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Confounded Contextual Bandits Basic Setup

An urgent care example

Observed state (S) :

Demographics 
(age, sex, race…),

Test
(blood test, x-ray… ),

…

Action (A) :
Reward (R) :

Policy (𝜋)
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Confounded Contextual Bandits Basic Setup

A random tuple (S ,U,A, {R(a)}a∈A)

* {R(a)}a∈A denotes a set of the potential/counterfactual rewards under A = a.

* R =
∑

a∈A R(a)1(A = a).

Offline dataset

* i.i.d copies of (S ,A,R): {Si ,Ai ,Ri}ni=1.

* A is generated by some behavior policy πb : S × U → P(A) that depends on both
observed and unobserved features.

Target: find the optimal policy π∗ such that the value function

E

{∑
a∈A

R(a)π∗(a | S ,U)

}

is maximized, using the offline dataset.
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Confounded Contextual Bandits Common Policy

Since U is unobserved, most existing solutions focus on finding an optimal policy
π∗ ∈ Π = {π : S → P(A)} given by

π∗(a∗|s) = 1 if a∗ = argmax
a∈A

E[R(a)|S = s],∀s ∈ S .

Can we improve upon this?
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Confounded Contextual Bandits Super Policy

Leverages the input of human expertise, since actions generated by the behavior
policy depend on the latent information (πb : S × U → P(A)).

The urgent care example
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Confounded Contextual Bandits Super Policy

Aim to find a super-policy ν∗ in a larger policy class Ω = {ν : S × A → P(A)}
such that

ν∗(a∗|s, a′) = 1 if a∗ = argmax
a∈A

E{R(a)|S = s,A = a′},∀(s, a′) ∈ S × A.
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Confounded Contextual Bandits A Toy Example

S ∼ Bernoulli(p = 0.5) and U ∼ Bernoulli(p = 0.5) are independent.

Action is binary and the behavior policy satisfies
P(A = 1|S ,U = 1) = P(A = 0|S ,U = 0) = 1− ϵ for some 0 ≤ ϵ ≤ 1.

R = 8(A− 0.5)(S − 0.2)(U − 0.3).

Policy Value V(πb) V(π∗) V(ν∗)

ϵ = 0.5 0.0 0.4 0.4

ϵ = 0 0.6 0.4 1.0

ϵ = 1 -0.6 0.4 1.0

Theorem (Super-Optimality)

V(ν∗) ≥ max{V(π∗),V(πb)}.
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Identification Proxy Variables

Adopt the proximal causal inference framework developed by Tchetgen et al.
[2020].

Specifically, we assume the existence of certain action and reward proxies Z and
W in additional to (S ,A,R).

Assumption

(a) R |= Z | (S ,U,A);

(b) W |= (Z ,A) | (S ,U), W ⊥̸⊥ U | S ;

(c) R(a) |= A | (S ,U) for a ∈ A;

(d) There exists a bridge function q : W ×A× S → R such that

E [q(W , a,S) | U,S ,A = a] = E [R | U,S ,A = a] . (1)

V(ν) = E
[∑

a∈A q(W , a, S)ν(a | S ,A)
]
for any ν ∈ Ω.
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Identification Linear Integral Equation

In practice, one may want to include as many confounders in the policy as
possible to achieve the largest super-optimality.

We further extend the policy class to Ω = {ν : S ×Z ×A → P(A)} and consider
the corresponding super-policy ν∗.

Theorem

Under above Assumptions, if we further suppose some completeness and regularity
conditions, solving the following linear integral equation

E [q(W , a,S) | Z ,S ,A = a] = E [R | Z , S ,A = a] , (2)

for every a ∈ A with respect to q gives a valid bridge function that satisfies (1). And
the optimal policy ν∗ in class Ω is given by

ν∗(a∗ | s, z , a′) = 1 if a∗ = argmax
a∈A

E
[
q(W , a, S) | S = s,Z = z ,A = a′

]
. (3)
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Identification Algorithm

Algorithm 1: Learning Algorithm for the contextual bandits under unmeasured con-
founding

1 Input: Data D = (Si ,Zi ,Ai ,Ri ,Wi )
n
i=1.

2 Obtain the estimation of the bridge function q̂ by solving the estimation equation
(2) using data D

3 Implement any supervised learning method for estimating E [q̂(W , S , a) | S ,Z ,A].
4 Compute

a∗ = argmaxa∈A Ê [q̂(W ,S , a) | S = s,Z = z ,A = a′] ∀(s, z , a′) ∈ S × Z ×A.
5 Output: ν̂∗ with ν̂(a∗ | s, z , a′) = 1 and ν̂(ã | s, z , a′) = 0 for ã ̸= a∗.
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Identification Algorithm

Algorithm 2: Learning Algorithm for the contextual bandits under unmeasured con-
founding

1 Input: Data D = (Si ,Zi ,Ai ,Ri ,Wi )
n
i=1.

2 Obtain the estimation of the bridge function q̂ by solving the estimation equation
(2) using data D

3 Implement any supervised learning method for estimating E [q̂(W , S , a) | S ,Z ,A].
4 Compute

a∗ = argmaxa∈A Ê [q̂(W ,S , a) | S = s,Z = z ,A = a′] ∀(s, z , a′) ∈ S × Z ×A.
5 Output: ν̂∗ with ν̂(a∗ | s, z , a′) = 1 and ν̂(ã | s, z , a′) = 0 for ã ̸= a∗.

Step 2: minimax estmation of conditional moment models.

q = argmin
q∈Q

sup
g∈G

E
{
[(q(W ,A, S)− R)] g(S ,Z ,A)− 1

2
g2(S ,Z ,A)

}
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Identification Algorithm

Algorithm 3: Learning Algorithm for the contextual bandits under unmeasured con-
founding

1 Input: Data D = (Si ,Zi ,Ai ,Ri ,Wi )
n
i=1.

2 Obtain the estimation of the bridge function q̂ by solving the estimation equation
(2) using data D

3 Implement any supervised learning method for estimating E [q̂(W , S , a) | S ,Z ,A].
4 Compute

a∗ = argmaxa∈A Ê [q̂(W ,S , a) | S = s,Z = z ,A = a′] ∀(s, z , a′) ∈ S × Z ×A.
5 Output: ν̂∗ with ν̂(a∗ | s, z , a′) = 1 and ν̂(ã | s, z , a′) = 0 for ã ̸= a∗.

Step 3: take Ê [q̂(W , S , a) | S = ·,Z = ·,A = ·] as the solution of

argmin
g∈G

1

n

n∑
i=1

[g(Si ,Zi ,Ai )− q̂(·, ·, a)]2 + µ∥g∥2G ,
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Identification Regret Bound

Theorem

Suppose q belongs to certain function class Q ⊂ W × S ×A. Define the projection
error as ξn := supq∈Q,a∈A ∥g [·, ·, · ; q(·, ·, a)]− ĝ [·, ·, · ; q(·, ·, a)]∥2 , and the bridge
function estimation error as ζn := ∥q − q̂∥2 . Then we obtain the following regret
decomposition

V(ν∗)− V(ν̂∗) ≤ 2(ξn + pmaxζn),

where pmax is some overlap constant.

Corollary

If the star-shaped spaces G and Q are VC-subgraph classes with VC dimensions V(G),
and V(Q) respectively. Under certain technical assumptions, with probability at least
1− δ,

V(ν̂∗)− V(ν∗) ≲ n−1/2pmax

√
log(1/δ) + max {V(G),V(Q)}.
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Application RHC Data

A dataset from Study to Understand Prognoses and Preferences for Outcomes
and Risks of Treatments [SUPPORT Connors et al., 1996].
SUPPORT examined the effectiveness and safety of direct measurement of
cardiac function by Right Heart Catheterization (RHC) for certain critically ill
patients in intensive care units (ICU).

Action: A = 1 → measured by RHC in the first 24 hours, otherwise A = 0.
Response: Y = 1 → survived or censored at day 30; otherwise Y = −1.
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Application RHC Data

Covariates: demographics, estimated probability of survival, comorbidity, vital
signs, physiological status, and functional status.

Ten variables measuring the patient’s overall physiological status:

* subject to substantial measurement error
* single snapshot of underlying physiological state over time.

Following Tchetgen et al. [2020]: W = (ph1, hema1), Z = (pafi1, paco21).
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Application RHC Data

Three types of policy classes are considered.
1. Sonly: S → P(A). The policy only depends on the observed state S .
2. SZonly: S ×Z → P(A). The policy depends on on the observed state S and
the action proxy Z .
3. Super: S × Z ×A → P(A). The super-policy class where the policy depends
on the observed state S , the action proxy Z , and observed action A.

Table: Evaluation results of the optimal policies learned from three different policy classes using
the RHC data. The averages of evaluation values over 20 random splits are presented. Larger
values indicate better performances. Values in the parentheses are standard deviations.

Sonly SZonly Super

0.55 (5.80e-02) 0.55 (5.78e-02) 0.69 (1.10e-02)
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Confounded Sequantial Decision Making Basic Setup

Confounded POMDP M = (S,U ,A,T ,P, r).
* P = {Pt}Tt=1, Pt denotes transition kernel from S × U ×A to S × U at time t

Assumption

(Markovianity) The process {St ,Ut ,At ,Rt}Tt=1 satisfies the Markov property, i.e., for any t,
(Rt ,St+1,Ut+1) depends on the past history only through (St ,Ut ,At).
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Confounded Sequantial Decision Making Basic Setup

Offline dataset:
* i.i.d. episodes {Si,t ,Ai,t ,Ri,t}Tt=1, i = 1, . . . , n.
* At is generated by some behavior policy πb

t : S × U → P(A).

Value function given a generic policy {πt}Tt=1:

V π
t (s, u) = Eπ[

T∑
t′=t

Rt′ | St = s,Ut = u]

Target: Estimate an optimal policy that maximizes

V(π) = E[V π
1 (S1,U1)]

using the batch data.

Common optimal policy π∗ ∈ Π ≡ {π = {πt}Tt=1 | πt : S × Zt → P(A)}
v.s.

Super policy ν∗ ∈ Ω ≡ {ν = {νt}Tt=1 | νt : S × Zt ×A → P(A)}
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Identification Proxy Variables

We assume the existence of certain action and reward proxies {Zt}Tt=1 and
{Wt}Tt=1 that can help identify policy values.
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Identification Linear Integral Equations

Theorem

Under appropriate assumptions, there always exist Q-bridge functions {qν}Tt=1

satisfying

Eν
[∑T

t′=t Rt′ | Ut , St ,At

]
= E

[∑
a∈A qνt (Wt , St , a)νt(a | St ,Zt ,At) | Ut , St ,At

]
,

(4)
for t = 1, . . . ,T . In particular, set qνT+1 = 0, qνt can be obtained by solving the
following linear integral equations for t = T , . . . , 1,

E{qνt (Wt ,St ,At)− Rt − V ν
t+1(Wt+1,St+1,Zt+1,At+1) | Zt ,St ,At} = 0, (5)

where V ν
t (Wt , St ,Zt ,At) =

∑
a∈A qνt (Wt , St , a)νt(a | St ,Zt ,At).
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following linear integral equations for t = T , . . . , 1,

E{qνt (Wt ,St ,At)− Rt − V ν
t+1(Wt+1,St+1,Zt+1,At+1) | Zt ,St ,At} = 0, (5)

where V ν
t (Wt , St ,Zt ,At) =

∑
a∈A qνt (Wt , St , a)νt(a | St ,Zt ,At).

ν∗ = argmax
ν∈Ω

E

[∑
a∈A

qν1 (W1,S1, a)ν1(a | S1,Z1,A1)

]
.
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A Practical Algorithm Memoryless Assumption

Assumption (Memoryless Unmeasured Confounding)

For 2 ≤ t ≤ T , Ut is independent of past data history (including latent factors in the
past) up to time t − 1 given St .
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A Practical Algorithm Memoryless Assumption

Algorithm 4: Super RL for the confounded POMDP

1 Input: Data D = {Dt}Tt=1 with
Dt = {(Si ,t ,Zi ,t ,Ai ,t ,Ri ,t ,Wi ,t ,Si ,t+1,Zi ,t+1,Wi ,t+1)}ni=1.

2 Let q̂T+1 = 0 and ν̂∗T be an arbitrary policy.
3 Repeat for t = T , . . . , 1:
4 Obtain an estimator q̂t for qt by solving (5) using data Dt and q̂t+1 obtained

from the last iteration.
5 Compute Ê[q̂t(Wt ,St , a) | St = s,Zt = z ,At = a′] for a ∈ A using any

supervised learning method and obtain the estimated super policy ν̂∗t as for
every (a′, z , s),

ν̂∗t (a
∗ | s, z , a′) = 1

{
argmaxa∈A Ê[q̂t(Wt , St , a) | St = s,Zt = z ,At = a′]

}
.

6 Output: ν̂∗ = {ν̂∗t }Tt=1.
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A Practical Algorithm Regret Bound

Theorem

Suppose qt ∈ Q(t) for 1 ≤ t ≤ T and ν̂∗ is computed via Algorithm 4. Then under
above Assumptions and appropriate technical conditions, we obtain the following
regret decomposition,

V(ν∗)− V(ν̂∗) ≲

(
T∑
t=1

2pt,maxξt,n

)
+

√√√√T
T∑
t=1

(pωt,max)
2(ζt,n)2.

pt,max, p
ω
t,max: overlap constants.

ζt,n: Q-bridge function estimation error.

ξt,n: projection estimation error.
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Simulation and Application
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Simulation Memoryless Setting

Existing setting from Miao et al. [2022].

n = 1000 and T = 20.

Table: Simulation results for the sequential decision making problem. The simulation is
performed over 50 simulated datasets. Mean regret values for estimated optimal policies under
different policy classes are provided. The smaller regret values indicate better performances.
Values in the parentheses are the standard deviations of the regret values.

Sonly SZonly Super

5.4 (1.9e-01) 5.3 (4.7e-01) 2.2 (4.9e-01)
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Application MIMIC-III Data

Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC-III) dataset
(https://physionet.org/content/mimiciii/1.4/) records the longitudinal
information (including information of demographics, vitals, labs and scores) of
patients who satisfied the sepsis criteria, and the goal is to learn an optimal
personalized treatment strategy for sepsis.

Despite the richness of data collected at the ICU, the mapping between true
patient states and clinical observations is usually ambiguous [Nanayakkara et al.,
2022], and therefore makes this dataset fit into the setting of a confounded
POMDP.

Simplify the action space into 4-dimensional. Fix the horizon at T = 2.
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Application MIMIC-III Data

Table: Evaluation results of the optimal policies learned from three different policy classes using
the MIMIC-III data. The averages of evaluation values over 20 random splits are presented.
Larger values indicate better performances. Values in the parentheses are standard deviations.

Sonly SZonly Super

-2.83 (5.30e-02) -2.81 (5.03e-02) -1.75 (1.14e-02)
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Conclusion

We introduce super reinforcement learning, which takes the observed action in the
offline data as input to enhanced policy learning under endogeneity.

We establish the identification results for the super-policy in various confounded
environments.

Practical algorithms are provided to perform the super-policy learning with
finite-sample regret guarantees.

Our super policy can be used in “human-in-the-loop” and “machine-in-the-loop”.
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Execution
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Conclusion Machine-in-the-loop Human

AI models
Execution

Better Decision
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Thank You!
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