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Overview of the talk

Part 1: Introduction to Neglected Tropical Diseases
Part 2: Model-based geostatistics for disease mapping
Part 3: Case studies on lymphatic filariasis
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Neglected tropical diseases
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Common features of NTDs
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How can we map NTDs?
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How can we map NTDs?

𝑥𝑖: village location

𝑛𝑖: number of people tested

𝑦𝑖: number of positive cases

𝑝(𝑥): prevalence at a location 𝑥
𝑑(𝑥): spatially referenced covariate

Problem
1 How can we predict 𝑝(𝑥) using (𝑥𝑖, 𝑛𝑖, 𝑦𝑖)?

2 How can we use 𝑑(𝑥) to improve our predictive inferences on 𝑝(𝑥)?
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Defining geostatistical problems

The ingredients:

𝑆 = process of nature (e.g. disease risk)

𝑌 = data

A statistical model [𝑆, 𝑌 ] = [𝑆] × [𝑌 |𝑆]
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Standard geostatistical model for prevalence mapping

Data: 𝑥𝑖 = location of the cluster; 𝑛𝑖 = number of sampled
individuals at 𝑥𝑖; 𝑦𝑖=number of positively tested individuals at 𝑥𝑖

𝑑(𝑥𝑖) = vector covariates

𝑆(𝑥) = spatial stochastic process

𝑍𝑖 = unstructured random effects

Assumption: 𝑌𝑖|𝑆(𝑥𝑖), 𝑍𝑖 ∼ Bin(𝑛𝑖, 𝑝(𝑥𝑖))

log { 𝑝(𝑥𝑖)
(1 − 𝑝(𝑥𝑖)

} = 𝑑(𝑥𝑖)⊤𝛽 + 𝑆(𝑥𝑖) + 𝑍𝑖
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To predict or to explain?

Explanatory modelling: emphasis is placed on understanding the
relationships between the health outcome and risk factors

Predictive modelling: maximize the predictive performance of the
model
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Lymphatic filariasis
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LF prevalence surveys

- Elimination is declared when the district-wide is below 1%.

Questions: 1) How can we use these data to design a surveillance
system in a post-elimination setting? 2) Where should we place the
sentinel sites and how many?
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Geostatistical modelling of repeated cross-sectional surveys

𝒮𝑡 = {𝑆𝑡(𝑥) ∶ 𝑥 ∈ 𝐴} (true spatial surface)
𝒴𝑡 = {𝑌𝑘 ∶ 𝑘 = 0, … , 𝑡} (data collected from time 0 to time 𝑡)
𝑋𝑡 = (𝑥𝑡,1, … , 𝑥𝑡,𝑛) (locations of the data at time 𝑡)
Assumption 1: [𝑌𝑡|𝒮𝑡(𝑋𝑡)] is Binomial with linear predictor

log { 𝑝𝑡(𝑥𝑡,𝑖)
1 − 𝑝𝑡(𝑥𝑡,𝑖)

} = 𝛼𝑡 + 𝑆𝑡(𝑥𝑡,𝑖)

Assumption 2: Autoregressive process of order 1

𝑆𝑡(𝑥) = 𝛾𝑆𝑡−1(𝑥) + 𝑊𝑡(𝑥), 𝛾 > 0

with 𝑊𝑡(𝑥) being a Gaussian process with covariance function
𝜎2𝑅 + 𝜏2𝐼
Problem: inferring 𝛾 and 𝛼𝑡 from the data may not empirically
feasible.
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Parameter estimation of 𝜃−𝛾

Let 𝜃−𝛾 denote the model parameters excluding 𝛾.
Note: the marginal variance of 𝑆𝑡(𝑥) is 𝜔2 = 𝜎2/(1 − 𝛾2).
We estimate 𝜃−𝛾 using the estimating equation originating from

𝐿(𝑌0, … , 𝑌𝑘; 𝜃−𝛾) =
𝑘

∏
𝑖=1

𝐿1(𝑌𝑖; 𝜃−𝛾)

We define 𝑘 in the above equation as the last time point for which
the data allow for the estimation of 𝛼𝑘.

We maximize 𝐿(𝑌0, … , 𝑌𝑘; 𝜃−𝛾) with respect to 𝜃−𝛾) using Monte
Carlo maximum likelihood.
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Proposed inferential methods

Defining are suitable prior for 𝛾 (the temporal correlation parameter)
and for 𝛼𝑡 (the overall average prevalence).

Uniform discrete prior for 𝛾 over {0, 1/10, 2/10, … , 1}.
For 𝛼𝑡, we use a tight prior around log{0.01/(1 − 0.01)} ≈ −4.6

We use the maximum likelihood estimator distribution as prior for 𝜃−𝛾.

𝒴𝑡 = {𝑌𝑘 ∶ 𝑘 = 0, … , 𝑡} (data collected from time 0 to time 𝑡)
At time 𝑡, we then sample from [𝒮𝑡|𝒴𝑡] to assess the likelihood of
resurgence (prevalence above 1%)
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Setting up a simulation study

Objective of the simulation: assess if the modelling framework can
detect LF resurgence.

Parameters of the simulation:
1) where to place the sentinel sites
2) how many sentinel sites per district
3) the resurgence rate
4) frequency of the sampling at sentinel sites.
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LF in Malawi
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Inital results from a simulation study

Parameters of the simulation: 1) allocate sentinel sites to locations with
highest prevalence; 2) 2 sentinel sites per district; 3) resurgence rate of 5%
prevalence increase every year; 4) sampling once per year.
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Discussion

We should also account for heterogeneous intervention coverage
(TRANSFIL model)

Computationally more efficient methods of inference (Kalman filter
approximation for Binomial counts?)

Generalizable to other NTDs.
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