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Objectives

e ooal: learn the causal effects of treatment

variables on the outcome from confounded
data.

e algorithm: we propose ggboosting, a

Gradient boosting

e Accuracy: Can achieve high accuracy in
prediction tasks.

e Scalability: Can be parallelized and scaled to

Results
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Traditional methods such as regression analysis pri-
marily indicates correlation while unmeasured con-
founders can lead to spurious correlation. A pertect
way to eliminate impacts from confounding is Ran-
domized Controlled Trials (RCTs). However, RCTs
are not always feasible in practice due to various
restrictions. IV have become one of the most pop-

ular method for scientists who work on discovering
causal effects. The idea behind IV is intuitive: find
an instrument Z that only influences Y via X and

trees) to the gradient and update on the predictions
from the learner.

Algorithms
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Conclusion

We propose a generalized gradient boosting frame-
work for estimating causal effects where unmeasured

confounding exists. Different from other related
works, our method gives the first discrete estima-
tors for learning causal relationship and can gener-
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Figure 3:Random forest initialization
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