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High-dimensional functional data analysis

@ Functional data analysis — Suppose we observe n independent samples
Xi(-) = {Xi(+),..., Xip(-)}" defined on a compact interval U.

@ Recent advances in technology have made multivariate or even
high-dimensional functional datasets increasingly common in various

applications.
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A motivating example - Functional MRI

fMRI data — HCP
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Figure 1: HCP dataset: the smoothed BOLD signals at the first 5 ROIs of one
subject. The 14.40-minute interval with 1200 scanning points is rescaled to [0, 1].
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A fundamental task: Large covariance function estimation

Large covariance function estimation

(u,v) = {Zjk(u, v)}pxp = cov{Xi(u), Xi(v)}
for u,veld.

o Extensive work on estimating high-dimensional sparse covariance matrices
(Bickel and Levina, 2008; Rothman et al., 2009; Cai and Liu, 2011; Chen
and Leng, 2016; Avella-Medina et al., 2018; Wang et al., 2021).

@ Yet research on sparse covariance function estimation in high dimensions
remains largely unaddressed in the literature.
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@ Define the sample covariance function
Z(u,v) = {Zk(u, v)}pxp = 12{)( WHXi(V)=X(V)}, uvel,

where X(-) = n7 ' 27 Xi().
@ Challenges:

o High-dimensionlity of p relative to n in high-dimensional statistics.

o Infinite-dimensionality of random functions in functional data analysis.
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Overview

@ Define the sample covariance function
Z(u,v) = {Zk(u, v)}pxp = 12{)( WHXi(V)=X(V)}, uvel,

where X(-) = n7 ' 27 Xi().
@ Challenges:
o High-dimensionlity of p relative to n in high-dimensional statistics.
o Infinite-dimensionality of random functions in functional data analysis.
o Contributions:

o Functional thresholding operators — functional sparsity;
o Adaptive thresholding idea;

o Partially observed functional data.
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Generalized functional thresholding operators

Let L>(U) denotes a Hilbert space of square integrable functions defined on U
and S = L(U) ® Lo(U), where ® is the Kronecker product. For any K € S, we
denote its Hilbert—Schmidt norm by |K||s = {{§ K(u, v)*dudv}*/?.

@ With the aid of Hilbert—-Schmidt norm, for any regularization parameter
A = 0, we first define a class of functional thresholding operators
sy : S — S that satisfy the following conditions:
@ [sx(2)|ls < c|Y|s forall Z and Y €S that satisfy [Z — Y|s < A
and some ¢ > 0;
@ [sx(2)]s =0for [ Z]s <A
@ [sn(Z2)—Z|s<Aforall Z€eS.
o Conditions (i)—(iii) are satisfied by functional versions of some commonly

adopted thresholding rules: soft, SCAD and adaptive lasso functional
thresholding.
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Adaptive functional thresholding estimator

Define the variance factors
O (u, v) = var([Xj(u) — E{X;(u)}][ X (v) — E{Xi(v)}])

with corresponding estimators

n
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Adaptive functional thresholding estimator

Define the variance factors
O (u, v) = var([Xj(u) — E{X;(u)}][ X (v) — E{Xi(v)}])

with corresponding estimators

@ An alternative approach to estimate X is the universal functional thresholding

estimator
T = {250, )exp with Th = sy (Zik),

where a universal threshold level is used for all entries.
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Theory — Empirical process

For a random variable W, define |W/|, = inf {c > 0: E[s)(|W|/c)] < 1},
where 1 : [0,00) — [0, 0) is a nondecreasing, nonzero convex function with
1(0) = 0 and the norm takes the value o if no finite ¢ exists for which
E[¢(|W|/c)] < 1. Denote 1 (x) = exp(x*) — 1 for k > 1. Let the packing
number D(e, d) be the maximal number of points that can fit in the compact
interval U while maintaining a distance greater than e between all points with
respect to the semimetric d. For {Xjj(u) :vel,i=1,...,nj=1,...,p},
define the standardized processes by Yj(u) = [Xj(u) — E{X;(u)}]/oj(u)"/?,
where oj(u) = Xji(u, u).
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Theory — Conditions

(i) For each i and j, Yj(-) is a separable stochastic process with the semimetric
di(u,v) = || Yj(u) — Y1;(v) |y, for u, v e U; (ii) For some wo € U,

maXigj<p H Ylj(UO)Hz/;2 is bounded.

€

The packing numbers D(e, d;)'s satisfy maxi<j<pD(€, dj) < Ce™ " for some
constants C,r > 0 and € € (0,1].

A

There exists some constant 7 > 0 s.t. minj  infu,vew var{ Y1;(u) Yic(v)} > 7.
v

Condition 4

1/4

— 0 as nand p — .

T i = = =

The pair (n, p) satisfies log p/n

.
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“Approximately sparse” covariance functions

We establish the convergence rate of the adaptive functional thresholding
estimator fA over a large class of “approximately sparse” covariance functions
defined by

P
C(a,%0(p)coitd) = {E:Ex0, max > ol Jowlss™ ] < (p),
k=1

max |o; oo o]0 < €5 < 0}
for some 0 < g < 1, where |00 = sup,e, 0j(u) and £ > 0 means that

> = {Xi(:,*)}pxp is positive semidefinite, that is
S S5 Zik(u, v)aj(u)ak(v)dudy = 0 for any a;(-) € L2(U) and j = 1,...,p.



Theory
[e]e]e] ]

Theoretical results

Theorem 1 (Convergence)

Suppose that Conditions 1-4 hold. Then there exists some constant § > 0 such that,
uniformly on C(q, so(p), €0;U), if X = §(log p/n)'/?,

1—¢q
2

< 5 en log p
2 = Zh = max |5 ~ Zils = Op {s0(p) (=10
e

3

Theorem 2 (Support recovery)

| :
.

Suppose that Conditions 1-4 hold and szk/e}f”s > (26 + ) (log p/n)/? for all
(J, k) € supp(E) and some v > 0, where § is stated in Theorem 1. Then we have that
ZIQ(];O pr{supp()A:A) = supp(Z)} — 1 asn— o0,

where

P
Co(sa(p)itd) = {Z: T 20, max Y I(|Zjcls #0) < so(p)}.
ST k=1

\,
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Partially observed functional data

Consider a practical scenario where each Xj;(+) is partially observed, with errors,
at random measurement locations Uj, .. ., U,-jL,./. € U. Let Zjj be the observed
value of Xj;(Uj). Then

Zij = Xi(Uyt) + e, 1=1,..., Ly, (2)

where ;;'s are i.i.d. errors with E(g;7) = 0 and var(e;;1) = ¢°, independent of
Xii (-)-
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Estimation procedure: A local linear surface smoother (LLS)

@ A unified estimation procedure that handles both densely and sparsely

sampled functional data.
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Estimation procedure: A local linear surface smoother (LLS)

@ A unified estimation procedure that handles both densely and sparsely

sampled functional data.

@ Based on the observed data {(U,’J'[,Z,'J‘/)}léfén’lgjgp’lglghj7 we estimate

cross-covariance functions Xj(u, v) (j # k) by minimizing

noLi Ly 5
ey {z,-,-,z,-km—ao—al(U,-,-,—u)—az(u,-km—v)} Kie (Uit — ) Kne (Ui — v),
i=1/=1m=1
(3)
with respect to (ao, a1, a2), where Ki(-) = h™*K(-/h) denotes a univariate
kernel function K with a bandwidth h > 0.
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Estimation procedure: A local linear surface smoother (LLS)

@ A unified estimation procedure that handles both densely and sparsely

sampled functional data.

@ Based on the observed data {(U,’J'[,Z,'J‘/)}léfén’lgjgp’lglghj7 we estimate

cross-covariance functions Xj(u, v) (j # k) by minimizing

noLi Ly 5
ey {z,-,-,z,-km—ao—al(U,-,-,—u)—az(u,-km—v)} Kie (Uit — ) Kne (Ui — v),
i=1/=1m=1
3)
with respect to (ao, a1, a2), where Ki(-) = h™*K(-/h) denotes a univariate
kernel function K with a bandwidth h > 0.
@ Let the minimizer of (3) be (&g, &1, &2). Thus we obtain the resulting

estimator ¥ (u, v) = do.
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Solution of LLS

Minimizing yields the resulting estimator

n
ik = Z (Wl,jk Too,ijk + Wha jk T1o,ik + W3 ji TOl,ijk)- (4
i=1

@ Wiy jk, Wa jk, W3 jk can be represented in terms of

Lik

Ly
Sabjk(u, v) = Z >0 D% gav{he, (u,v), (Usi, Uikm) }-

i=1/=1m=1

@ Top,jk(u, v) takes the form of

U Ik
Tabiji (U, v) = D > gan{he, (U, v), (Usi, Uikm)} Zijt Zikem-
=1 m=1
o gap{h, (u,v), (Uji, Uiem)} = Kn(Usjt — t) Kn(Uim — v) (Ujt — 1)?(Uigm — v)® for
ab=0,1,2.
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Challenges for partially observed functional data

@ How to characterize the variability of % (u, v)?

@ How to accelerate the computation under a high-dimensional regime?
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Challenge 1: Variance estimation

Recall that our focus is on characterizing the variability of ¥ (u, v) rather

than estimating the asymptotic variance of ijk(U, v) precisely.

@ (4) implies that the estimator ijk is expressed as the summation of n

independent terms:

n
Y= Z (Wl,jk Too,ijk + Wo jk T, + Wh ji TOl,ijk)~
i-1
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Challenge 1: Variance estimation

Recall that our focus is on characterizing the variability of ¥ (u, v) rather

than estimating the asymptotic variance of ijk(U, v) precisely.

@ (4) implies that the estimator ijk is expressed as the summation of n

independent terms:

n
Y= Z (Wl,jk Too,ijk + Wo jk T, + Wh ji TOl,ijk)~
i-1

@ We propose a surrogate of the asymptotic variance of ijk by

n

~ — 2
Vi = fhe Z (Wl,jk Voo,iik + Wa jk Vio ik + Wh ji Vm,ijk) s

i=1

: L; L; ~
with Vi ik (u,v) = 23,2, 0% gan{he, (u, v), (Ujr, Uikm) H{ Zijt Zikm — Zjx(u, v) }
and ﬁjk = ZF:I L,'J‘L,‘k.
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Smoothed adaptive functional thresholding estimator

Smoothed adaptive functional thresholding estimator

< e - 5
Th = (Zh)pxp with Tj = \IJ}k/2 X Sx <\T11J;2> :

For comparison, we also define the smoothed universal functional thresholding

estimator as Xy = (f}’k)pxp with )NZJUk = s ():-k).
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Challenge 2: Computational cost
Consider a common situation in practice, where, for each i = 1,...,n, we
observe the noisy versions of Xji(+),..., Xjp(+) at the same set of points,

Ui, ..., Ui, € U. Then the original model in (2) can be simplified to

Ziy = Xi(Uy) + ey, 1=1,...,L, (5)
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00000080000
Challenge 2: Computational cost
Consider a common situation in practice, where, for each i = 1,...,n, we
observe the noisy versions of Xji(+),..., Xjp(+) at the same set of points,

Ui, ..., Ui, € U. Then the original model in (2) can be simplified to

Ziy = Xi(Uy) + ey, 1=1,...,L, (5)

@ Suppose that the estimated covariance function is evaluated at a grid of
R x R locations, {(u,,u,) €U? :rn,rn =1,...,R}.

@ To serve the estimation of p(p + 1)/2 marginal- and cross-covariance
functions and the corresponding variance factors, LLSs under the
simplified model in (5) reduce the number of kernel evaluations from
02y 271 LiR) to O(X1; LiR).
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Fast computation - Linear binning
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Figure 2: Linear binning

@ Denote by w,(Uy) = max(1 — A7 Uy — u,|,0) the linear weight that Uy
assigns to the grid point u, for r =1,... R.
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Fast computation - Linear binning (BinLLS)

@ For the i-th sample, we define its ‘binned weighted counts’ and ‘binned
weighted averages’ as

Lj L

i = Z w,(Uy) and D, ;= Z w; (Ui) Zij,

I=1 I=1
respectively.

The binned implementation of smoothed adaptive functional thresholding can
then be done using this modified dataset {(co,.i, Dr,jj) }1<i<n,1<j<p,1<r<r and

related kernel functions gap{h, (u, v), (ur, ur,)} for n,p=1,...,R.
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Fast computation - Linear binning

Table 1: The computational complexity analysis of LLS and BinLLS under Models (2)
and (5) when evaluating the corresponding smoothed covariance function estimates at
a grid of R x R points.

Number of Number of operations
Method  Model , o perations
kernel evaluations  (additions and multiplications)

LLS () O(X1 271 LiR) O(R*Y7, k=1 LirLix)
LLS (5) O LiR) O(P*R* Y7, L)
BinLLS  (5) O(R) O(np’R* + pP°R* + p>7_, L))

Finally, we obtain the binned adaptive functional thresholding estimator
p o (ffk)pxp with vfk = \lelf X S (fjk/\lelk/z) and the corresponding universal
thresholding estimator Xy = (X}, )pxp with X5 = sx (Zj).
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Fast computation - Linear binning

Table 2: The average (standard error) functional matrix losses and average CPU time
for p = 6 over 100 simulation runs.

Functional Functional Elapsed time Functional Functional Elapsed time
L; Method Method
Frobenius norm  matrix £; norm (sec) Frobenius norm  matrix {1 norm (sec)
1 | BinlLs 1.57(0.02) 1.72(0.03) 2.06 BinLLS-P 4.14(0.03) 4.36(0.04) 0.18
LLS 1.62(0.02) 1.76(0.03) 50.52 LLS-P 4.23(0.04) 4.47(0.05) 0.22
51 | BInLLS 1.28(0.02) 1.42(0.03) 2,07 BinLLS-P 2.66(0.02) 2.80(0.02) 0.19
LLS 1.28(0.02) 1.42(0.03) 136.88 LLS-P 2.67(0.02) 2.82(0.03) 029
5 | Binlls  1.06(002) 1.20(0.03) 221 BinLLS-P  1.12(0.03) 1.26(0.03) 0.20
LLS 1.04(0.02) 1.18(0.03) 967.75 LLS-P 1.12(0.03) 1.26(0.03) 0.39
101 BinLLS 1.00(0.02) 1.14(0.03) 223 BinLLS-P 0.99(0.02) 1.13(0.03) 0.21
LLS - - LLS-P 0.97(0.02) 1.11(0.03) 0.64
s, Functional Frobenius norm Functional matrix £, norm Elapsed time (sec)

1.04(0.03)

1.20(0.03)

0.11

Table 2 reports numerical summaries of estimation errors evaluated at R =

21 equally-spaced

points in [0, 1] and the corresponding CPU time on the processor Intel(R) Xeon(R) CPU E5-2690
v3 @ 2.60GHz. The results for the sample covariance function Xs based on fully observed

X1(+),

, Xn(+) are also provided as the baseline for comparison.
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Sparsity structure of true covariance matrix functions
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Figure 3: Sparsity structure of true covariance matrix functions (when p=50).
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The selection of \

We implement a cross-validation approach (Bickel and Levina, 2008) for
choosing the optimal thresholding parameter Lin Za.
@ Divide the sample {X;: i =1,...,n} into two subsamples of size n; and
m, where n; = n(1 —1/logn) and n, = n/log n and repeat this N times;
o Let )A:,(:l)()\) and )A:él;) be the adaptive functional thresholding estimator as
a function of A\ and the sample covariance function based on n; and n

observations, respectively, from the vth split;

o Select the optimal A by minimizing
e ) e)
er(A) = N1 (M) — s |7,
-1

where | - |r denotes the functional version of Frobenius norm, that is for

any K = {Kiu(-,)}pxp with each K € S, [K[r = (3, , [Ku]5)".
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Simulation results - Estimation errors (fully observed)

Table 3: The average (standard error) functional matrix losses over 100 simulation

runs.
p =50 p = 100 p =150
Model  Method S bt S i P s
Functional Frobenius norm
Hard 5.40(0.04) 11.90(0.02) 7.91(0.03) 17.27(0.01)  9.94(0.04) 21.36(0.01)
Soft 6.28(0.05) 10.40(0.08) 9.41(0.05) 16.53(0.07) 11.85(0.06) 21.16(0.04)
SCAD 5.68(0.05) 10.56(0.08) 8.53(0.05) 16.59(0.07) 10.80(0.06) 21.19(0.04)
Adap. lasso  5.28(0.04) 11.42(0.07) 7.76(0.04) 17.26(0.01)  9.72(0.04) 21.36(0.01)
L Sample 19.82(0.04) 39.54(0.05) 59.28(0.06)
Functional matrix ¢; norm
Hard 3.96(0.06)  9.23(0.01) 4.49(0.05) 9.31(0.01 4.78(0.05)  9.34(0.01)
Soft 5.04(0.07)  8.14(0.08) 5.88(0.05)  9.15(0.02)  6.21(0.04)  9.31(0.01)
SCAD 4.40(0.08)  8.32(0.07) 5.35(0.06) 9.18(0.02 5.75(0.05)  9.31(0.01)
Adap.lasso  3.85(0.06)  8.91(0.07) 4.52(0.05)  9.30(0.01)  4.83(0.06)  9.34(0.01)
Sample 26.60(0.13) 52.65(0.18) 78.69(0.22)
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Simulation results - Support recovery (fully observed)

Table 4: The average TPRs/ FPRs over 100 simulation runs.

p =50 p =100 p =150
Model  Method 5. £, £, 5, 5. 5,
Hard 0.71/0.00 0.00/0.00 0.66/0.00 0.00/0.00 0.64/0.00 0.00/0.00
) Soft 0.89/0.08 0.47/0.17 0.85/0.04 0.22/0.05 0.84/0.03 0.06/0.01
SCAD  0.89/0.07 0.42/0.13 0.85/0.04 0.20/0.04 0.84/0.03 0.05/0.01
Adap. lasso  0.78/0.00 0.11/0.02 0.74/0.00 0.00/0.00 0.73/0.00 0.00/0.00
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Simulation results - Estimation errors (partially observed)

Table 5: The average (standard error) functional matrix losses for partially observed
functional scenarios and p = 50 over 100 simulation runs.

Li=11 Li=21 L =51 L =101
Model  Method £, £ £, £, . £, b 5,

Functional Frobenius norm

Hard 7.78(0.03) 12.65(0.01) 6.61(0.04) 12.26(0.01) 5.83(0.04) 12.04(0.02) 5.57(0.04) 11.89(0.04)

Soft 8.69(0.04) 12.63(0.01) 7.64(0.05) 11.75(0.06) 6.94(0.05) 10.51(0.07) 6.71(0.05) 10.05(0.07)

SCAD 8.36(0.05) 12.63(0.01) 7.13(0.05) 11.80(0.06) 6.28(0.05) 10.67(0.07) 5.99(0.05) 10.27(0.07)

Adap. lasso  7.69(0.04) 12.64(0.01) 6.57(0.04) 12.21(0.02) 5.83(0.04) 11.54(0.08) 5.57(0.04) 11.05(0.10)
1 Functional matrix ¢1 norm

Hard 5.35(0.05)  9.36(0.01) 4.68(0.06)  9.30(0.01) 4.09(0.06)  9.24(0.02) 3.87(0.06)  9.13(0.05)

Soft 6.38(0.06)  9.35(0.01) 5.86(0.07)  8.94(0.05) 5.43(0.07)  8.13(0.08) 5.29(0.07)  7.84(0.08)

SCAD 6.12(0.07)  9.35(0.01) 5.40(0.08)  8.99(0.05) 4.78(0.08)  8.32(0.07) 4.56(0.08)  8.09(0.07)

Adap.lasso  5.31(0.07)  9.36(0.01) 4.71(0.07)  9.28(0.02) 4.15(0.07)  8.89(0.07) 3.98(0.07)  8.59(0.09)

@ We use the Gaussian kernel with the optimal bandwidth proportional to n~ /¢, (nL?)_l/6

and n~Y/*, respectively, as suggested in Zhang and Wang (2016) and Qiao et al. (2020), so

for the empirical work in this paper we choose the proportionality constants in the range

(0, 1], which gives good results in all the settings we consider.
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Simulation results - Support recovery (partially observed)

Table 6: The average TPRs/ FPRs for partially observed functional scenarios and
p = 50 over 100 simulation runs.

Li=11 Li=21 L =51 L =101
Model  Method b 5, b 5, b 5 3, %,
Hard 0.63/0.00 0.00/0.00 0.66/0.00 0.00/0.00 0.69/0.00 0.01/0.00 0.71/0.00 0.03/0.00
Soft 0.85/0.05 0.01/0.00 0.87/0.07 0.22/0.09 0.89/0.08 05/0.17 0.89/0.08 0.57/0.18

SCAD  0.86/0.06 0.01/0.00 0.87/0.07 0.2/0.07 0.88/0.07 0.45/0.14 0.89/0.07 0.51/0.14
Adap. lasso  0.72/0.00 0.00/0.00 0.75/0.00 0.01/0.00 0.77/0.00 0.12/0.02 0.78/0.00 0.20/0.03
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