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Overview



Motivation:
HSIC (Hilbert-Schmidt independence criterion, a.k.a. distance covariance): popular dependency measure,
various applications:

Independence testing [Gretton et al., 2008, Pfister et al., 2018, Albert et al., 2022], feature selection
[Camps-Valls et al., 2010, Song et al., 2012, Wang et al., 2022] with applications in biomarker detection
[Climente-González et al., 2019] and wind power prediction [Bouche et al., 2023], clustering [Song et al.,
2007, Climente-González et al., 2019], and causal discovery [Mooij et al., 2016, Pfister et al., 2018,
Chakraborty and Zhang, 2019, Schölkopf et al., 2021].

Bottleneck: quadratic runtime.
Existing speedup: M = 2 components (= random variables), no guarantees.

Contributions (M ≥ 2):
Improved runtime: O

(
n2

)
to O

(
n3/2

)
,

convergence rate: Op

(
1√
n

)
; optimal in a minimax sense.

Experiments: causal discovery, dependency testing of media annotations.
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In a Nutshell



Given samples from a distribution PX1X2 ,

are X1 and X2 independent, that is, PX1X2

?
= PX1

⊗ PX2
.

Think of correlation (e.g., height and weight, [−1, 1]) but for all kinds of dependence, also non-linear.

X1 X2

x1
1 : Ich hoffe, daß dort in Ihrem Sinne entschieden wird. x1

2 : It will, I hope, be examined in a positive light.
x2
1 : Frau Präsidentin, können Sie mir sagen, warum sich dieses Par-

lament nicht an die Arbeitsschutzregelungen hält, die es selbst ver-
abschiedet hat?

x2
2 : Madam President, can you tell me why this Parliament does not

adhere to the health and safety legislation that it actually passes?

x3
1 : Weshalb wurde die Luftqualität in diesem Gebäude seit unserer

Wahl nicht ein einziges Mal überprüft?
x3
2 : Why has no air quality test been done on this particular building

since we were elected?
x4
1 : Weshalb ist der Arbeitsschutzausschuß seit 1998 nicht ein

einziges Mal zusammengetreten?
x4
2 : Why has there been no Health and Safety Committee meeting

since 1998?
x5
1 : Warum hat weder im Brüsseler noch im Straßburger Parlaments-

gebäude eine Brandschutzübung stattgefunden?
x5
2 : Why has there been no fire drill, either in the Brussels Parliament

buildings or the Strasbourg Parliament buildings?
x6
1 : Warum finden keine Brandschutzbelehrungen statt? x6

2 : Why are there no fire instructions?
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Dependency Intuition



Kernel methods are applicable to a large number of domains.
E.g., strings [Watkins, 1999, Lodhi et al., 2002] or more generally for sequences [Király and Oberhauser,
2019], sets [Haussler, 1999, Gärtner et al., 2002], rankings [Jiao and Vert, 2016], fuzzy domains [Guevara
et al., 2017], and graphs [Borgwardt et al., 2020].

Well-understood structure of the Hilbert space of functions (reproducing kernel Hilbert space; RKHS)
associated to a kernel [Aronszajn, 1950, Schölkopf and Smola, 2002, Steinwart and Christmann, 2008].

Permits statistical analysis.
Well-suited for computations.

Kernels allow representing probability measures as elements of RKHSs [Berlinet and Thomas-Agnan,
2004].

Mapping is injective if the RKHS is “rich enough” [Fukumizu et al., 2008, Sriperumbudur et al., 2010].
Typically permits closed-form estimators.
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Motivation Kernel Methods



Definition (RKHS)
A Hilbert space Hk of functions X → R is a reproducing kernel Hilbert space if there exists a reproducing
kernel k : X × X → R such that for all x ∈ X and f ∈ Hk it holds that

k(·, x) ∈ Hk (“generators”),
〈f , k(·, x)〉Hk = f (x) (reproducing property).

For all x , x ′ ∈ X , k(x , y) = 〈k(·, x), k(·, y)〉Hk .
We call φk(x) = k(·, x) the (canonical) feature map and Hk the feature space; φk : X → Hk . Explicit
form:

Hk = span{φk(x) | x ∈ X}.

Due to the reproducing property, one can express everything in terms of k(x , y); actually computable.

6/31

Reproducing Kernel Hilbert Space (RKHS)



RKHSs:
Euclidean space Rd , 〈u, v〉Rd = uTv.
Square summable sequences:

`2 =

u ∈ RN |
∑
j∈N

u2
j < ∞

 .

Many other common spaces are RKHSs: Polynomials, splines, Sobolev spaces on [0, 1].
Some kernels on Rd :

Linear:
k(x, y) = 〈x, y〉Rd .

Polynomial:
k(x, y) = (〈x, y〉Rd + c0)c1 , c0 ≥ 0, c1 ∈ N.

RBF / Gaussian:

k(x, y) = e−γ‖x−y‖2
Rd , γ > 0.
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RKHS and Kernel Examples



x

p(x) Reproducing Kernel Hilbert Space

RKHS embedding of P

RKHS embedding of Q

P

Q

Figure: Embedding of marginal distributions: each distribution is mapped into a reproducing kernel Hilbert space via
an expectation operation. Source: [Muandet et al., 2017].
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Kernel Mean Embedding Intuition



Extend the feature map φk to distributions, e.g., P, and define

µk(P) :=
∫
X

k(x , ·)︸ ︷︷ ︸
=φk(x)

dP(x) ∈ Hk .

Integral is meant in Bochner’s sense (properties similar to Lebesgue integral).
Boundedness of k, that is, supx∈X k(x , x) < ∞, is sufficient for µk(P) to exist.

Mean reproducing property (f ∈ Hk):

EX∼P [f (X)] = EX∼P
[
〈f , φk(X)〉Hk

]
= 〈f ,EX∼P [φk(X)]〉Hk

= 〈f , µk(P)〉Hk
.

For a Dirac measure centered at a particular x0 ∈ X one recovers the reproducing property.
Injectivity of the embedding: do we lose information?

Polynomial kernels lose information.
Mean embedding can be “rich enough” (= “characteristic”); like characteristic functions or MGFs.

E.g., Gaussian kernel.

9/31

Kernel mean embedding



Cross-covariance matrix:

CXY = E(X ,Y )∼P
[
(X − EX∼PX X)(Y − EY∼PY Y )T

]
,

‖CXY ‖F
?
= 0 (“linearly independent”).

Cross-covariance operator: consider feature maps of X and Y :

CXY = E(X ,Y )∼P [(φk(X)− EX∼PXφk(X))⊗ (φ`(Y )− EY∼PY φ`(Y ))] ,

= E(X ,Y )∼P [(φk(X)− µk (PX ))⊗ (φ`(Y )− µ` (PY ))] ,

‖CXY ‖HS =: HSIC (PXY ) .
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Cross-covariance matrix → Cross-covariance operator
(M = 2)



Kullback-Leibler divergence (p is p.d.f. of P, q is p.d.f. of Q):

KL(P,Q) =

∫
Rd

p(x) log p(x)
q(x)dx .

Mutual information:

MI(P) = KL
(
P,⊗M

m=1Pm
)
.

Idea: quantify the “distance” of the joint distribution to the product of its marginal distributions.
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Intuition HSIC M ≥ 2



Maximum mean discrepancy (MMD):

MMDk(P,Q) = ‖µk(P)− µk(Q)‖Hk
.

Previously M = 2; we need tuples. Let x = (xm)
M
m=1 , y = (ym)

M
m=1 ∈ ×M

m=1Xm =: X , km-s be kernels
on Xm-s with feature maps φkm -s and associated RKHSs Hkm . Define the product kernel

k (x , y) =
M∏

m=1

km(xm, ym).

Hilbert-Schmidt independence criterion (HSIC):

HSICk(P) = MMDk
(
P,⊗M

m=1Pm
)

=
∥∥∥µ⊗M

m=1km (P)−⊗M
m=1µkm (Pm)︸ ︷︷ ︸

cross-covariance operator

∥∥∥
⊗M

m=1Hkm

.

Alternative to mutual information.
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Hilbert-Schmidt Independence Criterion



Let P̂n :=
{(

x1
1 , . . . , x1

M
)
, . . . , (xn

1 , . . . , xn
M)

}
∈ X n be an i.i.d. sample of M-tuples from P of size n.

The closed-form quadratic time estimator

HSIC2
k

(
P̂n

)
:=

1

n2
1T

n
(
◦m∈[M]Kkm

)
1n +

1

n2M

∏
m∈[M]

1T
nKkm1n −

2

nM+1
1T

n
(
◦m∈[M]Kkm1n

)
with Gram matrices Kkm =

[
km

(
x i

m, x
j
m

)]
i,j∈[n]

∈ Rn×n can be computed in O(n2M).

Our proposed estimator is

HSIC2
k,N

(
P̂n

)
= αT

k
(
◦m∈[M]Kkm,n′n′

)
αk +

∏
m∈[M]

αT
km
Kkm,n′n′αkm − 2αT

k
(
◦m∈[M]Kkm,n′n′αkm

)
,

with Gram matrices Kkm =
[
km

(
x̃ i

m, x̃
j
m

)]
i,j∈[n′]

∈ Rn′×n′ , αk ,αkm -s ∈ Rn′ .

How to compute the estimator?
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HSIC Estimators



Idea: Reduce sample size.
HSIC consists of different means and feature maps, we abstract away from the specifics by using Q, `.

Nyström points: Q̃n′ =
{

ỹ1, . . . , ỹn′
}

is a subsample of Q̂n =
{

y1, . . . , yn} i.i.d.∼ Q.
Typically:

µ`(Q) =

∫
Y
φ`(y)dQ(y) ≈ 1

n
∑
i∈[n]

φ`(y i) = µ`(Q̂n).

Nyström approach:

µ`(Q̂n) =
1

n

n∑
i=1

φ`(y i) ≈
∑

i∈[n′]

αiφ`(ỹ i) =: µ`

(
Q̃n′

)
∈ HNys

` ,

where HNys
` := span

(
φ`

(
ỹ i) : i ∈ [n′]

)
⊂ H`.
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Classical Nyström Approach



Compare to linear regression.
Question: can we actually compute the projection?
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Geometric Interpretation



The coefficients α` = (α1
` , . . . , α

n′

` ) ∈ Rn′ are obtained by the minimum norm solution of

min
α`∈Rn′

∥∥∥ µ`

(
Q̂n

)
︸ ︷︷ ︸

= 1
n
∑n

i=1 φ`(y i)

−
∑

i∈[n′]

αiφ`

(
ỹ i) ∥∥∥2

H`

.

Computable by (pseudo-)matrix inversion:

Lemma (Nyström mean embedding, [Laub, 2004, Chatalic et al., 2022])

For a kernel ` with corresponding feature map φ`, an i.i.d. sample Q̂n of distribution Q, and a subsample
Q̃n′ of Q̂n, the Nyström estimate of µ`(Q) is given by

µ`

(
Q̃n′

)
=

∑
i∈[n′]

αi
`φ`

(
ỹ i) , α` =

1

n (K`,n′n′)
− K`,n′n1n,

with Gram matrix K`,n′n′ =
[
`(x̃ i , x̃ j)

]
i,j∈[n′]

∈ Rn′×n′ , and K`,n′n =
[
`(x̃ i , x j)

]
i∈[n′],j∈[n] ∈ Rn′×n.
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Optimal Weights for Nyström Approximation



Recall:

HSICk(P) =
∥∥∥µ⊗M

m=1km (P)−⊗M
m=1µkm (Pm)

∥∥∥
⊗M

m=1Hkm

.

→ There are M + 1 means in this expression.
Proposed estimator: Compute each mean separately and combine, giving

M + 1 weights:

µkm

(
P̃m,n′

)
=

∑
i∈[n′]

αi
kmφkm

(
x̃ i

m

)
, αkm =

1

n (Kkm,n′n′)
− Kkm,n′n1n,

µk

(
P̃n′

)
=

∑
i∈[n′]

αi
k ⊗M

m=1 φkm

(
x̃ i

m

)
, αk =

1

n (Kk,n′n′)
− (Kk,n′n)1n.

Runtime is O
(
Mn′3 + Mn′n

)
, saving if n′ = o

(
n2/3

)
.

Recall HSIC: O
(
Mn2

)
.
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Contribution: Accelerating HSIC



For bounded kernels (km)
M
m=1, it holds that∣∣∣HSICk(P)− HSICk,N

(
P̂n

)∣∣∣ = OP

(
n−1/2

)
,

assuming that the effective dimension3 either decays
polynomially (< cλ−γ , c > 0, γ ∈ (0, 1]) and n′ = Õ

(
n1/(2−γ)

)
, or

exponentially (< log(1 + c/γ)/β, c, β > 0) and n′ = Õ
(√

n
)
.

Matches the bound that we obtain on the quadratic time estimator.

3NX (λ) = trace
[
µk⊗k(P) (µk⊗k(P) + λI)−1

]
.
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Contribution: Consistency



Known [Chatalic et al., 2022]:
∥∥∥µk(P)− µk

(
P̃n′

)∥∥∥ = OP
(
n−1/2

)
.

HSIC is expressed in terms of tensor products.
Key is the following lemma:

Lemma (Error propagation on tensor products)

Let X = (Xm)
M
m=1 ∈ X = ×M

m=1Xm, km : Xm ×Xm → R bounded kernels (∃akm ∈ (0,∞) such that
supxm∈Xm

√
km(xm, xm) ≤ akm , m ∈ [M]), k = ⊗M

m=1km, Hk the RKHS associated to k, X ∼ P ∈ M+
1 (X ),

Pm the m-th marginal of P (m ∈ [M]), n′ ≤ n, and P̃m,n′ the Nyström sample of the m-th marginal. Then∥∥∥⊗M
m=1µkm (Pm)−⊗M

m=1µkm

(
P̃m,n′

)∥∥∥
Hk

≤
∏

m∈[M]

(akm + dkm)−
∏

m∈[M]

akm ,

where dkm =
∥∥∥µkm (Pm)− µkm

(
P̃m,n′

)∥∥∥
Hkm

.
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Proof Sketch



We want to find an upper and a lower bound, that is,

Ln ≤ Rn ≤ Un.

→ If both are close, we have succeeded.
In our case (simplified): Rn =

∣∣∣HSICk(P)− HSICk,N

(
P̂n

)∣∣∣, Un = O
(

1√
n

)
.

Example (Minimax rate of convergence)
If Ln = cn−α and Un = Cn−α for some positive constants c,C , and α, then the minimax rate of
convergence is n−α.
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Minimax Risk Idea



Theorem (Lower bound for HSIC estimation)

Let P be a class of Borel probability measures over Rd containing the d-dimensional Gaussian
distributions. Let d =

∑
m∈[M] dm, km(xm,x′m) = e−

γ
2 ‖xm−x′m‖2

Rdm (m ∈ [M]) be Gaussian kernels on Rdm

with common bandwidth parameter γ > 0, k = ⊗M
m=1km, and F̂n denote any estimator of HSICk(P) with

n i.i.d. samples from P ∈ P. Then it holds that

inf
F̂n

sup
P∈P

Pn
{∣∣∣HSICk (P)− F̂n

∣∣∣ ≥ a√
n

}
≥

1−
√

5
8

2
,

for a constant a = γ

2(2γ+1)
d
4
+1

> 0 (depending on γ and d only).

→ with positive probability, the best estimator can not converge faster than n−1/2: There exists a
distribution P ∈ P which is sufficiently difficult to estimate.
Proof idea: construct adversarial pair of distributions that are close w.r.t. KL but sufficiently different
when considering HSIC (framework: minimax theory); we consider Gaussians.
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Lower Bound (Unpublished)



Test for dependence of X and Y (H0 : PXY = PX ⊗ PY , H1 actually holds):
X : 90 acoustic features (timbre average (12), timbre covariance (78)).
Y : year of release.
M = 2 allows comparing to existing algorithms.
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Experiments: Dependencies of Media Annotations (M = 2)



Example (A simple graph with its SCM)

X1

X2 X3

X4

X5

G induces the causal factorization

P (X1, . . . ,X5) = P (X1)P (X2 | X1)P (X3 | X1)P (X4 | X2,X3)P (X5 | X4) ,

by repeated application of

Xi = fi (PAi ,Ui) ,

and by using the joint independence of the Ui -s (i = 1, . . . , 5).
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Experiments: Causality [Pearl, 2009, Schölkopf, 2022]



Consider an additive noise model

Xi =
∑

k∈PAi

fi,k (Xk) + Ui , i = 1, . . . ,M,

with Ui independent Gaussian, and fi,k non-linear.

Algorithm (DAG verification method; [Pfister et al., 2018])
Given observations x1, . . . ,xn, and a candidate DAG G

Use generalized additive model regression to regress each node Xi on all its parents PAi and denote
the resulting vector of residuals by εi .
Perform a M-variable joint independence test to test whether (ε1, . . . , εM) is jointly independent.
If (ε1, . . . , εM) is jointly independent, the DAG G is not rejected.
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Experiments: Additive and non-linear function class



349 measurements of weather data in Germany [Mooij et al., 2016, Pfister et al., 2018].
We want to infer the most plausible DAG with three nodes out of 25 possible DAGs (33 − 2 = 25, two
graphs contain a cycle).

5 10 15 20 25
DAG

10−2

p-
va

lu
e

N-MHSIC V-HSIC

Altitude

Sunshine Temperature
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Experiments: Weather Causal Discovery (M = 3)



Acceleration of dependency estimation with HSIC.
Upper bound assuming appropriate effective dimension decay:∥∥∥HSICk(P)− HSICk,N

(
P̂n

)∥∥∥ = OP

(
n−1/2

)
.

Matching lower bound.
Proposed algorithm is optimal in a minimax-sense (with the considered priors).

Experiments on real-world data.
Corresponding article: [Kalinke and Szabó, 2023], GitHub:
https://github.com/FlopsKa/nystroem-mhsic/.
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Summary

https://github.com/FlopsKa/nystroem-mhsic/
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