On the Last Zero of a Spectrally Negative Lévy Process

Erik Baurdoux¹ Research Showcase LSE

April 7, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

¹joint work with José Pedraza

Insurance

Cramér–Lundberg Process

$$X_t = x + ct - \sum_{j=1}^{N_t} Y_j,$$

where x, c > 0, N_t is a Poisson process with intensity $\lambda > 0$ and $\{Y_j\}_{j \ge 1}$ is a sequence of positive i.i.d random variables independent of N_t .

Two quantities of interest are the moment of ruin and the last zero of the process

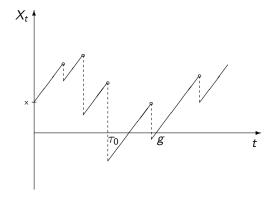
$$\tau_0^- = \inf\{t > 0 : X_t < 0\}$$

$$g = \sup\{t \ge 0 : X_t \le 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Last Zero

Introduction



(ロ)、(型)、(E)、(E)、 E) の(()

Degradation models

We can model the ageing of a device with $D = (D_t, t \ge 0)$ where

$$D_t = G_t + \sigma B_t$$

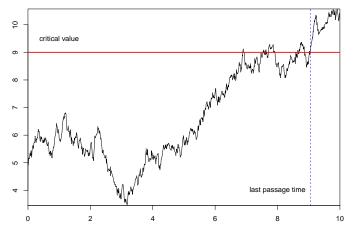
where $\sigma \ge 0$, $(G_t, t \ge 0)$ is a subordinator and $(B_t, t \ge 0)$ is an standard Brownian motion. Then, D is an spectrally positive Lévy process.

The failure time of the device can be defined as

$$g^* = \sup\{t > 0 : X_t \ge f_*\}$$

where f_* is a critical value.

Introduction



Time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Last passage times

Last passage times are random times which are not stopping times. For example, if

$$g = \sup\{t > 0 : X_t \le 0\}$$

then we have that

$$\{g < t\} = \{X_s > 0 \text{ for all } s > t\} \in \mathcal{F}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Last passage times

Last passage times are random times which are not stopping times. For example, if

$$g = \sup\{t > 0 : X_t \le 0\}$$

then we have that

$$\{g < t\} = \{X_s > 0 \text{ for all } s > t\} \in \mathcal{F}.$$

Stopping times are random times such that the decision whether to stop or not depends only on the past and present information.

Last passage times

Last passage times are random times which are not stopping times. For example, if

$$g = \sup\{t > 0 : X_t \le 0\}$$

then we have that

$$\{g < t\} = \{X_s > 0 \text{ for all } s > t\} \in \mathcal{F}.$$

Stopping times are random times such that the decision whether to stop or not depends only on the past and present information. We are interested in

$$g_t = \sup\{s < t : X_s \le 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Brownian motion: Azéma martingale

In Brownian case θ_t last hitting time of zero before time t many results are known, many linked to Azéma's martingale

$$\operatorname{sgn}(B_t)\frac{\pi}{2}\sqrt{t-\theta_t}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Brownian motion: Azéma martingale

In Brownian case θ_t last hitting time of zero before time t many results are known, many linked to Azéma's martingale

$$\operatorname{sgn}(B_t)\frac{\pi}{2}\sqrt{t-\theta_t}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Azéma 1985 Sur les fermés aléatoires. Azéma–Yor 1989 Etude d'une martingale remarquable

Brownian motion: Azéma martingale

In Brownian case θ_t last hitting time of zero before time t many results are known, many linked to Azéma's martingale

$$\operatorname{sgn}(B_t)\frac{\pi}{2}\sqrt{t-\theta_t}.$$

Azéma 1985 Sur les fermés aléatoires. Azéma–Yor 1989 Etude d'une martingale remarquable Cetin, U. 2012 Filtered Azéma martingales. Dassios, A., Lim J. 2018 A variation of the Azéma martingale and drawdown options

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lévy processes

A process $X = (X_t, t \ge 0)$ is said to be a Lévy process if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The paths of X are \mathbb{P} -a.s. càdlàg
- X has independent increments
- X has stationary increments

Lévy processes

A process $X = (X_t, t \ge 0)$ is said to be a Lévy process if

- ▶ The paths of X are P-a.s. càdlàg
- X has independent increments
- X has stationary increments

Basically: Brownian motion with jumps.

Examples

- Brownian motion
- Compound Poisson process
- Gamma process

The law of a Lévy process is characterised by the characteristic exponent,

$$\Psi(heta) = -\log\left(\mathbb{E}(e^{i heta X_1})
ight).$$

Lévy-Khintchine Formula for Lévy processes

Exist $\sigma \geq 0$, $\mu \in \mathbb{R}$ and measure Π (Lévy measure) concentrated on $\mathbb{R} \setminus \{0\}$, with $\int_{\mathbb{R}} (1 \wedge x^2) \Pi(dx) < \infty$, such that

$$\Psi(\theta) = i\mu\theta + \frac{1}{2}\sigma^2\theta^2 + \int_{\mathbb{R}} (1 - e^{i\theta x} + i\theta x \mathbb{I}_{\{|x| < 1\}}) \Pi(dx)$$

for all $\theta \in \mathbb{R}$.

Lévy-Itô decomposition

$$X_t = \sigma B_t - \mu t + \int_0^t \int_{\{|x| \ge 1\}} x N(ds, dx)$$
$$+ \int_0^t \int_{\{|x| < 1\}} x (N(ds, dx) - ds \Pi(dx))$$

In Leland 1994 and Manso et al. 2010 equity holders endogenously choose the time of bankruptcy of a firm.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In Leland 1994 and Manso et al. 2010 equity holders endogenously choose the time of bankruptcy of a firm. Firm's performance measure X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

	Zero
ΓN	lotivation

In Leland 1994 and Manso et al. 2010 equity holders endogenously choose the time of bankruptcy of a firm. Firm's performance measure X. Time of the bankruptcy is determined by the optimal stopping problem

$$\sup_{\tau\in\mathcal{T}}\mathbb{E}_{x}\left(\int_{0}^{\tau}e^{-rt}[\delta(X_{t})-c(X_{t})]dt\right),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

	Zero
ΓN	lotivation

In Leland 1994 and Manso et al. 2010 equity holders endogenously choose the time of bankruptcy of a firm. Firm's performance measure X. Time of the bankruptcy is determined by the optimal stopping problem

$$\sup_{\tau\in\mathcal{T}}\mathbb{E}_{x}\left(\int_{0}^{\tau}e^{-rt}[\delta(X_{t})-c(X_{t})]dt\right),$$

Here c is the coupon rate paid debt holders, and δ is the payout rate received by the firm.

	Zero
ΓN	lotivation

In Leland 1994 and Manso et al. 2010 equity holders endogenously choose the time of bankruptcy of a firm. Firm's performance measure X. Time of the bankruptcy is determined by the optimal stopping problem

$$\sup_{\tau\in\mathcal{T}}\mathbb{E}_{x}\left(\int_{0}^{\tau}e^{-rt}[\delta(X_{t})-c(X_{t})]dt\right),$$

Here c is the coupon rate paid debt holders, and δ is the payout rate received by the firm. Performance X, current positive excursion above the level k, given by $V_t^{(k)} = t - \sup\{0 \le s \le t : X_s \ge k\}$, also provides information about the performance of the firm.

In Leland 1994 and Manso et al. 2010 equity holders endogenously choose the time of bankruptcy of a firm. Firm's performance measure X. Time of the bankruptcy is determined by the optimal stopping problem

$$\sup_{\tau\in\mathcal{T}}\mathbb{E}_{x}\left(\int_{0}^{\tau}e^{-rt}[\delta(X_{t})-c(X_{t})]dt\right),$$

Here c is the coupon rate paid debt holders, and δ is the payout rate received by the firm. Performance X, current positive excursion above the level k, given by $V_{\star}^{(k)} = t - \sup\{0 \le s \le t : X_s \ge k\}$, also provides information about the performance of the firm. Default time can be generalised to (V, X) as its performance measure, where X can be taken to be an exponential Lévy process. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In 2024 AAP with José Pedraza: Optimal prediction, p > 1

$$\inf_{\tau} \mathbb{E}[|\tau - g|^p]$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

In 2024 AAP with José Pedraza: Optimal prediction, p > 1

$$\inf_{\tau} \mathbb{E}[|\tau - g|^{p}]$$

We needed and an Ito formula/infinitesimal generator of (g_t, X_t) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In 2024 AAP with José Pedraza: Optimal prediction, p > 1

$$\inf_{\tau} \mathbb{E}[|\tau - g|^{p}]$$

We needed and an Ito formula/infinitesimal generator of (g_t, X_t) . Paper exploded in size

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

In 2024 AAP with José Pedraza: Optimal prediction, p > 1

$$\inf_{\tau} \mathbb{E}[|\tau - g|^p]$$

We needed and an Ito formula/infinitesimal generator of (g_t, X_t) . Paper exploded in size This talk based on preprint, ironing out final issues this evening, hopefully.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In 2024 AAP with José Pedraza: Optimal prediction, p > 1

$$\inf_{\tau} \mathbb{E}[|\tau - g|^p]$$

We needed and an Ito formula/infinitesimal generator of (g_t, X_t) . Paper exploded in size This talk based on preprint, ironing out final issues this evening, hopefully.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A spectrally negative Lévy process is a Lévy processes with only negative jumps $\Pi(0,\infty) = 0$ and not monotone paths.

In this case the Laplace exponent defined as

$$\psi(\lambda) = \log\left(\mathbb{E}(e^{\lambda X_1})\right)$$

always exists and we have that $\psi'(0+) = \mathbb{E}(X_1)$. We also define the right-inverse of ψ by

$$\Phi(q) = \sup\{\lambda \ge 0 : \psi(\lambda) = q\}$$

Last Zero ∟Last zero

Scale functions

For $q \ge 0$, $W^{(q)}$ is a continuous and strictly increasing function in $(0, \infty)$ such that $W^{(q)}(x) = 0$ for x < 0 and its Laplace transform is given

$$\int_0^\infty e^{-eta imes} W^{(q)}(x) dx = rac{1}{\psi(eta)-q} \qquad eta > \Phi(q),$$

where $\Phi(q)$ is the right inverse function of ψ . We also define the the function $Z^{(q)}$ as

$$Z^{(q)}(x) = 1 + q \int_0^x W^{(q)}(y) dy.$$

Last zero and exercursions

Let X be a spectrally negative Lévy process drifting to infinity. Let $t \ge 0$ and $x \in \mathbb{R}$, we define as $g_t^{(x)}$ as the last time that the process is below x before time t, i.e.,

$$g_t^{(x)} = \sup\{0 \le s \le t : X_s \le x\},\$$

with the convention sup $\emptyset = 0$. We simply denote $g_t := g_t^{(0)}$ for all $t \ge 0$. We define

$$U_t := t - g_t$$

the time of the current excursion before time t above zero.

・ロト ・ ロ・ ・ ヨ・ ・ ヨ・ ・ ロ・

Last Zero

Last zero

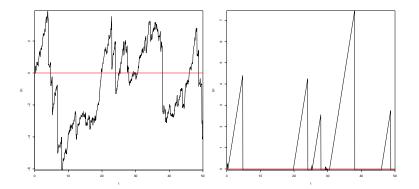


Figure: Sample path of X on the left hand side. Sample path of U_t on the right hand side.

・ロト ・四ト ・ヨト ・ヨト

æ

Strong Markov process

▶ Process (g_t, t, X_t) is strong Markov

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Last	Zero
ΓN	larkov

Strong Markov process

- Process (g_t, t, X_t) is strong Markov
- State space E_g given by

 $\{(\gamma, t, x) : 0 \leq \gamma < t \text{ and } x > 0\} \cup \{(\gamma, t, x) : 0 \leq \gamma = t, x \leq 0\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Strong Markov process

- Process (g_t, t, X_t) is strong Markov
- State space E_g given by

 $\{(\gamma, t, x): 0 \leq \gamma < t \text{ and } x > 0\} \cup \{(\gamma, t, x): 0 \leq \gamma = t, x \leq 0\}$

For nice functions h and stopping time τ conditional expectation

$$\mathbb{E}(h(g_{\tau+s},\tau+s,X_{\tau+s})|\mathcal{F}_{\tau})=f_s(g_{\tau},\tau,X_{\tau}),$$

where for any $(\gamma, t, x) \in E_{g}$,

$$f_{s}(\gamma, t, x) = \mathbb{E}_{x}(h(\gamma, t + s, X_{s})\mathbb{I}_{\{\sigma_{0}^{-} > s\}})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\begin{aligned} +\mathsf{E}_{s}(h(g_{s}+t,t+s,X_{s})\mathbb{I}_{\{\sigma_{0}^{-}\leq s\}}). & \text{where} \\ \sigma_{0}^{-}&=\inf\{t>0:X_{t}\leq 0\}. \end{aligned}$$

ltô formula

Theorem

For nice enough F we have the Itô formula for (g, t, X)

$$\begin{split} F(g_t, t, X_t) &= F(g_0, 0, X_0) + \int_0^t \frac{\partial F_g}{\partial t}(s, X_s) \mathbb{I}_{\{g_s = -s\}} ds + \int_0^t \frac{\partial F}{\partial t}(g_{s-}, s, X_{s-}) \mathbb{I}_{\{g_{s-} < s\}} ds \\ &+ \int_0^t \frac{\partial F}{\partial x}(g_{s-}, s, X_{s-}) dX_s + \frac{1}{2}\sigma^2 \int_0^t \frac{\partial^2 F}{\partial x^2}(g_s, s, X_s) ds \\ &+ \int_{[0,t]} \int_{(-\infty,0)} \left[F(g_s, s, X_{s-} + y) - F(g_{s-}, s, X_{s-}) - y \frac{\partial F}{\partial x}(g_{s-}, s, X_{s-}) \right] N(ds \times dy) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

ltô formula

Theorem

For nice enough F we have the Itô formula for (g, t, X)

$$\begin{split} F(g_{t}, t, X_{t}) &= F(g_{0}, 0, X_{0}) + \int_{0}^{t} \frac{\partial F_{g}}{\partial t} (s, X_{s}) \mathbb{I}_{\{g_{s}-s\}} ds + \int_{0}^{t} \frac{\partial F}{\partial t} (g_{s}-, s, X_{s}-) \mathbb{I}_{\{g_{s}-0\}} \mathbb{I}_{\{g_{s}-$$

where $F_g(t, x) := F(t, t, x)$ for $t \ge 0$ and $x \le 0$.

Using Itô formula we can deduce, among others

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• The infinitesimal generator of (g_t, t, X_t) .

Last	Zero
Lс	orrolaries

Using Itô formula we can deduce, among others

- The infinitesimal generator of (g_t, t, X_t) .
- ► For nice enough functions, compute

$$\mathbb{E}\left(\int_0^\infty e^{-qr} K(U_r,X_r) \mathrm{d}r\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

in terms of scale functions of X.

Using Itô formula we can deduce, among others

- The infinitesimal generator of (g_t, t, X_t) .
- For nice enough functions, compute

$$\mathbb{E}\left(\int_0^\infty e^{-qr} K(U_r,X_r) \mathrm{d}r\right)$$

in terms of scale functions of X.

• Joint Laplace transform $(U_{\mathbf{e}_q}, X_{\mathbf{e}_q})$

Using Itô formula we can deduce, among others

- The infinitesimal generator of (g_t, t, X_t) .
- For nice enough functions, compute

$$\mathbb{E}\left(\int_0^\infty e^{-qr} \mathcal{K}(U_r,X_r) \mathrm{d}r\right)$$

in terms of scale functions of X.

- ▶ Joint Laplace transform $(U_{\mathbf{e}_q}, X_{\mathbf{e}_q})$.
- Solve optimal stopping problems related to corporate bankruptcy
- Resolve various aspects needed to solve

$$\inf_{\tau} \mathbb{E}[|\tau - g|^{p}].$$

Ingredients of the proofs

 Perturbed Lévy process. Revuz Yor (1999), Dassios Wu (2011).

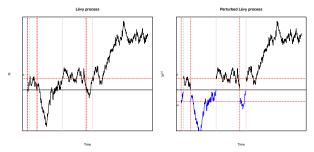


Figure: Left: Sample path of X. Right: Sample path of the perturbed process

► Use appropriate version of known Itô formula (e.g. Peskir's), properties of g_t, limiting arguments and local time. no. Last Zero

L Thank you

Thank you

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ