Optimal Design for A/B Testing in Two-sided Marketplaces

Chengchun Shi

Associate Professor of Data Science London School of Economics and Political Science

A/B Testing

Taken from

https://towardsdatascience.com/how-to-conduct-a-b-testing-3076074a8458

Ridesharing

Policies of Interest

Time Series Data

- Online experiment typically lasts for two weeks
- 30 minutes/1 hour as one time unit
- Data forms a time series $\{(Y_t, U_t) : 1 \le t \le T\}$
- Observations $Y_t \in \mathbb{R}^3$:
 - 1. **Outcome**: drivers' income or no. of completed orders
 - 2. Supply: no. of idle drivers
 - 3. **Demand**: no. of call orders
- Treatment $U_t \in \{1, -1\}$:
 - New order dispatching policy B
 - Old order dispatching policy A

Challenges

1. Carryover Effects:

- Past treatments influence future observations [Li et al., 2024a, Figure 2] \longrightarrow
- Invalidating many conventional A/B testing/causal inference methods [Shi et al., 2023].

2. Partial Observability:

- The environmental state is not fully observable \longrightarrow
- Leading to the violation of the Markov assumption.

3. Small Sample Size:

- Online experiments typically last only two weeks [Xu et al., 2018] \longrightarrow
- Increasing the variability of the average treatment effect (ATE) estimator.

4. Weak Signal:

- ullet Size of treatment effects ranges from 0.5% to 2% [Tang et al., 2019] \longrightarrow
- Making it challenging to distinguish between new and old policies.

To our knowledge, **no** existing method has simultaneously addressed all four challenges.

Challenge I: Carryover Effects

Adopting the Closest Driver Policy

Some Time Later · · ·

Miss One Order

Consider a Different Action

Able to Match All Orders

Challenge I: Carryover Effects (Cont'd)

past treatments \rightarrow distribution of drivers \rightarrow future outcomes

Challenge II: Partial Observability

Fully Observable
 Markovian Environments

 Partially Observable non-Markovian Environments

Challenge II: Partial Observability (Cont'd)

Average Treatment Effect

- Data summarized into a time series $\{(Y_t, U_t) : 1 \le t \le T\}$
- The first element of Y_t denoted by R_t represents the **outcome**
- ATE = difference in average outcome between the new and old policy

$$\lim_{T\to\infty} \left[\frac{1}{T} \sum_{t=1}^T \mathbb{E} R_t \right] - \lim_{T\to\infty} \left[\frac{1}{T} \sum_{t=1}^T \mathbb{E} R_t \right].$$

Letting $T \to \infty$ simplifies the analysis.

Alternating-day (AD) Design

Alternating-time (AT) Design

AD v.s. AT

Pros of **AD design**:

- Within each day, it is on-policy and avoids distributional shift, as opposed to off-policy designs (e.g., AT)
- On-policy designs are proven optimal in fully observable Markovian environments (Li et al., 2023).

Pros of **AT design**:

- Widely employed in ridesharing companies like Lyft and Didi [Chamandy, 2016, Luo et al., 2024]
- According to my industrial collaborator, AT yields less variable ATE estimators than AD

A Thought Experiment

• A simple setting without carryover effects:

$$oldsymbol{R_t} = oldsymbol{eta_{-1}} \mathbb{I}(oldsymbol{U_t} = -1) + oldsymbol{eta_1} \mathbb{I}(oldsymbol{U_t} = 1) + oldsymbol{arepsilon_t}$$

• ATE equals $\beta_1 - \beta_{-1}$ and can be estimated by

$$\widehat{\text{ATE}} = \frac{\sum_{t=1}^{T} R_t \mathbb{I}(\textbf{\textit{U}}_t = \textbf{1})}{\sum_{t=1}^{T} \mathbb{I}(\textbf{\textit{U}}_t = \textbf{1})} - \frac{\sum_{t=1}^{T} R_t \mathbb{I}(\textbf{\textit{U}}_t = -\textbf{1})}{\sum_{t=1}^{T} \mathbb{I}(\textbf{\textit{U}}_t = -\textbf{1})}$$

A Thought Experiment (Cont'd)

The ATE estimator's asymptotic MSE under AD and AT is proportional to

$$\lim_{t\to\infty}\frac{1}{t}\mathrm{Var}(\varepsilon_1+\varepsilon_2+\varepsilon_3+\varepsilon_4+\cdots+\varepsilon_t)\quad\text{and}\quad \lim_{t\to\infty}\frac{1}{t}\mathrm{Var}(\varepsilon_1-\varepsilon_2+\varepsilon_3-\varepsilon_4+\cdots-\varepsilon_t)$$

which depends on the residual correlation:

- With uncorrelated residuals, both designs yield same MSEs
- With positively correlated residuals:
 - AD assigns the same treatment within each day, under which ATE estimator's variance inflates due to accumulation of these residuals
 - AT alternates treatments for adjacent observations, effectively negating these residuals, leading to more efficient ATE estimation
- With negatively correlated residuals, AD generally outperforms AT

When Can AT Be More Efficient than AD

Key Condition: Residuals are positively correlated

- Rule out full observablity (Markovianity) where residuals are uncorrelated.
- Can only be met under partial observability.
- Suggest partial observability is more realistic, aligning with my collaborator's finding.
- Often satisfied in practice:

Figure: Estimated correlation coefficients between pairs of fitted outcome residuals from the two cities

Some Motivating Questions

 Q1: Previous analysis excludes carryover effects. Can we extend the results to accommodate carryover effects?

 Q2: Previous analysis focuses on AD and AT. Can we consider more general designs?

Our Contributions

- **Methodologically**, we propose:
 - 1. A controlled (V)ARMA model → allow carryover effects & partial observability
 - 2. Two efficiency indicators \rightarrow compare commonly used designs (AD, AT)
 - 3. A reinforcement learning (RL) algorithm \rightarrow compute the optimal design
- Theoretically, we:
 - 1. Establish asymptotic MSEs of ATE estimators \rightarrow compare different designs
 - 2. Introduce weak signal condition → simplify asymptotic analysis in sequential settings
 - 3. Prove the **optimal treatment allocation strategy** is **q**-dependent → form the basis of our proposed RL algorithm
- Empirically, we demonstrate the advantages of our proposal using:
 - 1. A dispatch simulator (https://github.com/callmespring/MDPOD)
 - 2. Two real datasets from ridesharing companies.

Controlled VARMA Model

Consider a univariate controlled ARMA

$$Y_t = \mu + \sum_{j=1}^{p} a_j Y_{t-j} + \underbrace{b U_t}_{\text{Control}} + e_t + \sum_{j=1}^{q} \theta_j e_{t-j}$$
AR Part

- AR parameters $\{a_j\}_j$ & control parameter $b o \mathsf{ATE}$, equal to $2b/\sum_j a_j$
 - ullet Partial observability o standard OLS **fails** to consistently estimate ullet & $\{a_j\}_j$
 - Employ Yule-Walker estimation (method of moments) instead
 - Similar to IV estimation, utilize past observations as IVs
- MA parameters $\{\theta_j\}_j o$ residual correlation o optimal design

Theory: Weak Signal Condition

- Asymptotic framework: large sample $T \to \infty$ & weak signal ATE $\to 0$
- **Empirical alignment**: size of ATE ranges from 0.5% to 2%
- **Theoretical simplification**: considerably simplifies the computation of ATE estimator's MSE in sequential settings. According to Taylor's expansion:

$$\widehat{\mathsf{ATE}} - \mathsf{ATE} = \frac{2\widehat{b}}{1 - \sum_j \widehat{a}_j} - \frac{2b}{1 - \sum_j a_j}$$

$$= \frac{2(\widehat{b} - b)}{1 - \sum_j a_j} + \frac{2b}{(1 - \sum_j a_j)^2} \sum_j (\widehat{a}_j - a_j) + o_p \Big(\frac{1}{\sqrt{T}}\Big)$$
Leading term. Easy to calculate its asymptotic variance under weak signal condition

Challenging to obtain the closed form of its asymptotic variance, but negligible under weak signal condition

Design

Identify optimal design that minimizes MSE of ATE estimator

We focus on the class of **observation-agnostic** designs:

- U_1 is randomly assigned
- The distribution of U_t depends on (U_1, \dots, U_{t-1}) , independent of (Y_1, \dots, Y_{t-1})

It covers three commonly used designs:

- 1. Uniform random (UR) design: $\{U_t\}_t$ are uniformly independently generated
- 2. AD: $U_1 = U_2 = \cdots = U_D = -U_{D+1} = \cdots = -U_{2D} = U_{2D+1} = \cdots$
- 3. AT: $U_1 = -U_2 = U_3 = -U_4 = \cdots = (-1)^{T-1}U_T$

Design: Optimality

Theorem (Optimal Design)

The optimal design must satisfy $\lim_T \sum_{t=1}^T (\mathbb{E} \frac{U_t}{T}) = 0$. Additionally, it must minimize

$$\sum_{k=1}^{q} \left[\lim_{T} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \underbrace{\mathbf{U}_{t} \mathbf{U}_{t+k}}_{\mathbf{U}_{t+k}} \right) \underbrace{\sum_{j=k}^{q} \theta_{j} \theta_{j-k}}_{c_{k}} \right]$$

Objective: learn the optimal observation-agnostic design that:

- (i) Minimizes the above criterion
- (ii) Maintains a zero mean asymptotically, i.e., $\lim_{T} \sum_{t=1}^{T} (\mathbb{E} U_t / T) = 0$

Design: An RL Approach

Solution: reformulate the minimization as an infinite-horizon average-reward RL problem

- State S_t : the collection of past q treatments $(U_{t-q}, U_{t-q+1}, \cdots, U_{t-1})$
- Action A_t : the current treatment $U_t \in \{-1,1\}$
- Reward R_t : a deterministic function of state-action pair, $-\sum_{k=1}^q c_k(U_tU_{t-k})$

Easy to verify:

- 1. The minimization objective equals the negative average reward ightarrow equivalent to maximizing the average reward
- 2. The process is an **MDP** \rightarrow there exists an optimal stationary policy maximizes the average reward \rightarrow optimal design is q-dependent, i.e., U_t is a deterministic function of $(U_{t-q}, U_{t-q+1}, \cdots, U_{t-1})$ & this function is stationary in t
- 3. **Uniformly randomly** assign the first q treatments \rightarrow the resulting design maintains a zero mean and is indeed optimal

Design: An RL Approach (Cont'd)

Empirical Study: Real Datasets

• Data:

 We incorporate a seasonal term in our controlled VARMA model to account for seasonality. Below are MSEs of ATE estimators under different designs

City	EI ₁	\mathbf{EI}_2	AD	UR	AT	Ours
City 1	20.98	-21.11	11.98	11.63	9.72	8.24
City 2	-4.89	0.22	9.64	30.04	546.79	8.38

References I

- Nicholas Chamandy. Experimentation in a ridesharing marketplace. https://eng.lyft.com/experimentation-in-a-ridesharing-marketplace-b39db027a66e, 2016.
- Ting Li, Chengchun Shi, Zhaohua Lu, Yi Li, and Hongtu Zhu. Evaluating dynamic conditional quantile treatment effects with applications in ridesharing. *Journal of the American Statistical Association*, accepted, 2024a.
- Ting Li, Chengchun Shi, Qianglin Wen, Yang Sui, Yongli Qin, Chunbo Lai, and Hongtu Zhu. Doubly robust off-policy value evaluation for reinforcement learning. In *International Conference on Machine Learning*. PMLR, 2024b.
- Shikai Luo, Ying Yang, Chengchun Shi, Fang Yao, Jieping Ye, and Hongtu Zhu. Policy evaluation for temporal and/or spatial dependent experiments. *Journal of the Royal Statistical Society, Series B*, 2024.

References II

- Chengchun Shi, Xiaoyu Wang, Shikai Luo, Hongtu Zhu, Jieping Ye, and Rui Song. Dynamic causal effects evaluation in a/b testing with a reinforcement learning framework. *Journal of the American Statistical Association*, 118(543):2059–2071, 2023.
- Xiaocheng Tang, Zhiwei Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai Ma, Hongtu Zhu, and Jieping Ye. A deep value-network based approach for multi-driver order dispatching. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pages 1780–1790, 2019.
- Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan, Chunyang Liu, Wei Bian, and Jieping Ye. Large-scale order dispatch in on-demand ride-hailing platforms: A learning and planning approach. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pages 905–913, 2018.