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Erik Baurdoux1

Research Showcase LSE

April 7, 2025

1joint work with José Pedraza
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Introduction

Insurance

Cramér–Lundberg Process

Xt = x + ct −
Nt∑
j=1

Yj ,

where x , c > 0, Nt is a Poisson process with intensity λ > 0 and
{Yj}j≥1 is a sequence of positive i.i.d random variables
independent of Nt .

Two quantities of interest are the moment of ruin and the last zero
of the process

τ−0 = inf{t > 0 : Xt < 0}
g = sup{t ≥ 0 : Xt ≤ 0}



Last Zero

Introduction

6

-

Xt

t

x �
�
�
a
�
�
a
�
��

a
τ0 g

�
�
�
��

a
�
�
�
�
�
a
�
�
�



Last Zero

Introduction

Degradation models

We can model the ageing of a device with D = (Dt , t ≥ 0) where

Dt = Gt + σBt

where σ ≥ 0, (Gt , t ≥ 0) is a subordinator and (Bt , t ≥ 0) is an
standard Brownian motion. Then, D is an spectrally positive Lévy
process.
The failure time of the device can be defined as

g∗ = sup{t > 0 : Xt ≥ f∗}

where f∗ is a critical value.
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Last passage times

Last passage times are random times which are not stopping times.
For example, if

g = sup{t > 0 : Xt ≤ 0}

then we have that

{g < t} = {Xs > 0 for all s > t} ∈ F .

Stopping times are random times such that the decision whether to
stop or not depends only on the past and present information. We
are interested in

gt = sup{s < t : Xs ≤ 0}
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Brownian motion: Azéma martingale

In Brownian case θt last hitting time of zero before time t many
results are known, many linked to Azéma’s martingale

sgn(Bt)
π

2

√
t − θt .

Azéma 1985 Sur les fermés aléatoires.
Azéma–Yor 1989 Etude d’une martingale remarquable
Cetin, U. 2012 Filtered Azéma martingales.
Dassios, A., Lim J. 2018 A variation of the Azéma martingale and
drawdown options
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Lévy processes

Lévy processes
A process X = (Xt , t ≥ 0) is said to be a Lévy process if
▶ The paths of X are P-a.s. càdlàg
▶ X has independent increments
▶ X has stationary increments
▶ X0 = 0 a.s.

Basically: Brownian motion with jumps.
Examples
▶ Brownian motion
▶ Compound Poisson process
▶ Gamma process

The law of a Lévy process is characterised by the characteristic
exponent,

Ψ(θ) = − log
(
E(e iθX1)

)
.
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Lévy processes

Lévy–Khintchine Formula for Lévy processes

Exist σ ≥ 0, µ ∈ R and measure Π (Lévy measure) concentrated
on R \ {0}, with

∫
R(1 ∧ x2)Π(dx) <∞, such that

Ψ(θ) = iµθ +
1

2
σ2θ2 +

∫
R
(1− e iθx + iθxI{|x |<1})Π(dx)

for all θ ∈ R.

Lévy–Itô decomposition

Xt = σBt − µt +

∫ t

0

∫
{|x |≥1}

xN(ds, dx)

+

∫ t

0

∫
{|x |<1}

x(N(ds, dx)− dsΠ(dx))



Last Zero

Motivation

Some more motivation

In Leland 1994 and Manso et al. 2010 equity holders endogenously
choose the time of bankruptcy of a firm.

Firm’s performance measure X . Time of the bankruptcy is
determined by the optimal stopping problem

sup
τ∈T

Ex

(∫ τ

0
e−rt [δ(Xt)− c(Xt)]dt

∣∣∣∣) ,
Here c is the coupon rate paid debt holders, and δ is the payout
rate received by the firm. Performance X , current positive
excursion above the level k, given by

V
(k)
t = t − sup{0 ≤ s ≤ t : Xs ≥ k}, also provides information

about the performance of the firm.
Default time can be generalised to (V ,X ) as its performance
measure, where X can be taken to be an exponential Lévy process.
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Real motivation

In 2024 AAP with José Pedraza: Optimal prediction, p > 1

inf
τ
E[|τ − g |p]

We needed and an Ito formula/infinitesimal generator of (gt ,Xt).
Paper exploded in size
This talk based on preprint, ironing out final issues this evening,
hopefully.
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Spectrally Negative Lévy processes

A spectrally negative Lévy process is a Lévy processes with only
negative jumps Π(0,∞) = 0 and not monotone paths.

In this case the Laplace exponent defined as

ψ(λ) = log
(
E(eλX1)

)
always exists and we have that ψ′(0+) = E(X1). We also define
the right-inverse of ψ by

Φ(q) = sup{λ ≥ 0 : ψ(λ) = q}
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Last zero

Scale functions
For q ≥ 0, W (q) is a continuous and strictly increasing function in
(0,∞) such that W (q)(x) = 0 for x < 0 and its Laplace transform
is given ∫ ∞

0
e−βxW (q)(x)dx =

1

ψ(β)− q
β > Φ(q),

where Φ(q) is the right inverse function of ψ. We also define the
the function Z (q) as

Z (q)(x) = 1 + q

∫ x

0
W (q)(y)dy .
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Last zero and exercursions

Let X be a spectrally negative Lévy process drifting to infinity. Let

t ≥ 0 and x ∈ R, we define as g
(x)
t as the last time that the

process is below x before time t, i.e.,

g
(x)
t = sup{0 ≤ s ≤ t : Xs ≤ x},

with the convention sup ∅ = 0. We simply denote gt := g
(0)
t for all

t ≥ 0. We define

Ut := t − gt

the time of the current excursion before time t above zero.
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Figure: Sample path of X on the left hand side. Sample path of Ut on
the right hand side.
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Markov

Strong Markov process
▶ Process (gt , t,Xt) is strong Markov

▶ State space Eg given by

{(γ, t, x) : 0 ≤ γ < t and x > 0}∪{(γ, t, x) : 0 ≤ γ = t, x ≤ 0}

▶ For nice functions h and stopping time τ conditional expectation

E(h(gτ+s , τ + s,Xτ+s)|Fτ ) = fs(gτ , τ,Xτ ),

where for any (γ, t, x) ∈ Eg ,

fs(γ, t, x) = Ex(h(γ, t + s,Xs)I{σ−
0 >s})

+Ex(h(gs + t, t + s,Xs)I{σ−
0 ≤s}). where

σ−0 = inf{t > 0 : Xt ≤ 0}.
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Itô

Itô formula

Theorem
For nice enough F we have the Itô formula for (g , t,X )

F(gt , t, Xt ) = F (g0, 0, X0) +
∫ t
0

∂Fg
∂t

(s, Xs−)I{gs−=s}ds +
∫ t
0

∂F
∂t

(gs−, s, Xs−)I{gs−<s}ds

+
∫ t
0

∂F
∂x

(gs−, s, Xs−)dXs + 1
2
σ2 ∫ t

0
∂2F
∂x2

(gs , s, Xs )ds

+
∫
[0,t]

∫
(−∞,0)

[
F (gs , s, Xs− + y) − F (gs−, s, Xs−) − y ∂F

∂x
(gs−, s, Xs−)

]
N(ds × dy)

=F(g0, 0, X0) +
∫ t
0

∂Fg
∂t

(s, Xs−)I{gs−=s}ds +
∫ t
0

∂F
∂t

(gs−, s, Xs−)I{gs−<s}ds

+
∫ t
0

∂F
∂x

(gs−, s, Xs−)dXs + 1
2
σ2 ∫ t

0
∂2F
∂x2

(gs−, s, Xs−)ds

+
∫
[0,t]

∫
(−∞,0)

[
F (s, s, Xs− + y) − F (s, s, Xs−) − y ∂F

∂x
(s, s, Xs−)

]
I{gs−=s}N(ds × dy)

+
∫
[0,t]

∫
(−∞,0)

[
F (gs−, s, Xs− + y) − F (gs−, s, Xs−) − y ∂F

∂x
(gs−, s, Xs−)

]
×I{Xs−+y>0}I{gs−<s}N(ds × dy)

+
∫
[0,t]

∫
(−∞,0)

[
F (s, s, Xs− + y) − F (gs−, s, Xs−) − y ∂F

∂x
(gs−, s, Xs−)

]
×I{Xs−+y≤0}I{gs−<s}N(ds × dy),

where Fg (t, x) := F (t, t, x) for t ≥ 0 and x ≤ 0.
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Corrolaries

And now what?
Using Itô formula we can deduce, among others

▶ The infinitesimal generator of (gt , t,Xt).

▶ For nice enough functions, compute

E
(∫ ∞

0
e−qrK (Ur ,Xr )dr

)
in terms of scale functions of X .

▶ Joint Laplace transform (Ueq ,Xeq) .

▶ Solve optimal stopping problems related to corporate
bankruptcy

▶ Resolve various aspects needed to solve

inf
τ
E[|τ − g |p].
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Ingredients of proofs

Ingredients of the proofs
▶ Perturbed Lévy process. Revuz Yor (1999), Dassios Wu

(2011).
Lévy process

Time

X
t

ε

Perturbed Lévy process

Time
X

t(ε
)

ε

−ε

Figure: Left: Sample path of X . Right: Sample path of the
perturbed process

▶ Use appropriate version of known Itô formula (e.g.
Peskir’s),properties of gt , limiting arguments and local time.



Last Zero

Thank you

Thank you
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