optimize with coordinate ascent variational inference (CAVI) algorithm.

Algorithm 1: CAVI
1: procedure

Input: a model p(y , z), a dataset y
Output: variational density q(z) =

∏m
i=1 qi (zi ).

Initialize: variational factors qi (zi ).
While: the ELBO has not converged do
for j ∈ 1, . . . ,m} do

log qj
(
zj
)
∝ E−j [log p(y , z)]

end while
2: end procedure 6/20



▶ Sem-parametric Mean Field Variational Family

q(z) =
m∏
i=1

qi (zi ) = q1(z1) · q2(z2) · · · q̃j(zj ; par) · · · qm(zm).

▶ Some density functions (e.g., q̃j(zj ; par)) in the product density
restriction are pre-specified to be members of convenient parametric
families (e.g., Gaussian) that can be conveniently chosen for reasons
of tractability.

▶ Main Reference: Rohde, D. and Wand, M. P. (2016). Semiparametric
mean field variational bayes: general principles and numerical issues. The
Journal of Machine Learning Research, 17(1):5975-6021.

▶ Important: Despite its popularity, the convergence of CAVI remains poorly
understood. Research Opportunities.

In this work we have introduced a new Skew-Normal Variational Family.
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Heteroscedastic Regression
Why a new Skew-Normal Variational Family? Insights from a toy model

▶ Consider the following heteroscedastic regression model

y |β,ϱ, σ2 ∼ N
(
Xβ, σ2diag

{
exp(Zϱ)

})
,

for a given n × 1 vector of responses y , and matrices of covariates X and
Z , respectively of size n × p and n × q.

▶ Assume an hierarchical Normal-Gamma prior for (β, σ2), e.g.:

β|σ2 ∼ N(0, σ2Σβ), σ2 ∼ IG(ν, λ), ν, λ > 0.

▶ The conditional joint distribution of the model parameters (β, σ2,ϱ)⊤ is
given by the following expression, where Ωϱ = diag{exp(−Zϱ)}
p(β, σ2,ϱ|y ,X )

∝ (σ2)−
n
2 exp

(
− 1

2
1⊤n Zϱ

)
exp

{
− 1

2σ2 (y − Xβ)⊤Ωϱ(y − Xβ)

}
× (σ2)−

p
2 |Σβ|−

1
2 exp

{
− 1

2σ2 (β
⊤Σββ)

}
× (σ2)−(ν+1) exp

(
− λ

σ2

)
. (1)
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▶ The full conditional density of β ∈ Rp is

p(β|y ,X , σ2,ϱ) ∼ N(Σ̂nX⊤Ωϱy , σ2Σ̂n).

where Σ̂n =
(
X⊤ΩϱX +Σ−1

β

)−1.

Proposition (BLM 2025)

Let y |β,ϱ, σ2 ∼ N(Xβ, σ2diag{exp(Zϱ)}) for a given n × 1 vector of
responses y , and matrices of covariates X and Z , respectively of size
n × p and n × q, and assume an hierarchical Normal-Gamma prior for
(β, σ2) such that β|σ2 ∼ N(0, σ2Σβ) and σ2 ∼ IG(ν, λ), where ν, λ > 0.
Then, the marginal likelihood is proportional to

ℓ
(
ϱ|y ,X ,Z

)
∝ exp

(
−1

2
1⊤n Zϱ

)
|Σβ |−

1
2 |Σ̂n|

1
2

(
λ+

S2

2

)−(ν+n/2)

,

(2)

where S2 = y⊤Hϱy , with Hϱ = (Ω−1
ϱ + XΣβX⊤)−1 and Σ̂n =(

X⊤ΩϱX +Σ−1
β

)−1.
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▶ Let assume q̃(ϱ, ξ) is a general approximating density for the unnormalized
intractable posterior distribution in Equation (2).

▶ The ELBO is (Rohde, D. and Wand, M. P. (2016), Equation (13)):

log p(y , q̃) =
∫

q̃
(
ϱ; ξ

)
log{ℓ

(
ϱ|y ,X ,Z

)
}dϱ+ Entropy{q̃

(
ϱ; ξ

)
}

= H q̃(ϱ)(ϱ, ξ) + Hq̃(ϱ)(ϱ, ξ)

Hq̃(ϱ)(ϱ, ξ) = −Eq̃(ϱ)

[
log q(ϱ, ξ)

]
H q̃(ϱ)(ϱ, ξ) = −1

2
1⊤n ZEq̃(ϱ)(ϱ)−

1
2
log |Σβ|

+
1
2
Eq̃(ϱ)

[
log |Σ̂n|

]
− (ν + n/2)Eq̃(ϱ)

[
log

(
λ+

S2

2

)]
.

▶ Main problems:
▶ How to select the approximating distribution;
▶ The approximating distribution depends on additional parameters,

that should be calibrated; e.g., the mean and variance-covariance
matrix for the Gaussian distribution.
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A new multivariate Skew-Normal distribution

▶ The standard multivariate Skew-Normal distribution X d∼ SNd(0, I d ,α),
with α the skewness parameter, has p.d.f. given by
pX (x) = 2φd(x)Φ1(α

⊤x), where φd(·) is the p.d.f. of a d-dimensional
Gaussian distribution and Φ1(·) is the c.d.f. of a 1-dimensional Gaussian
distribution.

Proposition (BLM 2025)

X d∼ SNd(0, I d ,α), then the affine transformation Y = µ + Σ
1
2 X

where Σ is a proper variance-covariance matrix such that Σ =

Σ1/2(Σ1/2)⊤, is Y d∼ SNd(µ,Σ,α) with p.d.f

pX (x ;µ,Σ,α) = 2φd(x ;µ,Σ,α)Φ1(α
⊤Σ− 1

2 (x − µ)),

where µ ∈ Rd is a d-dimensional vector of location parameters, Σ
is a positive definite square matrix of dimension d , α ∈ Rd is the
skewness parameter. Important: In Azzalini, A. and Capitano, A.
(2013) Y = µ+diag(Σ)X : relevant problems with the optimization.
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Main advantages:

▶ It relies on Σ− 1
2 in both φd(·) and Φ1(·).

▶ It retains the same properties of the parametrization by Azzalini, A. and
Capitano, A. (2013).

▶ It is enough flexible to account the Gaussian case for α = 0 as well as
skewness with just one additional parameter;

▶ Right compromise between accounting skewness and complexity of the
resulting algorithm: the skewness parameter α only enters Φ1(·);

▶ In our Variational Inference algorithm it requires numerical integration of
just a scalar parameter.

▶ Important: In our Variational Inference algorithm it eliminates the need for
a Newton-Raphson update for Σq̃.

Main Reference: Azzalini, A. and Capitanio, A. (2013). The Skew-Normal and
Related Families. Institute of Mathematical Statistics Monographs. Cambridge
University Press.
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Figure: Contour plots of two different definitions of Skew-Normal distributions.
The parameter values are set as follows: µ = (0, 0)⊤, α = (−5, 2)⊤, Σ11 = 2,
Σ22 = 4, Σ12 = −2, ρ = −0.7. The gray lines represent the density and
contour plots of the corresponding bivariate Gaussian distribution.

14/20



Variable Selection (so far, numerical results only for the homoscedastic case)

Spike-and-Slab Lasso prior

y |β, σ2 ∼ N(Xβ, σ2I ), σ2|α ∼ Inverse-χ2(1, 1/α), α ∼ Inverse-χ2(1, 1/s2
σ),

βj |σ2, ω0j , ω1j , γj ∼ N
(
0, σ2 {(1 − γj)ω0j + γjω1j}−1 )

,

ω0j
ind.∼ Inverse-χ2(2, λ0), ω1j |λ1

ind.∼ Inverse-χ2(2, λ1), γj |ϑ
ind.∼ Bernoulli(ϑ),

j = 1, . . . , p,

λ1 ∼ Gamma(dλ1 , rλ1), ϑ ∼ Beta(aϑ, bϑ),

where y is an output vector of length n, X is a design matrix of size n × p,
sσ, dλ1 , rλ1 , aϑ, bϑ > 0 are user-specified hyperparameters.

Intuition: If λ is large, then the density of ω is very peaked around zero; If λ is
small it is diffusive.

We typically set λ0 ≫ λ1, so that ω0 is the spike and ω1 the slab; γ indexes the
2p possible models, and ϑ is a mixing proportion.
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Homoscedastic data

▶ In detail, let m1 and n two integers parameters and suppose the existence
of two groups of diets with n/2 subjects in each group. Then, m1 + 1
explanatory variables are generated in the following way.

▶ First, a binary diet indicator z is generated for each subject i = 1, . . . , n,
zi = 1{i>n/2} − 1{i<n/2}.

▶ Then, we generate xk = [x1,k , . . . , xn,k ]
⊤, k = 1, . . . ,m1, such that

xik = uik + zivk , where uik are independent uniform U([0, 1]) random
variables, and v1, . . . , v0.75m1 are independent uniform U([0.25, 0.75])
random variables, and v0.75m1+1, . . . , v0.75m1 are identically zero. In this
way, there are m1 variables x1, . . . , xm1 where the first 75% of the x ′s
depend on z .

▶ In the end, the response vector is generated as follows:

y = β1z + β2x1 + β3x2 + β4x3 +
m1∑
k=5

βkxk−1 + βm1+1xm1 + ε, (3)

where ε is normally distributed with mean zero and covariance σ2I.
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▶ We use the following values for the parameters: m1 = 40, n = 80, σ2 = 1
and β = (1 − (κ− 1)/12)× (4.5, 3, −3, −3, 0⊤, 3) where 0⊤ is an
(m1 − 4)−dimensional vector of zeros and κ is a simulation parameter.

▶ The data x1, . . . , xm1 are generated according to four distinct categories
with a well defined interpretation. In particular, correlations for the first
0.75m1 variables are around 0.8 in absolute magnitude. The remaining
variables are independent from each other and the first 0.75m1 variables.

▶ We generate 100 independent data sets for each value of κ in the set
{1, 2, 3, 4, 5, 6, 7} and apply each of the variable selection procedure we
consider. The results are discussed in the following.
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▶ MSE measure comparison between:

▶ least absolute shrinkage and selection operator (LASSO).
▶ smoothly clipped absolute deviation (SCAD) penalty.
▶ minimax concave penalty (MCP) through the R package ncvreg.
▶ expectation maximization variable selection (EMVS).
▶ Bayesian model selection (BMS).

Method κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7

lasso 6.613 (0.151) 5.821 (0.084) 4.845 (0.062) 4.017 (0.038) 3.271 (0.028) 2.635 (0.025) 2.021 (0.018)
scad 3.44 (0.303) 3.306 (0.227) 2.811 (0.205) 2.357 (0.17) 2.076 (0.119) 1.863 (0.083) 1.524 (0.057)
mcp 2.636 (0.322) 2.368 (0.287) 1.965 (0.235) 1.754 (0.197) 1.375 (0.153) 1.397 (0.118) 1.387 (0.075)
emvs 8.296 (0.322) 7.131 (0.257) 6.583 (0.203) 6.062 (0.122) 5.468 (0.103) 3.717 (0.095) 3.543 (0.051)
bms 2.772 (0.058) 2.266 (0.031) 2.064 (0.057) 1.89 (0.074) 1.582 (0.057) 1.475 (0.07) 1.34 (0.073)
vbl 3.321 (0.024) 2.904 (0.022) 2.501 (0.021) 2.066 (0.017) 1.728 (0.013) 1.395 (0.011) 1.074 (0.009)

vbss 1.815 (0.137) 1.63 (0.152) 1.515 (0.169) 1.326 (0.133) 1.244 (0.085) 1.121 (0.035) 0.931 (0.017)
vbssl 1.941 (0.2) 1.967 (0.212) 1.849 (0.152) 1.626 (0.088) 1.424 (0.039) 1.171 (0.014) 0.912 (0.012)

gsl 3.077 (0.029) 2.715 (0.025) 2.363 (0.023) 1.969 (0.018) 1.665 (0.014) 1.359 (0.012) 1.053 (0.01)
gsss 1.923 (0.113) 1.677 (0.084) 1.621 (0.122) 1.672 (0.147) 1.797 (0.114) 1.601 (0.051) 1.272 (0.023)
gsssl 1.864 (0.06) 1.631 (0.041) 1.44 (0.053) 1.208 (0.047) 1.075 (0.047) 0.913 (0.042) 0.739 (0.039)
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▶ F1 measure comparison between Lasso, SCAD, MCP, EMVS, BMS, VB
and MCMC based on 100 simulations for the diet simulation example.

Method κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7

lasso 0.937 (0.028) 0.946 (0.019) 0.94 (0.022) 0.939 (0.023) 0.939 (0.022) 0.927 (0.096) 0.938 (0.019)
scad 0.945 (0.026) 0.947 (0.024) 0.953 (0.023) 0.955 (0.021) 0.954 (0.022) 0.954 (0.017) 0.953 (0.015)
mcp 0.959 (0.029) 0.965 (0.027) 0.967 (0.028) 0.968 (0.027) 0.975 (0.024) 0.969 (0.022) 0.959 (0.018)
emvs 0.966 (0.036) 0.962 (0.029) 0.961 (0.027) 0.929 (0.166) 0.839 (0.312) 0.632 (0.446) 0.275 (0.432)
bms 0.998 (0.006) 0.999 (0.004) 0.996 (0.009) 0.992 (0.012) 0.989 (0.012) 0.981 (0.016) 0.957 (0.098)
vbss 0.995 (0.008) 0.993 (0.01) 0.985 (0.015) 0.95 (0.168) 0.846 (0.329) 0.701 (0.429) 0.39 (0.471)
vbssl 0.922 (0.255) 0.715 (0.437) 0.581 (0.477) 0.309 (0.453) 0.154 (0.354) 0.105 (0.3) 0.029 (0.163)
gsss 0.98 (0.098) 0.983 (0.081) 0.934 (0.193) 0.828 (0.287) 0.583 (0.338) 0.416 (0.303) 0.255 (0.221)
gsssl 0.99 (0.019) 0.992 (0.014) 0.993 (0.012) 0.992 (0.015) 0.987 (0.016) 0.984 (0.015) 0.976 (0.017)

▶ Accuracy analysis.

Method κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7

vbl 84.234 (4.576) 85.252 (4.028) 86.462 (3.66) 87.471 (3.281) 88.204 (2.988) 88.794 (2.784) 89.382 (2.651)
vbss 86.448 (13.892) 86.113 (12.324) 80.059 (18.505) 67.744 (28.53) 45.944 (31.358) 34.942 (27.191) 30.597 (24.857)
vbssl 81.029 (10.887) 77.406 (15.344) 76.098 (16.352) 76.11 (16.933) 76.343 (16.667) 77.403 (15.409) 79.282 (13.45)

vbl 26.738 (3.542) 30.965 (3.982) 36.831 (5.257) 42.394 (6.697) 49.05 (8.536) 55.946 (10.27) 64.019 (9.188)
vbss 63.389 (18.531) 61.689 (18.475) 57.388 (21.197) 50.349 (26.47) 36.42 (30.249) 32.802 (22.563) 40.389 (19.304)
vbssl 64.189 (28.865) 39.231 (35.731) 27.312 (29.171) 19.889 (21.025) 19.726 (16.479) 25.256 (14.537) 35.38 (12.828)
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THANK YOU!
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