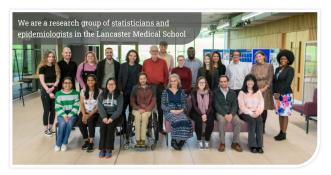
Model-based geostatistical inference with low prevalence data: a case study on lymphatic filariasis

Emanuele Giorgi

Centre for Health Informatics, Computing and Statistics



WHO Collaborating Centre

WHO Collaborating Centre

Current NTD Projects

- Brazilian Leptospirosis Study : Ecoepidemiology of Leptospirosis in the Urban Slums of Brazil
- Geostat NTD Hub : A Geostatistical Web Framework for Prevalence Surveys for Neglected Tropical Diseases
- Loa-loa Mapping : Developing methods to combine prevalence data from multiple diagnostics
- National Snakebite Study in Sri Lanka : Developing a Risk Map for Snakebites
- Neglected Tropical Disease Modelling Consortium : Survey Design and Analysis for Disease Prevalence

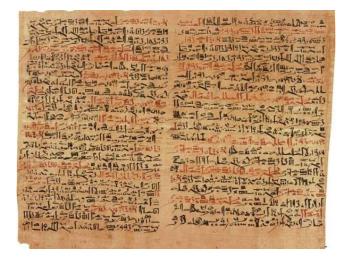
- Part 1: Introduction to Neglected Tropical Diseases
- Part 2: Model-based geostatistics for disease mapping
- Part 3: Case studies on lymphatic filariasis

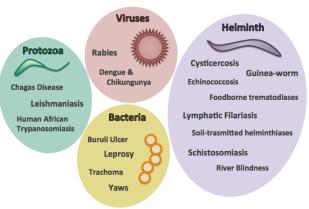
- Lucinda Hadely (Senior Research Associate)
- Funders: TaskForce for Global Health and USAID

Neglected tropical diseases

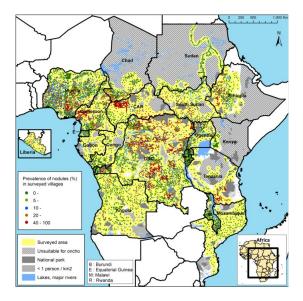
Disease	CDC	WHO
Buruli ulcer (Mycobacterium ulcerans infection)	+	+
Chikungunya ^a	-	+
Chagas disease	+	+
Cysticercosis	+	+
Dengue fever	+	+
Dracunculiosis (or guinea worm disease) ^b	+	+
Echinococcosis	+	+
Fascioliasis	+	+
Foodborne trematodiasis ^a	-	+
Human African trypanosomiasis (or sleeping sickness)	+	+
Leishmaniasis (or kala-azar)	+	+
Leprosy	+	+
Lymphatic filariasis ^b	+	+
Mycetoma	+	+
Onchocerciasis (or river blindness) b	+	+
Rabies	+	+
Schistosomiasis ^b	+	+
Soil-transmitted helminthiasis b	+	+
Trachoma ^b	+	+
Yaws	+	+

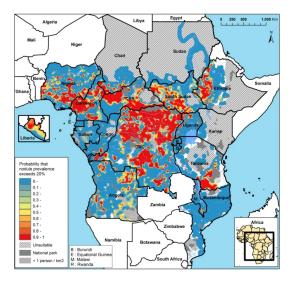
Data source: CDC, 2017 [10]; WHO, 2017 [3]; ^a Not mentioned under CDC list of neglected tropical diseases (NTDs); ^b Diseases that can be controlled or eliminated through mass drug administration (MDA), or other interventions.





Neglected Tropical Diseases





Emanuele Giorgi

• x_i : village location

- x_i : village location
- n_i : number of people tested

- x_i : village location
- n_i : number of people tested
- y_i : number of positive cases

- x_i : village location
- n_i : number of people tested
- y_i : number of positive cases
- p(x): prevalence at a location x

- x_i : village location
- n_i : number of people tested
- y_i : number of positive cases
- p(x): prevalence at a location x
- d(x): spatially referenced covariate

- x_i : village location
- n_i : number of people tested
- y_i : number of positive cases
- p(x): prevalence at a location x
- d(x): spatially referenced covariate

Problem

 $\bullet \quad \text{How can we predict } p(x) \text{ using } (x_i, n_i, y_i)?$

2 How can we use d(x) to improve our predictive inferences on p(x)?

• S = process of nature (e.g. disease risk)

- S = process of nature (e.g. disease risk)
- $\bullet \ Y = \mathsf{data}$

- S = process of nature (e.g. disease risk)
- $Y = \mathsf{data}$
- A statistical model $[S,Y] = [S] \times [Y|S]$

 Data: x_i = location of the cluster; n_i = number of sampled individuals at x_i; y_i=number of positively tested individuals at x_i

- Data: x_i = location of the cluster; n_i = number of sampled individuals at x_i; y_i=number of positively tested individuals at x_i
- $d(x_i) =$ vector covariates

- Data: x_i = location of the cluster; n_i = number of sampled individuals at x_i; y_i=number of positively tested individuals at x_i
- $d(x_i) =$ vector covariates
- S(x) = spatial stochastic process

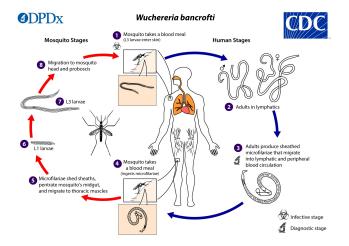
- Data: x_i = location of the cluster; n_i = number of sampled individuals at x_i; y_i=number of positively tested individuals at x_i
- $d(x_i) =$ vector covariates
- S(x) = spatial stochastic process
- $Z_i = \text{unstructured random effects}$

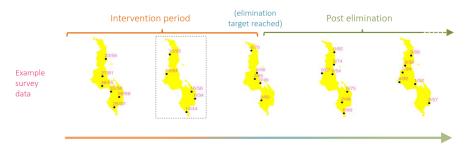
- Data: x_i = location of the cluster; n_i = number of sampled individuals at x_i; y_i=number of positively tested individuals at x_i
- $d(x_i) =$ vector covariates
- S(x) = spatial stochastic process
- $Z_i =$ unstructured random effects
- \bullet Assumption: $Y_i|S(x_i), Z_i \sim \mathsf{Bin}(n_i, p(x_i))$

$$\log\left\{\frac{p(x_i)}{(1-p(x_i)}\right\} = d(x_i)^\top \beta + S(x_i) + Z_i$$

- **Explanatory modelling:** emphasis is placed on understanding the relationships between the health outcome and risk factors
- **Predictive modelling:** maximize the predictive performance of the model

Lymphatic filariasis





- Elimination is declared when the district-wide is below 1%.
 - Questions: 1) How can we use these data to design a surveillance system in a post-elimination setting? 2) Where should we place the sentinel sites and how many?

Geostatistical modelling of repeated cross-sectional surveys

Geostatistical modelling of repeated cross-sectional surveys

• $\mathcal{S}_t = \{S_t(x) : x \in A\}$ (true spatial surface)

- $\mathcal{S}_t = \{S_t(x) : x \in A\}$ (true spatial surface)
- $\mathcal{Y}_t = \{Y_k: k=0,\ldots,t\}$ (data collected from time 0 to time t)

- $\mathcal{S}_t = \{S_t(x) : x \in A\}$ (true spatial surface)
- $\mathcal{Y}_t = \{Y_k: k=0,\ldots,t\}$ (data collected from time 0 to time t)
- $X_t = (x_{t,1}, \dots, x_{t,n})$ (locations of the data at time t)

- $\mathcal{S}_t = \{S_t(x): x \in A\}$ (true spatial surface)
- $\mathcal{Y}_t = \{Y_k: k=0,\ldots,t\}$ (data collected from time 0 to time t)
- $X_t = (x_{t,1}, \dots, x_{t,n})$ (locations of the data at time t)
- Assumption 1: $[Y_t | \mathcal{S}_t(X_t)]$ is Binomial with linear predictor

$$\log\left\{\frac{p_t(x_{t,i})}{1-p_t(x_{t,i})}\right\} = \alpha_t + S_t(x_{t,i})$$

• $S_t = \{S_t(x) : x \in A\}$ (true spatial surface) • $\mathcal{Y}_t = \{Y_k : k = 0, ..., t\}$ (data collected from time 0 to time t) • $X_t = (x_{t,1}, ..., x_{t,n})$ (locations of the data at time t) • Assumption 1: $[Y_t|S_t(X_t)]$ is Binomial with linear predictor

$$\log\left\{\frac{p_t(x_{t,i})}{1-p_t(x_{t,i})}\right\} = \alpha_t + S_t(x_{t,i})$$

• Assumption 2: Autoregressive process of order 1

$$S_t(x) = \gamma S_{t-1}(x) + W_t(x), \gamma > 0$$

with $W_t(x)$ being a Gaussian process with covariance function $\sigma^2 R + \tau^2 I$

• $S_t = \{S_t(x) : x \in A\}$ (true spatial surface) • $\mathcal{Y}_t = \{Y_k : k = 0, \dots, t\}$ (data collected from time 0 to time t) • $X_t = (x_{t,1}, \dots, x_{t,n})$ (locations of the data at time t) • Assumption 1: $[Y_t | S_t(X_t)]$ is Binomial with linear predictor

$$\log\left\{\frac{p_t(x_{t,i})}{1-p_t(x_{t,i})}\right\} = \alpha_t + S_t(x_{t,i})$$

• Assumption 2: Autoregressive process of order 1

$$S_t(x) = \gamma S_{t-1}(x) + W_t(x), \gamma > 0$$

with $W_t(x)$ being a Gaussian process with covariance function $\sigma^2 R + \tau^2 I$

 \bullet Problem: inferring γ and α_t from the data may not empirically feasible.

Parameter estimation of $\theta_{-\gamma}$

• Let $\theta_{-\gamma}$ denote the model parameters excluding $\gamma.$

- Let $\theta_{-\gamma}$ denote the model parameters excluding $\gamma.$
- Note: the marginal variance of $S_t(x)$ is $\omega^2=\sigma^2/(1-\gamma^2).$

- Let $\theta_{-\gamma}$ denote the model parameters excluding $\gamma.$
- Note: the marginal variance of $S_t(x)$ is $\omega^2=\sigma^2/(1-\gamma^2).$
- \bullet We estimate $\theta_{-\gamma}$ using the estimating equation originating from

$$L(Y_0,\ldots,Y_k;\theta_{-\gamma})=\prod_{i=1}^k L_1(Y_i;\theta_{-\gamma})$$

- Let $\theta_{-\gamma}$ denote the model parameters excluding $\gamma.$
- Note: the marginal variance of $S_t(x)$ is $\omega^2=\sigma^2/(1-\gamma^2).$
- \bullet We estimate $\theta_{-\gamma}$ using the estimating equation originating from

$$L(Y_0,\ldots,Y_k;\theta_{-\gamma})=\prod_{i=1}^k L_1(Y_i;\theta_{-\gamma})$$

• We define k in the above equation as the last time point for which the data allow for the estimation of α_k .

- Let $\theta_{-\gamma}$ denote the model parameters excluding $\gamma.$
- Note: the marginal variance of $S_t(x)$ is $\omega^2=\sigma^2/(1-\gamma^2).$
- \bullet We estimate $\theta_{-\gamma}$ using the estimating equation originating from

$$L(Y_0,\ldots,Y_k;\theta_{-\gamma})=\prod_{i=1}^k L_1(Y_i;\theta_{-\gamma})$$

- We define k in the above equation as the last time point for which the data allow for the estimation of α_k .
- \bullet We maximize $L(Y_0,\ldots,Y_k;\theta_{-\gamma})$ with respect to $\theta_{-\gamma})$ using Monte Carlo maximum likelihood.

Proposed inferential methods

- Defining are suitable prior for γ (the temporal correlation parameter) and for α_t (the overall average prevalence).
 - Uniform discrete prior for γ over $\{0,1/10,2/10,\ldots,1\}.$
 - For $\alpha_t,$ we use a tight prior around $\log\{0.01/(1-0.01)\}\approx-4.6$

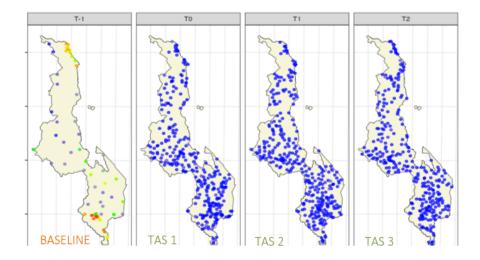
- Defining are suitable prior for γ (the temporal correlation parameter) and for α_t (the overall average prevalence).
 - Uniform discrete prior for γ over $\{0,1/10,2/10,\ldots,1\}.$
 - For $\alpha_t,$ we use a tight prior around $\log\{0.01/(1-0.01)\}\approx-4.6$
- We use the maximum likelihood estimator distribution as prior for $\theta_{-\gamma}$.

- Defining are suitable prior for γ (the temporal correlation parameter) and for α_t (the overall average prevalence).
 - Uniform discrete prior for γ over $\{0,1/10,2/10,\ldots,1\}.$
 - For $\alpha_t,$ we use a tight prior around $\log\{0.01/(1-0.01)\}\approx-4.6$
- We use the maximum likelihood estimator distribution as prior for $\theta_{-\gamma}$.
- $\mathcal{Y}_t = \{Y_k: k=0,\ldots,t\}$ (data collected from time 0 to time t)

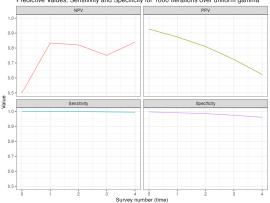
- Defining are suitable prior for γ (the temporal correlation parameter) and for α_t (the overall average prevalence).
 - Uniform discrete prior for γ over $\{0,1/10,2/10,\ldots,1\}.$
 - For α_t , we use a tight prior around $\log\{0.01/(1-0.01)\}\approx-4.6$
- We use the maximum likelihood estimator distribution as prior for $\theta_{-\gamma}$.
- $\mathcal{Y}_t = \{Y_k: k=0,\ldots,t\}$ (data collected from time 0 to time t)
- At time t, we then sample from $[\mathcal{S}_t|\mathcal{Y}_t]$ to assess the likelihood of resurgence (prevalence above 1%)

- Objective of the simulation: assess if the modelling framework can detect LF resurgence.
- Parameters of the simulation:
 - where to place the sentinel sites
 - I how many sentinel sites per district
 - Ithe resurgence rate
 - If frequency of the sampling at sentinel sites.

LF in Malawi



Parameters of the simulation: 1) allocate sentinel sites to locations with highest prevalence; 2) 2 sentinel sites per district; 3) resurgence rate of 5% prevalence increase every year; 4) sampling once per year.



Predictive Values, Sensitivity and Specificity for 1000 Iterations over uniform gamma

Emanuele Giorgi

- We should also account for heterogeneous intervention coverage (TRANSFIL model)
- Computationally more efficient methods of inference (Kalman filter approximation for Binomial counts?)
- Generalizable to other NTDs.

References

- Galit Shmueli (2010) To Explain or to Predict?. Statistical Science 25 (3) 289 310 https://doi.org/10.1214/10-STS330
- Giorgi, E., Fronterre, C., Macharia, P., Alegana, V., Snow, R., Diggle, P. (2021) Model building and assessment of the impact of covariates for disease prevalence mapping in low-resource settings: to explain and to predict. Journal of the Royal Society Interface. 18:20210104. http://doi.org/10.1098/rsif.2021.0104
- Puranik, A., Diggle, P. J., Odiere, M. R., Gass, K., Kepha, S., Okoyo, C., Mwandawiro, C., Wakesho, F., Omondi, W., Sultani, H. M., Giorgi, E., Understanding the impact of covariates on the classification of implementation units for soil-transmitted helminths control: A case study from Kenya. BMC Methodology Research (Under Review). Pre-print available at: https://www.researchsquare.com/article/rs-3334755/v1