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Introduction

@ Hidden Markov and semi-Markov models find several applications
ranging from speech recognition to biostatistics. (see e.g. Muprhy
2013)

@ The name can be misleading, as the latent process is not only
assumed to be Markov but also to have discrete states.

@ In some cases, applications lead to offline (batch) data but we are
also interested in sequential data (Chiappa 2014).
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Hidden Markov Models (HMMs)

A hidden Markov model (HMM) can be formulated as follows:

et ~ oo(elsy), t=1,2,..., T
Stls—1 ~ fo(st[S—1)

where e; are the data, gy(-) is known and fy(s¢|s;—1) is determined by
the transition probabilities P;

PI" = P(St = i‘sff1 :.I)u v’vj

May be also thought of as dynamic change-point model, model based
clustering or latent class model for dependent data.
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Hidden semi Markov Models (HSMMs)
Let d; denote the remaining time in the current state of s;.
An alternative formulation is now given as
5(St-1), ifdq1 >0
St|St_1, i1 ~ .
tlSt-1, A { fo(stlSt-1,dt-1), ifadp1=0
(5(0’1_1 — 1), ifdi_1 >0
(1 Si_ 5 C1 1 . 9
{lSt-1, Oy { he(dt|st, dt—1), ifdi1=0
where hy(-) is the Geometric distribution (often not a good fit).
Hidden semi Markov models (HSMMs) generalise HMMs by allowing

for different distributions than the Geometric, e.g. Negative Binomial,
Poisson etc.
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HMMs vs HSMMs
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Forward-backward algorithm

Denote e = (ey, ..., er) and similarly s, d. Then define the augmented
likelihood f(e, s, d|#) and the integrated likelihood f(e|d).

For HMM s it is possible to evaluate the f(e|f) directly using the
forward-backward algorithm to provide an EM-type algorithm.

An approximate version of the forward algorithm exists for HSMMs but

it can get computationally expensive; in some cases it can get to
O(TKd?,,), where dmay is @ maximum duration we can introduce.
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Data augmented scheme

In this work, we aim to provide a computational scheme working with
the augmented likelihood f(e, s, d|6).

Looking for a Markov chain Monte Carlo (MCMC) scheme that
samples from the posterior of s, d and 6. Application in a sequential
setting is also desired.

Standard MCMC algorithms are challenging. The parameter space is

discrete, hence no derivatives, and no natural blocking schemes are
available.
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Particle filter

Let x; = (st, d;) and assume that xg is known. The particle filter

proceeds as follows at each time t =1,..., T, for a fixed 6:

@ Draw nindependent x; samples {xti) 7, with equal weights from
m(Xt|Xt—1), given {xt(’_)1 }L 4. prediction

© Compute their weights {Wt(i)}?:1. This allows to calculate any
expectation wrt 7(x;|e1.;). filtering

@ To avoid degeneracy, sample with replacement from {x('), w}i)}f’_1
to obtain an unweighted set {x\” 1)},

We can use the particle filter to construct the following algorithms
@ in itself gives an online algorithm (assuming known 6),
@ within particle MCMC allows for offline inference on (x;, 6),
@ within a SMC? for sequential inference on (x;, 6).
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Particle filter based MCMC algorithm

Developed MCMC algorithm:

@ Sample from the conditional posterior of {x;}/_,|0 using a particle
filter.

@ Sample from the conditional posterior of 8|{x;}/_; using
Hamiltonian MCMC.

Benefits:
@ Allows to sample from the marginal posterior of (s;, d})
@ Easy to extend to sequential versions
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SIR type models for epidemics
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Modelling transmission rate (

@ Time varying and stochastic in nature, depends on the virus as
well as social and environmental factors.

@ Several approaches based on Brownian motion or Gaussian
process.

@ Several approaches based on change-points.

@ We were looking for a middle ground.
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Data

Reported cases and deaths in the UK, publicly available from gov.uk
(600 points)

B 4 | | 1
ol 8.0x10 —L— Reported cases |
e — —— — First 28 days |
8‘5'? 5_0)(104 E — — — — 45d after first vaccine |
Jo 1 :
=£ a4 L | |
SE 4.0x10 ! i
E qg; [ |
g5 20x10" ¢ } i
zg . \
= 0 b = 1 T L I |
2020-03-01 2020-08-01 2021-01-01 2021-06-01

I 1
£ 1250 1 —L— Reported deaths :
& 1000 | i
R I
2 750 f H I
- f !
E 500 | Wl
T I \!
g 250 | } \

= |

0 b 1 T L
2020-03-01 2020-08-01 2021-01-01 2021-06-01

16/27



Model - ODE transmission

A more elaborate transmission model: with E and / states split into two
parts (for better approximation) and a vaccination term.

dS Iy o+
ditt = _/Btsti( 1’t,\,z’t) — prt-u,
dE; Iy ¢+,
L= Btsti( 1’INZ’I) —eEq
dt
dE
d?’t =eEyt —eEay,
dhy
iy — Epy—l
dat €Lot — YAt
db ¢
1 — =
dt Yht — Y2t
dR,
! = b+ pri_y,

dt
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Model - ODE quantities

Except for 3;, all the unknown quantities in the ODE of the
transmission model, e.g. ¢, v, p and the initial states were given
informative priors based on other studies

Bt was modelled with several HMM and HSMM variants, i.e. Negative
Binomial or Poisson durations, with different numbers of states.
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Model - reported and model implied cases

The model for the reported cases, ¢ is defined as

2

. . . C
¢{ ~ Negative Binomial <Ct, Ct + <bt> ,
(o]

where ¢; are the model implied cases coming from the ODE.

The reported cases were adjusted for under-reporting based on a
previous study

The model implied cases c; are obtained for solving the ODE in the
time interval (¢t — 1, t], hence the model has a state space
representation.
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Model - reported Covid-19 deaths

The model implied deaths d; are considered a function of the model
implied cases c; over the last 28 days, see (Flaxman et al 2020), in line

with the UK definition, as well as available estimates of the infection to
fatality ratio (ifr)

t—1
a; = ifry x Z c fir,
T=max(1,t—28)

The reported deaths df were then modelled as

2
. . . oo d
df ~ Negative Binomial gyernative (dt’, di + ¢t> .
d
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Reported cases, deaths or both?
@ One of the substantive questions we wanted to answer is whether
one should use the reported cases and/or reported deaths.

@ Reported cases are known to be problematic, including
under-reporting.

@ Reported deaths appear to be more reliable but still have issues
(definition, ifr estimates over different times etc).

@ We considered models with reported deaths only as well as
models with reported deaths and cases.
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Model choice based on prediction

@ We implemented a SMC? version of the algorithm to obtain
efficiently obtain predictive distributions as data accumulate.

@ Focus on predicting deaths since the data are more reliable. The
predictive distribution from different models were evaluated based
on the log-score.

@ As mentioned earlier models with reported deaths only as well
reported deaths and cases were considered. Also models with
different duration distributions and number of states
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Model predictions
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Model choice results

| Daily sequential model choice ‘
Model Daily cumulative log PL

Deaths - 4 states -26394
Deaths and Cases - 4 states -16523
Deaths and Cases - 5 states -16601

| Weekly sequential model choice |
Model Weekly cumulative log PL

Deaths - 4 states -1985
Deaths and Cases - 4 states -1845
Deaths and Cases - 5 states -1843
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Model Output

plied cases
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NB4 model estimates

# Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5

log By -1.72 0.0 008 1.01 -1.89 -1.78 -1.72  -1.67 -1.57
log B2 -1.36 001 008 1.03 -1.5 -1.41 -136 -1.31 .12
log Bs  -0.81 0.0 0.09 1.0 -099 -0.87 -081 -0.76 -0.63
log B4 0.45 001 022 1.01 0.02 0.3 0.44 0.59 0.9
M 0.45 0.0 0.04 1.0 037 0.42 0.45 0.48 0.54

%S 0.46 0.0 0.04 1.0 038 0.43 0.45 0.48 0.53

€ 0.94 0.0 0.1 1.0 076 0.87 0.94 1.0 1.13

1 0.87 0.0 009 101 0.66 0.83 0.89 0.94 0.98

P2 0.5 001 014 1.01 023 0.38 0.5 0.6 0.77

p3 0.17 001 01 1.01 0.03 0.09 0.15 0.23 0.4
Pthirdstate,1 0.35 0.01 0.15 1.0 0.09 0.23 0.34 0.45 0.67
Pthirdstate, 0.35 0.01 0.15 1.0 0.08 0.24 0.34 0.46 0.67
r o 36.12 0.18 6.53 1.0 2469 31.63 3571  39.77  50.58

ry  24.19 0.15 5.29 1.0 14.72 20.7 2391 2749  35.39

ry  14.19 0.17 4.32 1.0 722 110 1372 1696  23.56

ry 2813 0.12 5.33 1.0 19.08 24.22 2775  31.69 39.0

N 0.76 0.01 0.07 1.04 062 0.72 0.77 0.81 0.88

o 0.75 0.01 0.07 103 0.6 0.71 0.75 0.8 0.87

P3 0.55 0.01 0.09 1.0l 036 0.48 0.55 0.61 0.73

N 0.5 0.01 0.15 1.0 021 0.4 0.5 0.61 0.81
Beases 4.91 0.0 0.11 1.0 4.68 4.83 4.91 4.99 5.13
Pdeaths 5.25 0.0 0.12 1.0  5.02 5.17 5.26 5.33 5.49

Table 3. Posterior output statistics of four PMCMC chains on a HSMM-EM with SEIR style ODE, 4
states and Negative Binomial duration distribution for applications in Section 5. 1200 iterations have
been used with burnin set to 700, resulting in 2000 total samples. Real data can be seen in Figure 6, and is
described in more detail in Section 5.1. Initial parameter have been sampled from the prior distributions.
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Discussion - Future directions

@ Flexible modelling framework for SIR-type HSMMs.
@ Feasible computational toolkit on a challenging MCMC problem.
@ Model extensions, e.g. covariate dependent durations.

@ Computational issues, e.g. multimodality and label switching,
especially in over-parametrised models.
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