Multiple-output composite quantile regression
via optimal transport

Tengyao Wang
London School of Economics

Statistics Research Showcase

Jun 2024

«40O0>» «F>r» «=>»

<

it
v

o>



THE LONDON SCHOOL
LSE ©oF ECONOMICS AnD
CO"abO ratOr POLITICAL SCIENCE W

Xuzhi Yang

Tengyao Wang 219



THe LONDON SCHOOL
Multiple-output linear model |SE e

> Data: (X1,Y1),...,(X,,Y,)

generated from the linear model

PEY) are RP x R? random vectors

Y, =0"X; + €,

with b* € R?¥? is the regression coefficient of interest, E(X;) = 0 and the
random noise ¢; is independent of X;.

» Goal: estimate b* given data.
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Ordinary least squares estimator

» OLS: Minimising the residual sum of squares:

pOLS .= argmmz 1V; — bX4))3.
beRdxp

i=1

Gauss—Markov: b°"5 has minimal variance among all linear unbiased
estimators.

Tengyao Wang 419
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» OLS: Minimising the residual sum of squares:

pOLS .= argmmz 1V; — bX4))3.
beRdxp

i_
Gauss—Markov: b°"5 has minimal variance among all linear unbiased
estimators.

» But ...one can do a lot better with heavy-tailed noise when we drop the
‘linear unbiased’ constraint.

. iid > . .
» For instance, when d = 1 and ¢; < Cauchy, bOLS has infinite variance, but
the least absolute deviation regression estimator

HEAD .= argmlnz |Y; — bX;|
beRIxr 5

is still consistent.
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» LAD regression is a special case of quantile regression (Koenker, 2005).
» When d = 1, for any fixed quantile level 7 € (0, 1), the quantile
regression estimator is defined as

n
(bQRTvdT) = argmin ZPT(Yi - sz - QT)y
beRIva(ITeR i1=1

where p.(z) = T2t + (1 — 7)z~ = 27 + (7 — 1)z is the ‘check loss’.

pr(@) =2t + (71— 1)z

(T%ﬂz

» Under regularity conditions,

- T1—7)_
Vn(hB —pry 4, N(O, 2X1>,
( ) 72a)
where X, = cov(X1) and f.(q) is the density of €; at its 7-quantile.
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> bQR- is \/n-consistent when ¢; has nonvanishing density at its 7-quantile,
though its efficiency can be arbitrarily small.

» The idea of composite quantile regression (Zou and Yuan, 2008) is to use
multiple quantiles: setting 7, = k/(K + 1) ork =1,..., K, define

K n
peQR — argmin  min Z me (Y; = bX; — qi).

<<
beR1xp 91 49K b1 i1

> [CQR has asymptotic variance at most en /6 ~ 1.4 times that of OLS
estimator and can be much more efficient when noise is heavy-tailed.
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» Coordinatewise (composite) quantile regression?
» Multivariate generalisation of the quantiles and check functions

- Projected/directional quantiles (Paindevaine and Siman, 2011)
- Spatial quantiles (Chaudhuri, 1996)

Tengyao Wang 719
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» Coordinatewise (composite) quantile regression?
» Multivariate generalisation of the quantiles and check functions

- Projected/directional quantiles (Paindevaine and Siman, 2011)
— Spatial quantiles (Chaudhuri, 1996)

» We take a different perspective — recasting the composite quantile
regression into an optimal transport problem

Tengyao Wang 719



THE LONDON SCHOOL
A very brief introduction to OT St e

» Given p.m. P and Q on X, the squared 2-Wasserstein distance W3 (P, Q)
is the minimum cost of moving mass from P into Q.

» When P and () are both empirical measures of n points, this specialises to
the assignment problem.

» Formally, any transport is a joint distribution (coupling) m on X x X" with
marginals P and @ and the optimal transport solves the optimisation

7" = argmin E(x y)r [ X — Y|?
7eC(P,Q)

Tengyao Wang 8/19
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» Given p.m. P and Q on X, the squared 2-Wasserstein distance W3 (P, Q)
is the minimum cost of moving mass from P into Q.

» When P and () are both empirical measures of n points, this specialises to
the assignment problem.

» Formally, any transport is a joint distribution (coupling) m on X x X" with
marginals P and @ and the optimal transport solves the optimisation

7" = argmin E(x y)r [ X — Y|?
7eC(P,Q)

» The Monge-Kantorovich duality:

min E.||X -Y|? = max Epp(X) +Egy(Y).
meC(hQ) | ” $(@)+ )< eyl PO(X) +Equ(Y)

The dual solutions ¢, 1 satisfies that = + x2/2 — ¢(z) and
y = y2/2 — 9 (y) are convex functions.
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» Assume infinite data and let K — oo, then the CQR objective becomes

min min IE{/Ol (Y — bX — q(7)) dT},

beR1xr ge M

where M denotes the set of increasing functions on R.

Tengyao Wang 919
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» Assume infinite data and let K — oo, then the CQR objective becomes

beR1xr ge M

min min IE{/Ol (Y — bX — q(7)) dT},

where M denotes the set of increasing functions on R.

» Let U ~ Unif[0, 1] and ¢(¢) fo T) dT, we can rewrite

min E{/Ol pr(Y —bX — q(7)) dT} + %E(Y)

qgeEM

= min E{/Ol(Y —bX —q(T)tdr + /01(1 —7)q(7) dT}

qeEM

— mip E{tgl[aaﬁ] /Ot(y _bX — q(r))dr + /OU o(7) dr}
= min {IE max (H(Y — bX) — ¢(t)) + E¢(U)}

¢ convex t€(0,1]

Tengyao Wang 919
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» Assume infinite data and let K — oo, then the CQR objective becomes

min min E{/Ol (Y — bX — q(7)) dr}.

beRxP geM

» Let U ~ Unif[0, 1] and ¢(t) fo T) dT, we can rewrite

min E{/Ol pr(Y —bX —q(7)) dT} + %E(Y)

qgEM

= min {IE max (t(Y — bX) — ¢(t)) +E¢(U)}

¢ convex t€(0,1]

(L-F duality) = min {E (Y —bX) + ng)(U)}

¢ convex
(M—K duality) = %{—WS(Y —bX,U)+E(Y —bX)* +EU?}

= sup  E(Y —bX,U) = (Y —bX, U,
nEC(PY—bX pU)
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» The population formulation of CQR

b* = argmin((Y — bX, U)w,
beRIxP

has an immediate generalisation to multivariate output.

» Forany P¢, PY € Py(R?) N P,.(R?) and PX is not a point mass, b*
uniquely solves the population MCQR objective:

b* = argmin £(b), where L(b) := (Y — bX,U),.
beRdxP

» MCAQR estimator: given (X1,Y7),...,(X,,Y,), draw
Ui, ...,U, ~ Ng(0, 1), we define

b= MO ¢ argmin £, (b), where £, (b) := (PY "X, PUY,
beRIxP

Tengyao Wang 11/19
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» The optimal transport coupling between P¥ =X and PV induces maps F’
and Q such that F(Y — bX) ~ PY and Q(U) ~ PY X,

» F and @ are known as the Monge-Kantorovich rank and quantile
functions of PY X,

» These are multivariate generalisations of the ranks and quantiles proposed
by Chernozhukov et al. (2017) and Hallin et al. (2021).

» M-K ranks and quantiles have found applications in distribution-free
nonparametric statistical inference (Ghosal and Sen, 2022)

Tengyao Wang 12/19
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> For a fixed b, computing £,,(b) = (PY =X PU),, amounts to an
assignment problem. Let A be the class of assignment matrices.

> WritingU = (Uy,...,Up) ", X = (X1,...,X,) Y = (Y1,...,Y,) T, we
have
min L£,(b) = min max Tr(UTA(Y — XbT))
beRd4xP beRIXP A€A
» Easier to solve the dual problem:

max Tr(UTA) st. UTAX =0,
AcA

by standard LP solvers.

Tengyao Wang
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> We assume that P€ is has a Lebesgue density and P¥X is an elliptical
distribution.

> Polynomial-tailed noise: suppose that PX and P¢ both have finite /-th
moment (¢ > 2), then with probability at least 1 — @, the MCQR
estimator satisfies

”BMCQR _ b*||22 N ,Sd,p,logn n71/4 + nfl/max(d,p) + ’/7,7(672)/(25).

Tengyao Wang 14/19
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> We assume that P€ is has a Lebesgue density and P¥X is an elliptical
distribution.

> Polynomial-tailed noise: suppose that PX and P¢ both have finite /-th
moment (¢ > 2), then with probability at least 1 — @, the MCQR
estimator satisfies

”BMCQR _ b*H% N ,Sd,p,logn n71/4 + nfl/max(d,p) + ’/7,7(672)/(25).

» Sub-Weibull-tailed noise: Suppose ¥~'/2X] is (07, a)-sub-Weibull and
€1 is (o2, 8)-sub-Weibull, i.e.

Ee(Z7'X:01/e)7/2 < 9 and Eellall/on/2 < o

and the density of ¢ satisfies fe(u) > v1e~ 721413 for |[u|| > 1, then with

probability at least 1 — %, we have

||BMCQR - b*”% A1 Sd,logn \/g + n_2/d~

14/19
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> Basic inequality:
£(b) = L) < L(B) = La(b) + La(b*) = L"),

» To control the LHS, we have the following inequality: for random vectors
Z 1L e in R? with finite second moment and U ~ N4(0, 1), we have

(Z + 6 UM, = (Z, 0N, + (6, Uy,

» To control the RHS, we use bounds for distances between empirical and
population 2-Wasserstein distances (Fournier and Guillin, 2015).

B ! —— Upper bound ' —— Upper bound
4 Lower bound . Lower bound
' I
I |
= ! d = | Uniform upper bound
|
| —
| | | ¥
Quodfatic upper bound _O—
. \

~ 0 ~
16— b*||s2 b= b*|ls
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» The noise ¢;’s generated from one of the following distributions:
(i) € ~ N(0, 1)
(i) € ~ t2(0,I4) follows a multivariate t5 distribution
(iii) €; has each marginal distributed with Pareto(—2,2,1) and the same
copula as A(0, %), where &/ = (0.9/i771); ; € RIxd
(iv) € follows a centered Banana-shaped distribution.

» We compare the average loss (matrix Mahalanobis norm) of MCQR
estimator against
— Coordinatewise CQR estimator (CoorCQR)
- Spatial quantile regression estimator (SpQR)
- OLS estimator
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» We also investigate the empirical performance of MCQR in the presence of
outlier contamination. Here, we consider two cases of J-contaminated
noise, for some § € (0, 1):

(i) € ~ (1 —0)Py + 6 Ps; here Py is a Pareto copula as before and P is a
heavier-tailed location-shifted Pareto copula with marginals
distributed as Pareto(10, 2, 10).

(ii) & ~ (1 —e)N(0,I4) + eN (100, 14)

Pareto contamination Gaussian contamination
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» CQR optimisation has a natural OT interpretation
» This allows a multivariate generalisation
» Current theoretical control is likely suboptimal

» Empirical performance is very promising

Main reference:

» Yang, X. and Wang, T. (2024) Multiple-output composite quantile regression
through an optimal transport lens. COLT 2024.
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