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Summary of Contribution

A new coefficient of conditional dependence:
@ It has a simple expression
@ Itis fully non-parametric
@ Ithas no tuning parameters
o

It does not rely on estimating conditional densities or
conditional characteristic functions or mutual information

@ There is absolutely no assumption on the laws of the random
variables

© It can be estimated from data very quickly, O(nlogn)
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A New Measure of Conditional Dependence:

CODEC

(conditional dependence coefficient)
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Simple Case: No Conditioning

@ Y isarandom variable
e Z=(%4,...,Zg) is arandom vector (g = 1)

@ pis the probability law of Y

CODEC: unconditional

T(Y, Z) gives the measure of dependence of Y on Z:

T(Y, Z) = fRVar([E(l{th} IZ))d,U(t)
Jrvar(lyy=g)du(t)
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Conditional Expectation as Projection

u is the probability law of Y.

vaar([E(l{yzt} | Z2))du(r)

1, 2)= Jrvar(liy=n)du(t)

liy=y

[Q

EQgysn | Z) " o(2)
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Simple Case: A Closer Look

1 is the probability law of Y.

T(Y,Z) = Jrvar(E(lLy=y | 2))du(1)
Javar(liy=)du(t)

Conditioning does not increase the variance
var(E(lyysy | 2)) = var(lyysg)

T(Y,Z)e[0,1]

T(Y,Z)=0ifandonlyif Y 1 Z
T(Y,Z)=1ifand onlyif Y is a function of Z
For W = (W, -+, Wg) another random vector

ry,2)=s1(Y,(Z,W))

e T(Y,Z)isinvariant under one-to-one transformations of Y’
and Z
e T(Y,Z)is not symmetric, (consider Y = Z?)
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CODEC: Conditional Dependence Coefficient

Y is a random variable

Z =(2,...,Zq) is arandom vector (g = 1)
X =(X,...,Xp) is arandom vector (p = 0)
1 be the probability law of Y

CODEC: general case
When Y is not a function of X,

v, 2| X i SRECEEQ =g | 2, X) | XDdp@)
T REGary=g | X0)du(n)
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Properties

Y is not a function of X, and u be the probability law of Y

T, Z| X):= JrEWar@®(y=y | Z, X)| X))du(r)
, . fR E(var(liy=nl X)) du(t)

T(Y,Z|X)€[0,1]
TY,Z|X)=0ifandonlyif Y L Z| X
T(Y,Z|X)=1ifand onlyif Y is a function of Z given X

T(Y, Z | X) is invariant under one-to-one transformations

T(Y,Z| X) is a non-random quantity that depends on the
joint law of (Y, Z, X)

o If p=0, T(Y,Z| X)=T(Y, Z), unconditional dependence
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The Estimator
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The Estimator

e Sample of ni.i.d. copies (Y1, X3, Z1),..., (Yy, Xn, Z;,) of the triple
(v, X,2)

@ Xy is the closest neighbor of X; w.r.t. Euclidean distance

® (Zumiy, Xm()) is the closest neighbor of (Z;, X;) w.r.t. Euclidean
distance

@ R;= Z;’zl liy;<y, is the rank of Y;, the number of j such that
Y=Y,

@ Let T,,(Y, Z | X) be the estimate of T(Y, Z | X)

T,Y,Z|X):=

Y, (min{R;, Ry} — min{R;, Ry}
YL, (R —min{R;, Rn»})
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T,: Easy and Fast!

X, min{R;, Ry} — min{R;, Ry(i)})
i1 (Ri —min{R;, Ry()})

T,(Y,Z| X):=

@ Nearest neighbors indices N(i) and M (i) = O(nlogn)
(dimension is fixed)

e Ranks R; = O(nlogn)
o No knowledge of law of (Y, X, Z) is needed
@ No need to estimate the densities
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Consistency of The Estimator

Suppose that Y is not a function of X. Then as n — oo,
T,(Y,Z| X)— T(Y, Z| X) almost surely.

There are no hidden assumptions.
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Rate of convergence

Suppose that p = 1 and that the assumptions (A1) and (A2) hold
with some f and C. Then, as n — oo,

(log n) p+q+p+1 )

T"_T:OP( nll(p+q)

There are nonnegative real numbers  and C, C;, C> such that
(A1) forany r€R, x,x' € R” and z,z' € RY,

IP(Y=t|X=x,Z=2)-P(Y 2t|X=x',Z=2)]

<CA+IxIP+ 1 1P +1z1P +121P) Qlx = XN + 12— 21D,
and
IP(Y=t|X=x)—P(Y=t|X=x)<CA+xIP+1x1%)1x-x].

(A2) forany t>0,P(I Xz ) and P(| Zll = 1) < Cre 2!,
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An Application: Variable Selection
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Feature Ordering By Conditional Independence (FOCI)

A fully model-free forward step-wise algorithm.
@ Y e Ris the response variable
e X =(Xy, -, X)) is the vector of features

o S =@ (set of selected variables)
o ji=argmax;c .. Tn(Y, X)) =S ={j1}

o jo=argmax;,; Tn(Y,X;| X;) =8 =1{j1,j2}

o jg=argmax To(Y, Xi | Xy, Xj,) = §=1{j1, jo, ja}

i#jIVjZ
(]
o (k+1)thstep is the first time s.t. T,,(Y, X; | Xj;,---, Xj,) <0 = stop!
o S={ji, -, jik-
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Efficacy of FOCI
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Efficacy of FOCI

@ Sc{l,.-,p}issufficient if Y and Xgc are conditionally
independent given X;. Sufficient sets are also known as
Markov Blanket

@ For each set S define
Q(S) :vaar([E(l{th} | X)) du(t)

e Qismonotone, If Sc &', then Q(S) < Q(S)

@ Let 6 be the smallest number such that for any insufficient
subset S, there exist some j ¢ S such that Q(SU{j}) = Q(S) +d

o Think of § as the smallest prediction power that be achieved by
increasing the size of an insufficient set
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Efficacy of FOCI

(B1) There are nonnegative real numbers 8 and C such that for any
Sofsize <1/6+2 and any ¢ € R for any ¢ € R, and any x, x’ € RS

IP(Y = t|Xs=x)—P(Y = t| Xg = x|
<CA+xIP+1x1P)1x- x|

(B2) There are positive numbers C; and C; such that for any set S of
size<1/6+2andanyt>0,P(|Xsll = 1) < Cre Cet,

Suppose that § > 0, and that the assumptions (B1) and (B2) hold.
Let S be the subset selected by FOCI with a sample of size n. There
are positive real numbers L, L, and L3 depending only on C, g, Cj,
C, and 6 such that P(S is sufficient) > 1 — L pLZ e Lan,

If § is not too close to zero, and n > log(p), then with high
probability, FOCI chooses a sufficient set of predictors.
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Example: Variable Selection, Simulated Data

Sample of size n = 1000 of X = (X3, -+, X1500) where X;’s are i.i.d.

N(0,1) and
Y = X7 X, +sin(X7 X3)
Method Selected variables
FOCI 1,2, 3.
Forward stepwise 247 variables were selected, but 1, 2, and 3 were not in
the list.
Lasso 28, 43, 68, 95, 96, 189, 241, 262, 275, 292, 351, 362, 387,

403, 490, 514, 526, 537, 560, 578, 583, 623, 635, 675, 787,
814, 834, 914, 965, 968.

Dantzig selector No variables were selected.

SCAD 28, 43, 68, 241, 262, 292, 351, 387, 403, 537, 583, 623,
675, 814, 834, 968.
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CLT under the null

Theorem (Shi, Drton, Han; 2021)

Assume Y € R is continuous and independent of X € R?, which is
absolutely continuous. Then as n — co

2 2 4
VnT, 2 HO,Z+Zqp+Z0p),

with g, and o0, constants that only depend on p.
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CLT in general

Theorem (Lin, Han; 2022)

Aslong as Y € R is not a measurable function of X and both are
continuous

(T, —E[T,])/\/Var[T,] > . (0,1).
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Boosting the power

e Lin, Han (2022) proposed using M nearest neighbor to
improved the power

e Work under progress: we are trying to work out the use of
general kernels to boost the power!
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Conclusion

A new measure of conditional dependence, CODEC
Model-free

Non-parametric

Consistent estimator with O(nlogn) computational time
Variable selection algorithm with a stopping criteria, FOCI
R-package FOCI is CRAN

Work continues to tackle more problems!
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Thank you!
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Extra Slides
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Example: CODEC

Let X; and X5 bei.i.d. uniformin [0,1] and Y = (X7 + X5) (mod 1)

Y 1X, Y is a function of X, | X;.

Histograms of T, (Y, X») and T, (Y, X» | X;) for 1000 independent
samples of size n = 1000.

800
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Example: Polish Companies Bankruptcy

@ Response variable Y is binary (a company is bankrupt or not)
o Sample size n = 19967 of p = 64 features

@ Data has been splitted in half at random to training and test
sets

@ For ke {l,---,10} we have selected subsets of size k of the
features using different variable selection techniques

e For each selected set we predicted values of Y on the test set by
Random Forests
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Example: Polish Companies Bankruptcy
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Example: Polish Companies Bankruptcy

Sample size n = 19967 of p = 64 features and response variable Y is
binary.

Method Subset size MSPE
FOCI 10 0.015
Forward stepwise 24 0.016
Lasso 48 0.017
Dantzig selector 27 0.017
SCAD 3 0.021

o Considered only methods with stopping rule

@ Prediction method is Random Forests
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