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Introduction

Introduction

For fitting a GLLVM to the data, one relies on an approximation of
the (marginal) MLE, since the likelihood function involves integrating
over the latent variables, which does not admit, in general, a closed
form.
E.g. Expectation-Maximization (Dempster et al., 1977) with Monte
Carlo simulations (Cappé and Moulines, 2009), Laplace approximation
(Huber et al., 2004), adaptive quadrature (Cagnone and Monari,
2013), fully exponential Laplace approximation (Bianconcini and
Cagnone, 2012), variational approximations (Hui et al., 2017; Niku
et al., 2019).
However, as either the number of observations n, the number of
manifest variables p or the number of latent variables q increase, the
computational speed deteriorates to the point of rendering the fitting
impractical or even impossible.
E.g. n = 10, 000, p = 2, 000, q = 10.
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Moreover, the (approximated) MLE is computable only when p < n.
A notable exception is the FA model, for which Robertson and
Symons (2007) show that the MLE exists when p > n if q < n.

Sundberg and Feldmann (2016) propose estimating equations and an
iterative algorithm to compute the MLE when p > n, based on a
rescaling of the data,
Dai et al. (2020) use a profile (marginal) likelihood (avoiding inverting
the covariance matrix), implemeted in the R package fad.

For Binary responses, the currently only available route is to use
penalized (or regularized) estimators:

Chen et al. (2020) propose a Penalized Joint MLE, implemented in
their R package mirtjlm,
Kidzinski et al. (2023), propose a type of Penalized Quasi-Likelihood
Estimator, implemented in their R package gmf.
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Alternative route: define inconsistent but numerically efficient
estimators and define a bias reduction method.
E.g. Guerrier et al. (2019).
We choose the estimation framework of the extended log-likelihood
function (Bjørnstad, 1996):

we use a profiled score function,
the latent scores are replaced by a (suitable) function of the data and
the parameters,
we use a correction factor for consistency, leading to an M-estimator
(Huber, 1964) and
we use a stochastic approximation algorithm (Kiefer and Wolfowitz,
1952; Blum, 1954; Fabian, 1968; Wei and Tanner, 1990) to compute it.

It is a fast alternative to the adjusted profile h-likelihood (Lee and
Nelder, 1996, 2001; Lee et al., 2006)
It can be computed when p > n.

Maria-Pia Victoria-Feser Fast GLLVM RS, LSE 4 / 20



Introduction

GLLVM

Observations: Y = {Y1, . . . ,Yn}, a set of n independent
p-dimensional response (or manifest) variables with correlated
elements Yi1, . . . ,Yip, i = 1, . . . , n.
Latent variables (for the correlation): Z = {Z1, . . . ,Zn}, q � p,
independently distributed from a standard multivariate Gaussian
distribution, with density denoted by φ(zi ), i = 1, . . . , n.
Covariates: x = {x1, . . . , xn}, k-dimensional.
Model: the conditional distribution of the manifest variables Yij , say
Fθ, conditionally on the latent variables and covariates, is taken from
the exponential family with

ηij = β0j + x>
i βj + Z>

i λj , i = 1, . . . , n, j = 1, . . . , p, the linear predictor,
E[Yij |Zi , xi , β0j ,βj ,λj ] = gj (ηij ), where gj (·), j = 1, . . . , p is a known
link function,
and response variable-specific dispersion parameter τj .
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GLLVM

Parameters: θ ∈ Θ ⊆ �r , collects
β0j ∈ �, j = 1, . . . , p,
βj ∈ �k , j = 1, . . . , p the fixed-effect coefficients,
λj ∈ �q, j = 1, . . . , p the factor loadings,
response variable-specific dispersion parameter τj , with τ = [τj ]j=1,...,p.

Hence, r = (k + 1 + q + 1)p, e.g. if p = 10, 000, k = 10 and q = 10,
we have r = 220, 000 parameters...
Note that the λi are identifiable up to a rotation.
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Log-Likelihood Functions

The conditional (on the latent variables) joint density
fj(yij |Zi , xi ,θ, τ ) of the sample of observations y = {y1, . . . , yn},
under the assumption of conditional independence, is

fY|Z(yi |Zi , xi ,θ, τ ) =
p∏

j=1
exp

(
yijηij − bj(ηij)

τj
+ cj(yij , τj)

)
.

for known response-specific functions bj and cj .
Extended log-likelihood :

l(θ, τ , z|y, x) =
n∑

i=1
log
(
fYi |Zi (yi |zi , xi ,θ, τ )φ(zi )

)
.

Maximizing the extended log-likelihood leads to trivial solutions (e.g.
z = 0)...
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Log-Likelihood Functions

Profile log-likelihood function, for a suitable function z∗ := m(y,θ, τ ),
also called the profile h-likelihood (Lee and Nelder, 1996, 2001):

l(θ, τ |y, x) =
n∑

i=1
log
(
fYi |Zi (yi |z∗i , xi ,θ, τ )φ(z∗i )

)
.

Again, the profile log-likelihood can lead to trivial solutions (Lee and
Nelder, 2009)...
Adjusted profile h-likelihood:

l(θ, τ , z|y, x)− h(θ̂, τ̂ , ẑ)

for a suitable function h and where θ̂, τ̂ and ẑ are the maximizers of
l(θ, τ , z|y, x).
Wu and Bentler (2012): GLLVM with binary manifest variables.
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PRofIle M-Estimator (PRIME)

Consider a (suitable) function z∗ = m(y,θ, τ ), explicit or implicit,
and the profiled score functions

Ψ(yi |z∗i , xi ,θ, τ ) =
[

Ψ1(yi |z∗i , xi ,θ, τ )
Ψ2(yi |z∗i , xi ,θ, τ )

]

=

 ∑p
j=1

∂ηij
∂θ

(
yij−b′

j (ηij )
τj

)
−
∑p

j=1 (yijηij − bj(ηij)) /τ2
j + c ′(yij , τj)

 ,
we propose to center the score function to its expectation, therefore
defining a Fisher-consistent M-estimator θ̂ (and τ̂ ) through

1
n

n∑
i=1

(Ψ(yi |z∗i , xi ,θ, τ )− EY [Ψ(Y|z∗i , xi ,θ, τ )]) = 0.
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PRofIle M-Estimator (PRIME)

For z∗i , we propose to use the (estimated) mode of
fZi |Yi (zi |yi , xi ,θ, τ ), also called the maximum a posteriori (MAP).
Other choices are possible and do not impact the consistency of the
PRIME.
The form of the PRIME (M-estimator with Fisher consistency
centering) allows to compute it by means of a stochastic
approximation algorithm.
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PRofIle M-Estimator (PRIME)

Moreover, for numerical efficiency, without loosing consistency, the
score functions can be further simplified to

Ψ̃1(yi |zi , xi ,θ, τ ) =
p∑

j=1

∂ηij
∂θ

yij
τj
,

Ψ̃2(yi |zi , xi ,θ, τ ) = −2
p∑

j=1

∂

∂τ

(
y2

ij
τj

)
,

which we call the Simplified PRIME (SPRIME) θ̃.
Property 1: In the Gaussian case, i.e. FA, the PRIME and SPRIME
are equivalent to the MLE!
This suggests that, for numerical efficiency, a FA model in large
dimensions should be estimated via the PRIME (or SPRIME), which
avoids the computation of the inverse of the covariance matrix...
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PRofIle M-Estimator (PRIME)

Property 2: In the absence of latent variables (z∗i = zi = 0), i.e.
supposing uncorrelated responses, the estimating equations of the
SPRIME are the score functions of a GLM for each response variable
Yj , and therefore defining the MLE.
Property 3: Asymptotic normality of θ̂ (and θ̃), with covariance
matrix

Acov(θ̂) = E
[
∂

∂θ
Ψ1(yi |z∗i , xi ,θ, τ )

]−1
E
[
Ψ1(yi | . . .)Ψ1(yi | . . .)T

]
E
[
∂

∂θ
Ψ1(yi |z∗i , xi ,θ, τ )

]−T

The Acov can be easily obtained using a single run of a Monte Carlo
simulation.
The efficiency loss of θ̂ with respect to the (true) MLE is about 2%
(based on simulations).
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Simulations I: low p Binary
Objective: compare Mean Procruste Errors (MPE) and Estimation Bias (ES) of different
estimators for a Binary GLLVM, with p = 40, q = 2 and n = 100, 200, 500, 1000. The
estimators are the two regularized ones (gmf and mirtjml), the PRIME and SPRIME,
and the MLE based on Gaussian Quadrature approximations implemented in the R

package ltm.
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Simulations II: high p Binary
Objective: compare Mean Procruste Errors (MPE) and Estimation Bias (ES) of different
estimators for a Binary GLLVM, with p = 100 to p = 1000, q = 5 and n = 500. The
estimators are the two regularized ones (gmf and mirtjml), the PRIME and SPRIME.
We consider two settings for the type of sparcity.
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Simulations II: high p Binary
Objective: compare Mean Procruste Errors (MPE) and Estimation Bias (ES) of different
estimators for a Binary GLLVM, with p = 100 to p = 1000, q = 5 and n = 500. The
estimators are the two regularized ones (gmf and mirtjml), the PRIME and SPRIME.
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Simulations III: high p Poisson
Objective: compare Mean Procruste Errors (MPE) and Estimation Bias (ES) of different
estimators for a Poisson GLLVM, with p = 100 to p = 1000, q = 5 and n = 500. The
estimators are the regularized gmf, the PRIME and SPRIME. We consider two settings
for the type of sparcity.
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Extensions

In principle, the PRIME and SPRIME can be used for any latent
variable model, for which the marginalization of the likelihood
function implies approximations that render the numerical aspects
infeasible.
In particular, they can be used for constrained GLLVM (i.e.
confirmatory analysis).
They can also be used for panel data for which the dimension of the
parameters increase with time (under investigation).
An R package is under construction...
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Thanks! Any Questions?

Thank you very much for your attention!

Any questions?

More info...

Maria-Pia.VictoriaFeser@unige.ch
guillaume.blanc@jacobscenter.uzh.ch
Stephane.Guerrier@unige.ch
silvia.cagnone@unibo.it
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