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Summary of Contribution

A new coefficient of conditional dependence:

1 It has a simple expression

2 It is fully non-parametric

3 It has no tuning parameters

4 It does not rely on estimating conditional densities or
conditional characteristic functions or mutual information

5 There is absolutely no assumption on the laws of the random
variables

6 It can be estimated from data very quickly, O(n logn)
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A New Measure of Conditional Dependence:

CODEC
(conditional dependence coefficient)
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Simple Case: No Conditioning

Y is a random variable

Z = (Z1, . . . , Zq ) is a random vector (q ≥ 1)

µ is the probability law of Y

CODEC: unconditional

T (Y , Z ) gives the measure of dependence of Y on Z :

T (Y , Z ) :=
∫
R var(E(1{Y ≥t } | Z ))dµ(t )∫

R var(1{Y ≥t })dµ(t )
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Conditional Expectation as Projection

µ is the probability law of Y .

T (Y , Z ) =
∫
R var(E(1{Y ≥t } | Z ))dµ(t )∫

R var(1{Y ≥t })dµ(t )

σ(Z )

1{Y ≥t }

E(1{Y ≥t } | Z )
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Simple Case: A Closer Look

µ is the probability law of Y .

T (Y , Z ) =
∫
R var(E(1{Y ≥t } | Z ))dµ(t )∫

R var(1{Y ≥t })dµ(t )

Conditioning does not increase the variance

var(E(1{Y ≥t } | Z )) ≤ var(1{Y ≥t })

T (Y , Z ) ∈ [0,1]

T (Y , Z ) = 0 if and only if Y ⊥ Z

T (Y , Z ) = 1 if and only if Y is a function of Z

For W = (W1, · · · ,Wq ′) another random vector

T (Y , Z ) ≤ T (Y , (Z ,W ))

T (Y , Z ) is invariant under one-to-one transformations of Y
and Z

T (Y , Z ) is not symmetric, (consider Y = Z 2)
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CODEC: Conditional Dependence Coefficient

Y is a random variable

Z = (Z1, . . . , Zq ) is a random vector (q ≥ 1)

X = (X1, . . . , Xp ) is a random vector (p ≥ 0)

µ be the probability law of Y

CODEC: general case

When Y is not a function of X ,

T (Y , Z | X ) :=
∫
RE(var(E(1{Y ≥t } | Z , X ) | X ))dµ(t )∫

RE(var(1{Y ≥t } | X ))dµ(t )

Mona Azadkia On Measuring Conditional Dependence



8/29

Properties

Y is not a function of X , and µ be the probability law of Y

T (Y , Z | X ) :=
∫
RE(var(E(1{Y ≥t } | Z , X )| X ))dµ(t )∫

RE(var(1{Y ≥t }| X ))dµ(t )

T (Y , Z | X ) ∈ [0,1]

T (Y , Z | X ) = 0 if and only if Y ⊥ Z | X

T (Y , Z | X ) = 1 if and only if Y is a function of Z given X

T (Y , Z | X ) is invariant under one-to-one transformations

T (Y , Z | X ) is a non-random quantity that depends on the
joint law of (Y , Z , X )

If p = 0, T (Y , Z | X ) = T (Y , Z ), unconditional dependence
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The Estimator
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The Estimator

Sample of n i.i.d. copies (Y1, X1, Z1), . . . , (Yn , Xn , Zn) of the triple
(Y , X , Z )

XN (i ) is the closest neighbor of Xi w.r.t. Euclidean distance

(ZM(i ), XM(i )) is the closest neighbor of (Zi , Xi ) w.r.t. Euclidean
distance

Ri=∑n
j=1 1{Y j≤Yi } is the rank of Yi , the number of j such that

Y j ≤ Yi

Let Tn(Y , Z | X ) be the estimate of T (Y , Z | X )

Tn(Y , Z | X ) :=
∑n

i=1(min{Ri ,RM(i )}−min{Ri ,RN (i )})∑n
i=1(Ri −min{Ri ,RN (i )})

Mona Azadkia On Measuring Conditional Dependence



11/29

Tn: Easy and Fast!

Tn(Y , Z | X ) :=
∑n

i=1(min{Ri ,RM(i )}−min{Ri ,RN (i )})∑n
i=1(Ri −min{Ri ,RN (i )})

.

Nearest neighbors indices N (i ) and M(i ) ⇒ O(n logn)
(dimension is fixed)

Ranks Ri ⇒ O(n logn)

No knowledge of law of (Y , X , Z ) is needed

No need to estimate the densities
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Consistency of The Estimator

Theorem

Suppose that Y is not a function of X . Then as n →∞,
Tn(Y , Z | X ) → T (Y , Z | X ) almost surely.

There are no hidden assumptions.
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Rate of convergence

Theorem

Suppose that p ≥ 1 and that the assumptions (A1) and (A2) hold
with some β and C . Then, as n →∞,

Tn −T =OP

( (logn)p+q+β+1

n1/(p+q)

)
.

There are nonnegative real numbers β and C ,C1,C2 such that

(A1) for any t ∈R, x, x ′ ∈Rp and z, z ′ ∈Rq ,

|P (Y ≥ t |X = x, Z = z)−P (Y ≥ t |X = x ′, Z = z ′)|
≤C (1+‖x‖β+‖x ′‖β+‖z‖β+‖z ′‖β)(‖x −x ′‖+‖z − z ′‖),

and

|P (Y ≥ t |X = x)−P (Y ≥ t |X = x ′)| ≤C (1+‖x‖β+‖x ′‖β)‖x −x ′‖.

(A2) for any t > 0, P(‖X ‖ ≥ t ) and P(‖Z‖ ≥ t ) ≤C1e−C2t .
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An Application: Variable Selection
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Feature Ordering By Conditional Independence (FOCI)

A fully model-free forward step-wise algorithm.

Y ∈R is the response variable

X = (X1, · · · , Xp ) is the vector of features

Algorithm

Ŝ =; (set of selected variables)

j1 = argmaxi∈{1,··· ,p}Tn(Y , Xi ) ⇒ Ŝ = { j1}

j2 = argmaxi 6= j1
Tn(Y , Xi | X j1 ) ⇒ Ŝ = { j1, j2}

j3 = argmaxi 6= j1, j2
Tn(Y , Xi | X j1 , X j2 ) ⇒ Ŝ = { j1, j2, j3}

· · ·
(k +1)th step is the first time s.t. Tn(Y , Xi | X j1 , · · · , X jk ) ≤ 0 ⇒ stop!

Ŝ = { j1, · · · , jk }.
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Efficacy of FOCI
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Efficacy of FOCI

S ⊆ {1, · · · , p} is sufficient if Y and XSc are conditionally
independent given XS . Sufficient sets are also known as
Markov Blanket

For each set S define

Q(S) =
∫
R

var(E(1{Y ≥t } | XS))dµ(t )

Q is monotone, If S ⊆ S′, then Q(S) ≤Q(S′)
Let δ be the smallest number such that for any insufficient
subset S, there exist some j 6∈ S such that Q(S ∪ { j }) ≥Q(S)+δ

Think of δ as the smallest prediction power that be achieved by
increasing the size of an insufficient set
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Efficacy of FOCI

(B1) There are nonnegative real numbers β and C such that for any
S of size ≤ 1/δ+2 and any t ∈R for any t ∈R, and any x, x ′ ∈RS

|P (Y ≥ t |XS = x)−P (Y ≥ t |XS = x ′)|
≤C (1+‖x‖β+‖x ′‖β)‖x −x ′‖

(B2) There are positive numbers C1 and C2 such that for any set S of
size ≤ 1/δ+2 and any t > 0, P(‖XS‖ ≥ t ) ≤C1e−C2t .

Theorem

Suppose that δ> 0, and that the assumptions (B1) and (B2) hold.
Let Ŝ be the subset selected by FOCI with a sample of size n. There
are positive real numbers L1, L2 and L3 depending only on C , β, C1,
C2 and δ such that P(Ŝ is sufficient) ≥ 1−L1pL2 e−L3n .

If δ is not too close to zero, and n À log(p), then with high
probability, FOCI chooses a sufficient set of predictors.
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Example: Variable Selection, Simulated Data

Sample of size n = 1000 of X = (X1, · · · , X1500) where Xi ’s are i.i.d.
N (0,1) and

Y = X1X2 + sin(X1X3)
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CLT under the null

Theorem (Shi, Drton, Han; 2021)

Assume Y ∈R is continuous and independent of X ∈Rp , which is
absolutely continuous. Then as n →∞

p
nTn

d→N (0,
2

5
+ 2

5
qp + 4

5
op ),

with qp and op constants that only depend on p.
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CLT in general

Theorem (Lin, Han; 2022)

As long as Y ∈R is not a measurable function of X and both are
continuous

(Tn −E[Tn])/
√

Var[Tn]
d→N (0,1).
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Boosting the power

Lin, Han (2022) proposed using M nearest neighbor to
improved the power

Work under progress: we are trying to work out the use of
general kernels to boost the power!
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Conclusion

A new measure of conditional dependence, CODEC

Model-free

Non-parametric

Consistent estimator with O(n logn) computational time

Variable selection algorithm with a stopping criteria, FOCI

R-package FOCI is CRAN

Work continues to tackle more problems!
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Thank you!
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Extra Slides
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Example: CODEC

Let X1 and X2 be i.i.d. uniform in [0,1] and Y = (X1 +X2) (mod 1)

Y ⊥ X2, Y is a function of X2 | X1.

Histograms of Tn(Y , X2) and Tn(Y , X2 | X1) for 1000 independent
samples of size n = 1000.
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Example: Polish Companies Bankruptcy

Response variable Y is binary (a company is bankrupt or not)

Sample size n = 19967 of p = 64 features

Data has been splitted in half at random to training and test
sets

For k ∈ {1, · · · ,10} we have selected subsets of size k of the
features using different variable selection techniques

For each selected set we predicted values of Y on the test set by
Random Forests
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Example: Polish Companies Bankruptcy

Mona Azadkia On Measuring Conditional Dependence



29/29

Example: Polish Companies Bankruptcy

Sample size n = 19967 of p = 64 features and response variable Y is
binary.

Considered only methods with stopping rule

Prediction method is Random Forests
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