Nyström M-Hilbert-Schmidt Independence Criterion

Florian Kalinke ${ }^{1}$ and Zoltán Szabó ${ }^{2}$
${ }^{1}$ Karlsruhe Institute of Technology (KIT)
${ }^{2}$ London School of Economics (LSE)

Overview

1. Introduction
2. Kernel Methods
3. Hilbert-Schmidt Independence Criterion
4. Classical Nyström Approach
5. Nyström M-HSIC

- Estimator
- Upper Bound
- Lower Bound
- Experiments

6. Summary

In a Nutshell

- Motivation:
- HSIC (Hilbert-Schmidt independence criterion, a.k.a. distance covariance): popular dependency measure, various applications:
- Independence testing [Gretton et al., 2008, Pfister et al., 2018, Albert et al., 2022], feature selection [Camps-Valls et al., 2010, Song et al., 2012, Wang et al., 2022] with applications in biomarker detection [Climente-González et al., 2019] and wind power prediction [Bouche et al., 2023], clustering [Song et al., 2007, Climente-González et al., 2019], and causal discovery [Mooij et al., 2016, Pfister et al., 2018, Chakraborty and Zhang, 2019, Schölkopf et al., 2021].
- Bottleneck: quadratic runtime.
- Existing speedup: $M=2$ components (= random variables), no guarantees.
- Contributions $(M \geq 2)$:
- Improved runtime: $\mathcal{O}\left(n^{2}\right)$ to $\mathcal{O}\left(n^{3 / 2}\right)$,
- convergence rate: $\mathcal{O}_{p}\left(\frac{1}{\sqrt{n}}\right)$; optimal in a minimax sense.
- Experiments: causal discovery, dependency testing of media annotations.

Dependency Intuition

- Given samples from a distribution $\mathbb{P}_{X_{1} X_{2}}$,
- are X_{1} and X_{2} independent, that is, $\mathbb{P}_{X_{1} X_{2}} \stackrel{?}{=} \mathbb{P}_{X_{1}} \otimes \mathbb{P}_{X_{2}}$.
- Think of correlation (e.g., height and weight, $[-1,1]$) but for all kinds of dependence, also non-linear.

X_{1}	X_{2}
$x_{1}^{1}:$ Ich hoffe, daß dort in Ihrem Sinne entschieden wird.	$x_{2}^{1}:$ It will, I hope, be examined in a positive light.
$x_{1}^{2}:$ Frau Präsidentin, können Sie mir sagen, warum sich dieses Par-	$x_{2}^{2}:$ Madam President, can you tell me why this Parliament does not
lament nicht an die Arbeitsschutzregelungen hält, die es selbst ver-	adhere to the health and safety legislation that it actually passes?
abschiedet hat?	
$x_{1}^{3}:$ Weshalb wurde die Luftqualität in diesem Gebäude seit unserer	$x_{2}^{3}:$ Why has no air quality test been done on this particular building
Wahl nicht ein einziges Mal überprüft?	since we were elected?
$x_{1}^{4}:$ Weshalb ist der Arbeitsschutzausschuß seit 1998 nicht ein	$x_{2}^{4}:$ Why has there been no Health and Safety Committee meeting
einziges Mal zusammengetreten?	since $1998 ?$
$x_{1}^{5}:$ Warum hat weder im Brüsseler noch im Straßburger Parlaments-	$x_{2}^{5}:$ Why has there been no fire drill, either in the Brussels Parliament
gebäude eine Brandschutzübung stattgefunden?	buildings or the Strasbourg Parliament buildings?
$x_{1}^{6}:$ Warum finden keine Brandschutzbelehrungen statt?	$x_{2}^{6}:$ Why are there no fire instructions?

Motivation Kernel Methods

- Kernel methods are applicable to a large number of domains.
- E.g., strings [Watkins, 1999, Lodhi et al., 2002] or more generally for sequences [Király and Oberhauser, 2019], sets [Haussler, 1999, Gärtner et al., 2002], rankings [Jiao and Vert, 2016], fuzzy domains [Guevara et al., 2017], and graphs [Borgwardt et al., 2020].
- Well-understood structure of the Hilbert space of functions (reproducing kernel Hilbert space; RKHS) associated to a kernel [Aronszajn, 1950, Schölkopf and Smola, 2002, Steinwart and Christmann, 2008].
- Permits statistical analysis.
- Well-suited for computations.
- Kernels allow representing probability measures as elements of RKHSs [Berlinet and Thomas-Agnan, 2004].
- Mapping is injective if the RKHS is "rich enough" [Fukumizu et al., 2008, Sriperumbudur et al., 2010].
- Typically permits closed-form estimators.

Reproducing Kernel Hilbert Space (RKHS)

Definition (RKHS)

A Hilbert space \mathcal{H}_{k} of functions $\mathcal{X} \rightarrow \mathbb{R}$ is a reproducing kernel Hilbert space if there exists a reproducing kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ such that for all $x \in \mathcal{X}$ and $f \in \mathcal{H}_{k}$ it holds that

- $k(\cdot, x) \in \mathcal{H}_{k}$ ("generators"),
- $\langle f, k(\cdot, x)\rangle_{\mathcal{H}_{k}}=f(x)$ (reproducing property).
- For all $x, x^{\prime} \in \mathcal{X}, k(x, y)=\langle k(\cdot, x), k(\cdot, y)\rangle_{\mathcal{H}_{k}}$.
- We call $\phi_{k}(x)=k(\cdot, x)$ the (canonical) feature map and \mathcal{H}_{k} the feature space; $\phi_{k}: \mathcal{X} \rightarrow \mathcal{H}_{k}$. Explicit form:

$$
\mathcal{H}_{k}=\overline{\operatorname{span}\left\{\phi_{k}(x) \mid x \in \mathcal{X}\right\}}
$$

- Due to the reproducing property, one can express everything in terms of $k(x, y)$; actually computable.

RKHS and Kernel Examples

- RKHSs:
- Euclidean space $\mathbb{R}^{d},\langle\mathbf{u}, \mathbf{v}\rangle_{\mathbb{R}^{d}}=\mathbf{u}^{\top} \mathbf{v}$.
- Square summable sequences:

$$
\ell_{2}=\left\{u \in \mathbb{R}^{\mathbb{N}} \mid \sum_{j \in \mathbb{N}} u_{j}^{2}<\infty\right\} .
$$

- Many other common spaces are RKHSs: Polynomials, splines, Sobolev spaces on $[0,1]$.
- Some kernels on \mathbb{R}^{d} :
- Linear:

$$
k(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{y}\rangle_{\mathbb{R}^{d}} .
$$

- Polynomial:

$$
k(\mathbf{x}, \mathbf{y})=\left(\langle\mathbf{x}, \mathbf{y}\rangle_{\mathbb{R}^{d}}+c_{0}\right)^{c_{1}}, \quad c_{0} \geq 0, c_{1} \in \mathbb{N} .
$$

- RBF / Gaussian:

$$
k(\mathbf{x}, \mathbf{y})=e^{-\gamma\|\mathbf{x}-\mathbf{y}\|_{\mathbb{R}^{d}}^{2}}, \quad \gamma>0
$$

Kernel Mean Embedding Intuition

Figure: Embedding of marginal distributions: each distribution is mapped into a reproducing kernel Hilbert space via an expectation operation. Source: [Muandet et al., 2017].

Kernel mean embedding

- Extend the feature map ϕ_{k} to distributions, e.g., \mathbb{P}, and define

$$
\mu_{k}(\mathbb{P}):=\int_{\mathcal{X}} \underbrace{k(x, \cdot)}_{=\phi_{k}(x)} d \mathbb{P}(x) \in \mathcal{H}_{k} .
$$

- Integral is meant in Bochner's sense (properties similar to Lebesgue integral).
- Boundedness of k, that is, $\sup _{x \in \mathcal{X}} k(x, x)<\infty$, is sufficient for $\mu_{k}(\mathbb{P})$ to exist.
- Mean reproducing property $\left(f \in \mathcal{H}_{k}\right)$:

$$
\mathbb{E}_{X \sim \mathbb{P}}[f(X)]=\mathbb{E}_{X \sim \mathbb{P}}\left[\left\langle f, \phi_{k}(X)\right\rangle_{\mathcal{H}_{k}}\right]=\left\langle f, \mathbb{E}_{X \sim \mathbb{P}}\left[\phi_{k}(X)\right]\right\rangle_{\mathcal{H}_{k}}=\left\langle f, \mu_{k}(\mathbb{P})\right\rangle_{\mathcal{H}_{k}}
$$

- For a Dirac measure centered at a particular $x_{0} \in \mathcal{X}$ one recovers the reproducing property.
- Injectivity of the embedding: do we lose information?
- Polynomial kernels lose information.
- Mean embedding can be "rich enough" (= "characteristic"); like characteristic functions or MGFs.
- E.g., Gaussian kernel.

Cross-covariance matrix \rightarrow Cross-covariance operator ($M=2$)

- Cross-covariance matrix:

$$
\begin{aligned}
& C_{X Y}=\mathbb{E}_{(X, Y) \sim \mathbb{P}}\left[\left(X-\mathbb{E}_{X \sim \mathbb{P}_{X}} X\right)\left(Y-\mathbb{E}_{Y \sim \mathbb{P}_{Y}} Y\right)^{\top}\right], \\
&\left\|C_{X Y}\right\|_{\mathrm{F}} \stackrel{?}{=} 0 \text { ("linearly independent"). }
\end{aligned}
$$

- Cross-covariance operator: consider feature maps of X and Y :

$$
\begin{aligned}
C_{X Y} & =\mathbb{E}_{(X, Y) \sim \mathbb{P}}\left[\left(\phi_{k}(X)-\mathbb{E}_{X \sim \mathbb{P}_{X}} \phi_{k}(X)\right) \otimes\left(\phi_{\ell}(Y)-\mathbb{E}_{Y \sim \mathbb{P}_{Y}} \phi_{\ell}(Y)\right)\right], \\
& =\mathbb{E}_{(X, Y) \sim \mathbb{P}}\left[\left(\phi_{k}(X)-\mu_{k}\left(\mathbb{P}_{X}\right)\right) \otimes\left(\phi_{\ell}(Y)-\mu_{\ell}\left(\mathbb{P}_{Y}\right)\right)\right], \\
\left\|C_{X Y}\right\|_{\mathrm{HS}} & =: \operatorname{HSIC}\left(\mathbb{P}_{X Y}\right) .
\end{aligned}
$$

Intuition HSIC $M \geq 2$

- Kullback-Leibler divergence (p is p.d.f. of \mathbb{P}, q is p.d.f. of \mathbb{Q}):

$$
\mathrm{KL}(\mathbb{P}, \mathbb{Q})=\int_{\mathbb{R}^{d}} p(x) \log \frac{p(x)}{q(x)} \mathrm{d} x .
$$

- Mutual information:

$$
\operatorname{MI}(\mathbb{P})=\operatorname{KL}\left(\mathbb{P}, \otimes_{m=1}^{M} \mathbb{P}_{m}\right)
$$

- Idea: quantify the "distance" of the joint distribution to the product of its marginal distributions.

Hilbert-Schmidt Independence Criterion

- Maximum mean discrepancy (MMD):

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{k}(\mathbb{P})-\mu_{k}(\mathbb{Q})\right\|_{\mathcal{H}_{k}} .
$$

- Previously $M=2$; we need tuples. Let $x=\left(x_{m}\right)_{m=1}^{M}, y=\left(y_{m}\right)_{m=1}^{M} \in x_{m=1}^{M} \mathcal{X}_{m}=: \mathcal{X}, k_{m}$-s be kernels on \mathcal{X}_{m}-s with feature maps $\phi_{k_{m}}$-s and associated RKHSs $\mathcal{H}_{k_{m}}$. Define the product kernel

$$
k(x, y)=\prod_{m=1}^{M} k_{m}\left(x_{m}, y_{m}\right)
$$

- Hilbert-Schmidt independence criterion (HSIC):

$$
\begin{aligned}
\operatorname{HSIC}_{k}(\mathbb{P}) & =\operatorname{MMD}_{k}\left(\mathbb{P}, \otimes_{m=1}^{M} \mathbb{P}_{m}\right) \\
& =\|\underbrace{\mu_{\otimes_{m=1}^{M} k_{m}}(\mathbb{P})-\otimes_{m=1}^{M} \mu_{k_{m}}\left(\mathbb{P}_{m}\right)}_{\text {cross-covariance operator }}\|_{\otimes_{m=1}^{M} \mathcal{H}_{k_{m}}} .
\end{aligned}
$$

- Alternative to mutual information.

HSIC Estimators

- Let $\hat{\mathbb{P}}_{n}:=\left\{\left(x_{1}^{1}, \ldots, x_{M}^{1}\right), \ldots,\left(x_{1}^{n}, \ldots, x_{M}^{n}\right)\right\} \in \mathcal{X}^{n}$ be an i.i.d. sample of M-tuples from \mathbb{P} of size n.
- The closed-form quadratic time estimator

$$
\operatorname{HSIC}_{k}^{2}\left(\hat{\mathbb{P}}_{n}\right):=\frac{1}{n^{2}} \mathbf{1}_{n}^{\top}\left(\circ_{m \in[M]} \mathbf{K}_{k_{m}}\right) \mathbf{1}_{n}+\frac{1}{n^{2 M}} \prod_{m \in[M]} \mathbf{1}_{n}^{\top} \mathbf{K}_{k_{m}} \mathbf{1}_{n}-\frac{2}{n^{M+1}} \mathbf{1}_{n}^{\top}\left(\circ_{m \in[M]} \mathbf{K}_{k_{m}} \mathbf{1}_{n}\right)
$$

with Gram matrices $\mathbf{K}_{k_{m}}=\left[k_{m}\left(x_{m}^{i}, x_{m}^{j}\right)\right]_{i, j \in[n]} \in \mathbb{R}^{n \times n}$ can be computed in $O\left(n^{2} M\right)$.

- Our proposed estimator is

$$
\operatorname{HSIC}_{k, \mathrm{~N}}^{2}\left(\hat{\mathbb{P}}_{n}\right)=\boldsymbol{\alpha}_{k}^{\top}\left(\circ_{m \in[M]} \mathbf{K}_{k_{m}, n^{\prime} n^{\prime}}\right) \boldsymbol{\alpha}_{k}+\prod_{m \in[M]} \boldsymbol{\alpha}_{k_{m}}^{\top} \mathbf{K}_{k_{m}, n^{\prime} n^{\prime}} \boldsymbol{\alpha}_{k_{m}}-2 \boldsymbol{\alpha}_{k}^{\top}\left(\circ_{m \in[M]} \mathbf{K}_{k_{m}, n^{\prime} n^{\prime}} \boldsymbol{\alpha}_{k_{m}}\right)
$$

with Gram matrices $\mathbf{K}_{k_{m}}=\left[k_{m}\left(\tilde{x}_{m}^{i}, \tilde{x}_{m}^{j}\right)\right]_{i, j \in\left[n^{\prime}\right]} \in \mathbb{R}^{n^{\prime} \times n^{\prime}}, \boldsymbol{\alpha}_{k}, \boldsymbol{\alpha}_{k_{m}}-\mathrm{s} \in \mathbb{R}^{n^{\prime}}$.

- How to compute the estimator?

Classical Nyström Approach

- Idea: Reduce sample size.
- HSIC consists of different means and feature maps, we abstract away from the specifics by using \mathbb{Q}, ℓ.
- Nyström points: $\tilde{\mathbb{Q}}_{n^{\prime}}=\left\{\tilde{y}^{1}, \ldots, \tilde{y}^{n^{\prime}}\right\}$ is a subsample of $\hat{\mathbb{Q}}_{n}=\left\{y^{1}, \ldots, y^{n}\right\} \stackrel{\text { i.i.d. }}{\sim} \mathbb{Q}$.
- Typically:

$$
\mu_{\ell}(\mathbb{Q})=\int_{\mathcal{Y}} \phi_{\ell}(y) \mathrm{d} \mathbb{Q}(y) \approx \frac{1}{n} \sum_{i \in[n]} \phi_{\ell}\left(y^{i}\right)=\mu_{\ell}\left(\hat{\mathbb{Q}}_{n}\right) .
$$

- Nyström approach:

$$
\mu_{\ell}\left(\hat{\mathbb{Q}}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \phi_{\ell}\left(y^{i}\right) \approx \sum_{i \in\left[n^{\prime}\right]} \alpha_{i} \phi_{\ell}\left(\tilde{y}^{i}\right)=: \mu_{\ell}\left(\tilde{\mathbb{Q}}_{n^{\prime}}\right) \in \mathcal{H}_{\ell}^{N y s},
$$

where $\mathcal{H}_{\ell}^{N y s}:=\operatorname{span}\left(\phi_{\ell}\left(\tilde{y}^{i}\right): i \in\left[n^{\prime}\right]\right) \subset \mathcal{H}_{\ell}$.

Geometric Interpretation

- Compare to linear regression.
- Question: can we actually compute the projection?

Optimal Weights for Nyström Approximation

- The coefficients $\boldsymbol{\alpha}_{\ell}=\left(\alpha_{\ell}^{1}, \ldots, \alpha_{\ell}^{n^{\prime}}\right) \in \mathbb{R}^{n^{\prime}}$ are obtained by the minimum norm solution of

$$
\min _{\boldsymbol{\alpha}_{\ell} \in \mathbb{R}^{n^{\prime}}}\|\underbrace{\mu_{\ell}\left(\hat{\mathbb{Q}}_{n}\right)}_{=\frac{1}{n} \sum_{i=1}^{n} \phi_{\ell}\left(y^{i}\right)}-\sum_{i \in\left[n^{\prime}\right]} \alpha_{i} \phi_{\ell}\left(\tilde{y}^{i}\right)\|_{\mathcal{H}_{\ell}}^{2} .
$$

- Computable by (pseudo-)matrix inversion:

Lemma (Nyström mean embedding, [Laub, 2004, Chatalic et al., 2022])

For a kernel ℓ with corresponding feature map ϕ_{ℓ}, an i.i.d. sample $\hat{\mathbb{Q}}_{n}$ of distribution \mathbb{Q}, and a subsample $\tilde{\mathbb{Q}}_{n^{\prime}}$ of $\hat{\mathbb{Q}}_{n}$, the Nyström estimate of $\mu_{\ell}(\mathbb{Q})$ is given by

$$
\mu_{\ell}\left(\tilde{\mathbb{Q}}_{n^{\prime}}\right)=\sum_{i \in\left[n^{\prime}\right]} \alpha_{\ell}^{i} \phi_{\ell}\left(\tilde{y}^{i}\right), \quad \boldsymbol{\alpha}_{\ell}=\frac{1}{n}\left(\mathbf{K}_{\ell, n^{\prime} n^{\prime}}\right)^{-} \mathbf{K}_{\ell, n^{\prime} n} \mathbf{1}_{n}
$$

with Gram matrix $\mathbf{K}_{\ell, n^{\prime} n^{\prime}}=\left[\ell\left(\tilde{x}^{i}, \tilde{x}^{j}\right)\right]_{i, j \in\left[n^{\prime}\right]} \in \mathbb{R}^{n^{\prime} \times n^{\prime}}$, and $\mathbf{K}_{\ell, n^{\prime} n}=\left[\ell\left(\tilde{x}^{i}, x^{j}\right)\right]_{i \in\left[n^{\prime}\right], j \in[n]} \in \mathbb{R}^{n^{\prime} \times n}$.

Contribution: Accelerating HSIC

- Recall:

$$
\operatorname{HSIC}_{k}(\mathbb{P})=\left\|\mu_{\otimes_{m=1}^{M} k_{m}}(\mathbb{P})-\otimes_{m=1}^{M} \mu_{k_{m}}\left(\mathbb{P}_{m}\right)\right\|_{\otimes_{m=1}^{M} \mathcal{H}_{k_{m}}}
$$

- \rightarrow There are $M+1$ means in this expression.
- Proposed estimator: Compute each mean separately and combine, giving
- $M+1$ weights:

$$
\begin{aligned}
\mu_{k_{m}}\left(\tilde{\mathbb{P}}_{m, n^{\prime}}\right) & =\sum_{i \in\left[n^{\prime}\right]} \alpha_{k_{m}}^{i} \phi_{k_{m}}\left(\tilde{x}_{m}^{i}\right), & \boldsymbol{\alpha}_{k_{m}} & =\frac{1}{n}\left(\mathbf{K}_{k_{m}, n^{\prime} n^{\prime}}\right)^{-} \mathbf{K}_{k_{m}, n^{\prime} n} \mathbf{1}_{n}, \\
\mu_{k}\left(\tilde{\mathbb{P}}_{n^{\prime}}\right) & =\sum_{i \in\left[n^{\prime}\right]} \alpha_{k}^{i} \otimes_{m=1}^{M} \phi_{k_{m}}\left(\tilde{x}_{m}^{i}\right), & \boldsymbol{\alpha}_{k} & =\frac{1}{n}\left(\mathbf{K}_{k, n^{\prime} n^{\prime}}\right)^{-}\left(\mathbf{K}_{k, n^{\prime} n}\right) \mathbf{1}_{n} .
\end{aligned}
$$

- Runtime is $\mathcal{O}\left(M n^{\prime 3}+M n^{\prime} n\right)$, saving if $n^{\prime}=o\left(n^{2 / 3}\right)$.
- Recall HSIC: $\mathcal{O}\left(M n^{2}\right)$.

Contribution: Consistency

- For bounded kernels $\left(k_{m}\right)_{m=1}^{M}$, it holds that

$$
\left|\operatorname{HSIC}_{k}(\mathbb{P})-\operatorname{HSIC}_{k, \mathrm{~N}}\left(\hat{\mathbb{P}}_{n}\right)\right|=\mathcal{O}_{P}\left(n^{-1 / 2}\right),
$$

assuming that the effective dimension ${ }^{3}$ either decays

- polynomially $\left(<c \lambda^{-\gamma}, c>0, \gamma \in(0,1]\right)$ and $n^{\prime}=\tilde{\mathcal{O}}\left(n^{1 /(2-\gamma)}\right)$, or
- exponentially $(<\log (1+c / \gamma) / \beta, c, \beta>0)$ and $n^{\prime}=\tilde{\mathcal{O}}(\sqrt{n})$.
- Matches the bound that we obtain on the quadratic time estimator.

$$
{ }^{3} \mathcal{N}_{X}(\lambda)=\operatorname{trace}\left[\mu_{k \otimes k}(\mathbb{P})\left(\mu_{k \otimes k}(\mathbb{P})+\lambda I\right)^{-1}\right] .
$$

Proof Sketch

- Known [Chatalic et al., 2022]: $\left\|\mu_{k}(\mathbb{P})-\mu_{k}\left(\tilde{\mathbb{P}}_{n^{\prime}}\right)\right\|=\mathcal{O}_{P}\left(n^{-1 / 2}\right)$.
- HSIC is expressed in terms of tensor products.
- Key is the following lemma:

Lemma (Error propagation on tensor products)

Let $X=\left(X_{m}\right)_{m=1}^{M} \in \mathcal{X}=\times_{m=1}^{M} \mathcal{X}_{m}, k_{m}: \mathcal{X}_{m} \times \mathcal{X}_{m} \rightarrow \mathbb{R}$ bounded kernels $\left(\exists a_{k_{m}} \in(0, \infty)\right.$ such that $\left.\sup _{x_{m} \in \mathcal{X}_{m}} \sqrt{k_{m}\left(x_{m}, x_{m}\right)} \leq a_{k_{m}}, m \in[M]\right), k=\otimes_{m=1}^{M} k_{m}, \mathcal{H}_{k}$ the RKHS associated to $k, X \sim \mathbb{P} \in \mathcal{M}_{1}^{+}(\mathcal{X})$, \mathbb{P}_{m} the m-th marginal of $\mathbb{P}(m \in[M]), n^{\prime} \leq n$, and $\tilde{\mathbb{P}}_{m, n^{\prime}}$ the Nyström sample of the m-th marginal. Then

$$
\left\|\otimes_{m=1}^{M} \mu_{k_{m}}\left(\mathbb{P}_{m}\right)-\otimes_{m=1}^{M} \mu_{k_{m}}\left(\tilde{\mathbb{P}}_{m, n^{\prime}}\right)\right\|_{\mathcal{H}_{k}} \leq \prod_{m \in[M]}\left(a_{k_{m}}+d_{k_{m}}\right)-\prod_{m \in[M]} a_{k_{m}},
$$

where $d_{k_{m}}=\left\|\mu_{k_{m}}\left(\mathbb{P}_{m}\right)-\mu_{k_{m}}\left(\tilde{\mathbb{P}}_{m, r^{\prime}}\right)\right\|_{\mathcal{H}_{k_{m}}}$.

Minimax Risk Idea

- We want to find an upper and a lower bound, that is,

$$
L_{n} \leq R_{n} \leq U_{n}
$$

- \rightarrow If both are close, we have succeeded.
- In our case (simplified): $R_{n}=\left|\operatorname{HSIC}_{k}(\mathbb{P})-\operatorname{HSIC}_{k, \mathrm{~N}}\left(\hat{\mathbb{P}}_{n}\right)\right|, U_{n}=\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$.

Example (Minimax rate of convergence)

If $L_{n}=c n^{-\alpha}$ and $U_{n}=C n^{-\alpha}$ for some positive constants c, C, and α, then the minimax rate of convergence is $n^{-\alpha}$.

Lower Bound (Unpublished)

Theorem (Lower bound for HSIC estimation)

Let \mathcal{P} be a class of Borel probability measures over \mathbb{R}^{d} containing the d-dimensional Gaussian distributions. Let $d=\sum_{m \in[M]} d_{m}, k_{m}\left(\mathbf{x}_{m}, \mathbf{x}_{m}^{\prime}\right)=e^{-\frac{\gamma}{2}\left\|\mathbf{x}_{m}-\mathbf{x}_{m}^{\prime}\right\|_{\mathbb{R}_{d_{m}}}^{2}}(m \in[M])$ be Gaussian kernels on $\mathbb{R}^{d_{m}}$ with common bandwidth parameter $\gamma>0, k=\otimes_{m=1}^{M} k_{m}$, and \hat{F}_{n} denote any estimator of $\operatorname{HSIC}_{k}(\mathbb{P})$ with n i.i.d. samples from $\mathbb{P} \in \mathcal{P}$. Then it holds that

$$
\inf _{\hat{F}_{n} \mathbb{P} \in \mathcal{P}} \sup ^{n}\left\{\left|\operatorname{HSIC}_{k}(\mathbb{P})-\hat{F}_{n}\right| \geq \frac{a}{\sqrt{n}}\right\} \geq \frac{1-\sqrt{\frac{5}{8}}}{2}
$$

for a constant $a=\frac{\gamma}{2(2 \gamma+1)^{\frac{d}{4}+1}}>0$ (depending on γ and d only).

- \rightarrow with positive probability, the best estimator can not converge faster than $n^{-1 / 2}$: There exists a distribution $\mathbb{P} \in \mathcal{P}$ which is sufficiently difficult to estimate.
- Proof idea: construct adversarial pair of distributions that are close w.r.t. KL but sufficiently different when considering HSIC (framework: minimax theory); we consider Gaussians.

Experiments: Dependencies of Media Annotations ($M=2$)

- Test for dependence of X and $Y\left(H_{0}: \mathbb{P}_{X Y}=\mathbb{P}_{X} \otimes \mathbb{P}_{Y}, H_{1}\right.$ actually holds $)$:
- X : 90 acoustic features (timbre average (12), timbre covariance (78)).
- Y : year of release.
- $M=2$ allows comparing to existing algorithms.

Experiments: Causality [Pearl, 2009, Schölkopf, 2022]

Example (A simple graph with its SCM)

- \mathcal{G} induces the causal factorization

$$
\mathbb{P}\left(X_{1}, \ldots, X_{5}\right)=\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2} \mid X_{1}\right) \mathbb{P}\left(X_{3} \mid X_{1}\right) \mathbb{P}\left(X_{4} \mid X_{2}, X_{3}\right) \mathbb{P}\left(X_{5} \mid X_{4}\right)
$$

by repeated application of

$$
X_{i}=f_{i}\left(\mathrm{PA}_{i}, U_{i}\right)
$$

and by using the joint independence of the $U_{i}-\mathrm{s}(i=1, \ldots, 5)$.

Experiments: Additive and non-linear function class

- Consider an additive noise model

$$
X_{i}=\sum_{k \in \mathrm{PA}_{i}} f_{i, k}\left(X_{k}\right)+U_{i}, \quad i=1, \ldots, M
$$

with U_{i} independent Gaussian, and $f_{i, k}$ non-linear.

Algorithm (DAG verification method; [Pfister et al., 2018])

Given observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, and a candidate DAG \mathcal{G}

- Use generalized additive model regression to regress each node X_{i} on all its parents PA_{i} and denote the resulting vector of residuals by ϵ_{i}.
- Perform a M-variable joint independence test to test whether $\left(\epsilon_{1}, \ldots, \epsilon_{M}\right)$ is jointly independent.
- If $\left(\epsilon_{1}, \ldots, \epsilon_{M}\right)$ is jointly independent, the DAG \mathcal{G} is not rejected.

Experiments: Weather Causal Discovery ($M=3$)

- 349 measurements of weather data in Germany [Mooij et al., 2016, Pfister et al., 2018].
- We want to infer the most plausible DAG with three nodes out of 25 possible DAGs $\left(3^{3}-2=25\right.$, two graphs contain a cycle).

Summary

- Acceleration of dependency estimation with HSIC.
- Upper bound assuming appropriate effective dimension decay:

$$
\left\|\operatorname{HSIC}_{k}(\mathbb{P})-\operatorname{HSIC}_{k, N}\left(\hat{\mathbb{P}}_{n}\right)\right\|=\mathcal{O}_{P}\left(n^{-1 / 2}\right)
$$

- Matching lower bound.
- Proposed algorithm is optimal in a minimax-sense (with the considered priors).
- Experiments on real-world data.
- Corresponding article: [Kalinke and Szabó, 2023], GitHub: https://github.com/FlopsKa/nystroem-mhsic/.

References I

Mélisande Albert, Béatrice Laurent, Amandine Marrel, and Anouar Meynaoui. Adaptive test of independence based on HSIC measures. The Annals of Statistics, 50(2):858-879, 2022.
Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337-404, 1950.

Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, 2004.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O'Bray, and Bastian Riec. Graph kernels: State-of-the-art and future challenges. Foundations and Trends in Machine Learning, 13(5-6):531-712, 2020.

Dimitri Bouche, Rémi Flamary, Florence d'Alché Buc, Riwal Plougonven, Marianne Clausel, Jordi Badosa, and Philippe Drobinski. Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection. Renewable Energy, 2023.

Gustavo Camps-Valls, Joris M. Mooij, and Bernhard Schölkopf. Remote sensing feature selection by kernel dependence measures. IEEE Geoscience and Remote Sensing Letters, 7(3):587-591, 2010.

References II

Shubhadeep Chakraborty and Xianyang Zhang. Distance metrics for measuring joint dependence with application to causal inference. Journal of the American Statistical Association, 114(528):1638-1650, 2019.

Antoine Chatalic, Nicolas Schreuder, Alessandro Rudi, and Lorenzo Rosasco. Nyström kernel mean embeddings. In International Conference on Machine Learning (ICML), pages 3006-3024, 2022.
Héctor Climente-González, Chloé-Agathe Azencott, Samuel Kaski, and Makoto Yamada. Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data. Bioinformatics, 35(14):i427-i435, 2019.
Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of conditional dependence. In Advances in Neural Information Processing Systems (NIPS), pages 498-496, 2008.
Thomas Gärtner, Peter Flach, Adam Kowalczyk, and Alexander Smola. Multi-instance kernels. In International Conference on Machine Learning (ICML), pages 179-186, 2002.
Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, and Alexander Smola. A kernel statistical test of independence. In Advances in Neural Information Processing Systems (NIPS), pages 585-592, 2008.

References III

Jorge Guevara, Roberto Hirata, and Stéphane Canu. Cross product kernels for fuzzy set similarity. In International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1-6, 2017.
David Haussler. Convolution kernels on discrete structures. Technical report, University of California at Santa Cruz, 1999. (http://cbse.soe.ucsc.edu/sites/default/files/convolutions.pdf).
Yunlong Jiao and Jean-Philippe Vert. The Kendall and Mallows kernels for permutations. In International Conference on Machine Learning (ICML), pages 2982-2990, 2016.
Florian Kalinke and Zoltán Szabó. Nyström M-Hilbert-Schmidt independence criterion. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 1005-1015, 2023.
Franz J. Király and Harald Oberhauser. Kernels for sequentially ordered data. Journal of Machine Learning Research, 20:1-45, 2019.
Alan J Laub. Matrix analysis for scientists and engineers. SIAM, 2004.
Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text classification using string kernels. Journal of Machine Learning Research, 2:419-444, 2002.

References IV

Joris Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard Schölkopf. Distinguishing cause from effect using observational data: Methods and benchmarks. Journal of Machine Learning Research, 17:1-102, 2016.
Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf, et al. Kernel mean embedding of distributions: A review and beyond. Foundations and Trends $®$ in Machine Learning, 10 (1-2):1-141, 2017.
Judea Pearl. Causality. Cambridge university press, 2009.
Niklas Pfister, Peter Bühlmann, Bernhard Schölkopf, and Jonas Peters. Kernel-based tests for joint independence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), pages 5-31, 2018.

Bernhard Schölkopf. Causality for machine learning. In Probabilistic and Causal Inference: The Works of Judea Pearl, pages 765-804. 2022.
Bernhard Schölkopf and Alexander Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

References V

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the IEEE, 109(5): 612-634, 2021.
Le Song, Alexander J. Smola, Arthur Gretton, and Karsten M. Borgwardt. A dependence maximization view of clustering. In International Conference on Machine Learning (ICML), pages 815-822, 2007.
Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt. Feature selection via dependence maximization. Journal of Machine Learning Research, 13(1):1393-1434, 2012.
Bharath Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert Lanckriet. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning Research, pages 1517-1561, 2010.
Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008.
Andi Wang, Juan Du, Xi Zhang, and Jianjun Shi. Ranking features to promote diversity: An approach based on sparse distance correlation. Technometrics, 64(3):384-395, 2022.
Chris Watkins. Dynamic alignment kernels. In Advances in Neural Information Processing Systems (NIPS), pages 39-50, 1999.

