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Long-term modelling of financial markets

• Many market participants are interested in long-time horizons

– Pension funds, Trust funds, Endowments, etc.

• We will focus on equity markets (stocks).

• Modelling any noisy system over a long period of time is challenging.

→ but may be rewarding!

Questions:

1 What features of equity markets persist over long-time horizons

2 Can we develop models capturing such features and procedures for
statistical calibration?



3 / 24

Introduction Listings and Delistings Local Model Empirics

Long-term modelling of financial markets

• Many market participants are interested in long-time horizons

– Pension funds, Trust funds, Endowments, etc.

• We will focus on equity markets (stocks).

• Modelling any noisy system over a long period of time is challenging.

→ but may be rewarding!

Questions:

1 What features of equity markets persist over long-time horizons

2 Can we develop models capturing such features and procedures for
statistical calibration?



4 / 24

Introduction Listings and Delistings Local Model Empirics

Capital distribution curve

• Let S1, . . . ,SN denote the market capitalization processes of N
companies.

• Set

µi (t) =
Si (t)

S1(t) + · · ·+ SN(t)
i = 1, . . . ,N

to be the market weights.

• The ranked market weights µ(1) ≥ µ(2) ≥ · · · ≥ µ(N) are remarkably
stable over time.
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Capital distribution curve
Ranked market weights over time
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First-order ranked based models
• Curve stability was first observed by Robert Fernholz who developed

Stochastic Portfolio Theory (SPT) in 2002
– SPT further developed together with Ioannis Karatzas, his students

including Kardaras, Ruf and many others.

• Classical models do not produce a stable capital distribution curve
• Fernholz proposed rank-based models, which are reduced-form

models that can capture the empirical stability of the curve
– Advantages for calibration due to continuity of data.

• Letting Xi = log Si the model postulates dynamics

dXi (t) = γri (t)dt + σri (t)dWi (t)

where γi ∈ R, σi > 0, ri (t) is the rank asset i occupies at time t and
W is an N-dimensional Brownian Motion.

• Under the stability condition

γ̄ :=
1

N

N∑
k=1

γk >
1

n

n∑
k=1

γk , n = 1, . . . ,N − 1,

the market weights are ergodic representing stability of the curve.
• When γN ≫ γi for every other i we say the model is Atlas-like.
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Parameter calibration

• Ranked log-caps: X(1) ≥ X(2) ≥ · · · ≥ X(N).

• Ranked dynamics:

dX(k)(t) = γkdt + σkdW̃k(t) +
1

2
dΛk(t)−

1

2
dΛk−1(t),

where Λk is the local time at zero of X(k) −X(k+1) and Λ0 = ΛN = 0.

• This term Λk activates when two particles collide X(k) = X(k+1) and
ensures the ordering X(k) ≥ X(k+1) persists

• Volatility calibration: σ2
k =

d [X(k)](t)

dt ,

→ standard estimation using quadratic variation.

• Drift calibration: γk − γ̄ = 1
2 limT→∞( 1

T Λk−1(T )− 1
T Λk(T )).

→ Requires estimating collision rates λk = 1
2
limT→∞

1
T
Λk(T ).

→ Efficient method using a so-called “Master formula” for portfolio
generation available and developed in Fernholz (2002)



7 / 24

Introduction Listings and Delistings Local Model Empirics

Parameter calibration

• Ranked log-caps: X(1) ≥ X(2) ≥ · · · ≥ X(N).

• Ranked dynamics:

dX(k)(t) = γkdt + σkdW̃k(t) +
1

2
dΛk(t)−

1

2
dΛk−1(t),

where Λk is the local time at zero of X(k) −X(k+1) and Λ0 = ΛN = 0.

• This term Λk activates when two particles collide X(k) = X(k+1) and
ensures the ordering X(k) ≥ X(k+1) persists

• Volatility calibration: σ2
k =

d [X(k)](t)

dt ,

→ standard estimation using quadratic variation.

• Drift calibration: γk − γ̄ = 1
2 limT→∞( 1

T Λk−1(T )− 1
T Λk(T )).

→ Requires estimating collision rates λk = 1
2
limT→∞

1
T
Λk(T ).

→ Efficient method using a so-called “Master formula” for portfolio
generation available and developed in Fernholz (2002)



7 / 24

Introduction Listings and Delistings Local Model Empirics

Parameter calibration

• Ranked log-caps: X(1) ≥ X(2) ≥ · · · ≥ X(N).

• Ranked dynamics:

dX(k)(t) = γkdt + σkdW̃k(t) +
1

2
dΛk(t)−

1

2
dΛk−1(t),

where Λk is the local time at zero of X(k) −X(k+1) and Λ0 = ΛN = 0.

• This term Λk activates when two particles collide X(k) = X(k+1) and
ensures the ordering X(k) ≥ X(k+1) persists

• Volatility calibration: σ2
k =

d [X(k)](t)

dt ,

→ standard estimation using quadratic variation.

• Drift calibration: γk − γ̄ = 1
2 limT→∞( 1

T Λk−1(T )− 1
T Λk(T )).

→ Requires estimating collision rates λk = 1
2
limT→∞

1
T
Λk(T ).

→ Efficient method using a so-called “Master formula” for portfolio
generation available and developed in Fernholz (2002)



8 / 24

Introduction Listings and Delistings Local Model Empirics

Calibrated Parameters
We use 51 years of CRSP data: 1973-2024 with N = 3565

σ estimation
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Calibrated Parameters
We use 51 years of CRSP data: 1973-2024 with N = 3565

volatility normalized λ/σ2
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Calibrated Parameters
We use 51 years of CRSP data: 1973-2024 with N = 3565

γ estimation

Not plotted: γd ≈ 11000
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Puzzles
• Why are λ’s increasing more and more rapidly?

– λk represents volatility-weighted rate of collisions,
– the estimates imply rate is monotonically increasing across all ranks.

■ Persists even when accounting for volatility.

– But aren’t there fewer stocks at the tail end?

• Why does the smallest stock have such a high drift?

– Directly linked to one-sided collision at final rank.
– Artefact of the model due to fixed number of stocks.
– Is there a simple ad-hoc way to modify the estimates?
– NO! Removing the extreme estimate would violate stability condition

of capital distribution curve.

Issues seem to be linked with the smallest stock/fixed universe.
• We try to address this by allowing for listings and delistings.

– How prevalent are they?

• Campbell & Wong (2024) identified these as important drivers for
capital distribution curve stability.
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Model Setup
• We model a variable equity universe with a focus on developing

estimators for empirical calibration,

– Some recent literature on equity models with variable assets:
Sarantsev & Karatzas (2016), Bayraktar, Kim & Tilva (2024)

– Open markets are another related approach: Fernholz (2018),
Karatzas & Kim (2020), Itkin & Larsson (2024).

• Countable collection of log caps (Xi ; i ∈ N) with lifetime [βi , δi ],

– βi is listing time, δi is delisting time.

• We study the first-order dynamics

dXi (t) = γri (t)dt + σri (t)dWi (t), βi ≤ t ≤ δi ,

where ri (t) is the rank of asset i at time t among the listed assets.

• We set I (t) = {i : t ∈ [βi , δi ]} and N(t) = |I (t)|.
• We assume nondegeneracy: N(t) ≥ 1 and finite activity:∑

t≤T ∆N(t) < ∞ for every T > 0.
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Ranked Dynamics

• Despite Xi being continuous on its lifetime X() experiences jumps at
listing and delisting times.

• Moreover, the market capitalization Σ(t) =
∑

i∈I (t) Si (t), the
market weights

µi (t) =
Si (t)

Σ(t)
1{i∈I (t)},

and the ranked market weights µ()(t) experience jumps as well.

• Jumps have a larger effect on the smaller ranks.

• Care is needed dealing with portfolios and the collision estimator.

• Indeed, the wealth VM of an investor trading the market portfolio
now satisfies

logVM(t) = log Σc(t),

whereas classically logVM(t) = logΣ(t).
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Illustration
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Collision estimation with listings/delistings
• We developed a new “Master formula” for portfolio generation in

this setting with listings and delistings.
• As in the classical setting the collision estimator can be derived by

looking at the large-cap portfolio investing in the top k assets.
• In the fixed investment universe

dΛk(t) =
µ(1)(t) + · · ·+ µ(k)(t)

µ(k)(t)
d log

(
VMk

VM × 1

µ(1) + · · ·+ µ(k)

)
(t)

• With listings/delistings (on the set {|I (t)| ≥ k}):

dΛk(t) =
µ̃(1)(t) + · · ·+ µ̃(k)(t)

µ̃(k)(t)
d log

(
VMk

VM × 1

µ̃(1) + · · ·+ µ̃(k)

)
(t),

where log µ̃(t) = log µc(t).

The original estimator registers rank change caused by a
listing/delisting as a collision.

• Although the original estimator is consistent in the fixed asset
model, when applied to real data, it produces bias.

• The bias propogates effecting the smallest stocks the most since a
listing/delisting at rank k causes a jump for each µ(ℓ), ℓ > k.
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Collision estimation results

New collision estimator
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Collision estimation results

A comparison
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Particle Density
• What is a driver of collisions?
• Naively, we expect

– More collisions, if highly volatile,
– Fewer collisions if neighbours are positively correlated,
– More collisions if particles tightly packed.

• We define the neighbouring rank correlation

ρk = lim
T→∞

1
T [X(k),X(k+1)](T )

σkσk+1

,
• We define average particle density at rank k as

ϕk = lim
T→∞

1

T

∫ T

0

2n − 1

X(k−n)(t)− X(k+n)(t)
dt.

for a hyperparameter n.

What is the relationship between σk , ρk , ϕk and how is this related
to the collision rates λk?
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T→∞

1
T [X(k),X(k+1)](T )

σkσk+1

,
• We define average particle density at rank k as

ϕk = lim
T→∞

1

T

∫ T

0

2n − 1

X(k−n)(t)− X(k+n)(t)
dt.

for a hyperparameter n.

What is the relationship between σk , ρk , ϕk and how is this related
to the collision rates λk?
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Local Model

• Studying this in the global model is difficult, so build a local model.

• Idea: For a fixed rank k create a synthetic large particle model
where a typical particle behaves like our rank k one.

• We choose the following model

dXN
i (t) = −σ2

2
XN
i (t)dt + σdWi (t), i = −N, . . . , 0, . . . ,N,

with d [Wi ,Wj ](t) = ρdt for all i ̸= j .

• This is an Ornstein–Uhlenbeck process with stationary measure
N(0,ΣN) where ΣN = (1− ρ)IN + ρ1N×N .

• To study rank k we would take σ = σk , ρ = ρk , start the process at
stationarity and study the median particle X(0) as the typical one.

– The analysis leads to the same conclusion for any fixed quantile.

• We are interested in understanding the relationship between σ, ρ, λ
and ϕ as N → ∞.
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Some order statistics results

• We can write XN
i =

√
ρY +

√
1− ρZN

i where Y and
(ZN

i ; i = −N, . . . ,N) are IID N(0,1) random variables.

• Hence the gaps satisfy XN
i − XN

j =
√
1− ρ(ZN

i − ZN
j ) so it is

enough to study the IID case.

Proposition (I., Larsson, Zhang (2025+))

1 Then density f N on [0,∞) of the random variable N(ZN
(0) − ZN

(1))

satisfies limN→∞ f N(0) =
√
2/π.

2 The random variable N(Z(−n) − Z(n)) converges in distribution as

N → ∞ to a Γ(2n,
√
2/π) random variable.

3 The weak convergence in part two extends to the unbounded
function h(x) = 1/x.
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Collision parameter in the local model
• We have

λN
0

N
= lim

ϵ→0
E

[
1

T

∫ T

0

1

Nϵ
1{XN

(0)
(t)−XN

(1)
(t)<ϵ}d [X

N
(0) − XN

(1)](t)

]

= 2σ2
√

1− ρf N(0) −→ 2σ2
√

1− ρ×
√

2

π
,

• and

ϕN
0

N
= E

[
2n − 1

N(X(−n) − X(n))

]
−→ (2n − 1)

∫ ∞

0

λ2n

Γ(2n)
x2n−2e−

√
2/πxdx

=

√
2

π
× 1√

1− ρ
.

• Hence, ϕN
0 ≈ λN

0

2σ2(1−ρ) .

• Let see how the listing and delisting model performs with real data.



20 / 24

Introduction Listings and Delistings Local Model Empirics

Collision parameter in the local model
• We have

λN
0

N
= lim

ϵ→0
E

[
1

T

∫ T

0

1

Nϵ
1{XN

(0)
(t)−XN

(1)
(t)<ϵ}d [X

N
(0) − XN

(1)](t)

]

= 2σ2
√

1− ρf N(0) −→ 2σ2
√

1− ρ×
√

2

π
,

• and

ϕN
0

N
= E

[
2n − 1

N(X(−n) − X(n))

]
−→ (2n − 1)

∫ ∞

0

λ2n

Γ(2n)
x2n−2e−

√
2/πxdx

=

√
2

π
× 1√

1− ρ
.

• Hence, ϕN
0 ≈ λN

0

2σ2(1−ρ) .

• Let see how the listing and delisting model performs with real data.



20 / 24

Introduction Listings and Delistings Local Model Empirics

Collision parameter in the local model
• We have

λN
0

N
= lim

ϵ→0
E

[
1

T

∫ T

0

1

Nϵ
1{XN

(0)
(t)−XN

(1)
(t)<ϵ}d [X

N
(0) − XN

(1)](t)

]

= 2σ2
√

1− ρf N(0) −→ 2σ2
√

1− ρ×
√

2

π
,

• and

ϕN
0

N
= E

[
2n − 1

N(X(−n) − X(n))

]
−→ (2n − 1)

∫ ∞

0

λ2n

Γ(2n)
x2n−2e−

√
2/πxdx

=

√
2

π
× 1√

1− ρ
.

• Hence, ϕN
0 ≈ λN

0

2σ2(1−ρ) .

• Let see how the listing and delisting model performs with real data.



21 / 24

Introduction Listings and Delistings Local Model Empirics

Collisions and Particle Density: Empirics

σ estimation
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Collisions and Particle Density: Empirics

ρ-estimation
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Collisions and Particle Density: Empirics
ϕk vs λk

2σ2
k
(1−ρk )

with n = 5.

A more granular look?
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Conclusion and future work

Summary of results

• Introduced a rank-based model with listings and delistings,

• Derived a new master formula for portfolio generation

• Derived collision estimator accounting for listings/delistings, which
corrects bias of previously used estimator when applied to real data,

• Studied local model and connected collisions to particle density.

To be done:

• Estimate listing and delisting rates,

• Pick a (Markovian) birth/death mechanism for global model,

• Conduct numerical and simulation experiments for global model.

• Theoretical analysis of global model?

Thank you!
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Master Formula for Functional Generation
• In this setting we say a portfolio π is functionally generated if

log

(
V π(T )

VM(T )

)
= log

(
G (µ̃(T ))

G (µ̃(0))

)
+ Γ(T )

for some function G :
⋃

d Rd → R and process of finite variation Γ.
• Here log µ̃(t) = logµc(t) −→ differs from the standard setting.

Theorem (I., Larsson, Zhang 2025+)

For a C 2 function F , the portfolio πi (t) =
∑

k ηk(t−)1{ri (t−)=k} which invests

ηk(t) = µ̃(k)(t)

(
∂k log F (µ̃()(t)) +

1−
∑N(t)

ℓ=1 µ̃(ℓ)(t)∂ℓ log F (µ̃()(t))∑N(t)
ℓ=1 µ̃(ℓ)(t)

)
1{k≤|I (t)|}

in the asset at rank k is functionally generated by G(x) = F (x()) with

dΓ(t) = −1

2

N(t)∑
k,ℓ=1

∂kℓF (µ̃(t))

F (µ̃(t))
d [µ̃(k), µ̃(ℓ)](t)−

1

2

N(t)∑
k=1

(ηk(t)− ηk+1(t))dΛk(t).



Collision rates estimation

• Applying this with the function F (x) = x(1) + · · ·+ x(k∧d) for

x ∈ Rd yields that the large-cap portfolio of size k,

πi (t) =
µ̃i (t)

µ̃(1)(t) + · · ·+ µ̃(k∧N(t))(t)
1{ri (t−)≤k}

=
µi (t−)

µ(1)(t−) + · · ·+ µ(k∧N(t−))(t−)
1{ri (t−)≤k}

has wealth process

log

(
VMk (T )

VM(T )

)
= log

(
µ̃(1)(T ) + · · ·+ µ̃(k∧N(T ))(T )

µ̃(1)(0) + · · ·+ µ̃(k∧N(0))(0)

)
+

µ̃(k∧N(t))(t)

µ̃(1)(t) + · · ·+ µ̃(k∧N(t))(t)
dΛk(t),

with the convention that dΛk(t) = 0 on {|I (t)| < k}.



Discretized Estimators
• Old estimator for local time

1

T

M−1∑
i=0

S(1)(ti ) + · · ·+ S(k)(ti )

S(k)(ti )
log

(
S(1)(ti + 1) + · · ·+ S(k)(ti + 1)

Sn1(ti )(ti + 1) + · · ·+ Snk (ti )(ti + 1)

)
,

where nk(t) is the name occupying the k ’th rank at time t.
• New estimator for local time:

1

Tp(k)

M−1∑
i=0

1{|I (ti )|≥k}
S(1)(ti ) + · · ·+ S(k)(ti )

S(k)(ti )

× log

S
J
ti ,ti+1

(1)

(ti + 1) + · · ·+ S
J
ti ,ti+1

(k)

(ti + 1)

SJti ,ti
(1)

(ti + 1) + · · ·+ SJti ,ti
(k)

(ti + 1)

 ,

where
– p(k) = 1

M

∑M−1
i=0 1{|I (ti ) > k|},

– J t,s
(ℓ) is the name of of ℓ’th largest market cap based on time s values
and out of only the names that are listed at time t and t + 1.
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