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Introduction

Physics ∩Maths ∩ Philosophy

It is an honor for me to speak on the occasion of the 65th birthday of
Miklós Rédei.

I had the pleasure to discuss with him about questions belonging to the
intersection of Physics, Maths and Philosophy. In particular, about
foundations of QFT.

In this talk I will present my thoughts about the foundation of QFT
from the (Physics ∩Maths) perspective, but I hope to contribute also to
the philosophical debate on this topic.
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Introduction

Two faces of QFT

Traditionally, axiomatic approaches to QFT (in particular the
framework of Haag and Kastler) provided a good ground for
investigation conceptual foundations of the theory.

In particular, the very clear and deep works Miklós Rédei, including
the one that was an inspiration to me to start thinking about the notion
of independence in AQFT: Rédei, and Summers: When are quantum
systems operationally independent?, International Journal of
Theoretical Physics 49 (2010) 3250-3261.

However, constructing models in AQFT is hard and we do not know
(as for today) any interacting rigorously constructed models in 4D.

On the other hand, perturbative QFT (pQFT) produces numbers that
agree with experiments with a remarkable precision, but its
practitioners often are not concerned with mathematical rigor.

So, is there a tension between axiomatic and perturbative QFT?
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Introduction

A mathematical physicist view

As a mathematical physicist, in order to say something about pQFT, I
need to put it into a sound mathematical framework.

I claim that pQFT is, from mathematical perspective, fully compatible
with the idea of locality underlying the algebraic approach of Haag and
Kastler (later referred to as AQFT).

There exists a mathematically rigorous framework that combines the
robustness of pQFT methods and conceptual clarity of AQFT. This
framework goes under the name: perturbative algebraic quantum field
theory (pAQFT)

From this point of view, the Haag-Kastler framework is the concep-
tual foundation, whereas perturbation theory is a tool to produce
models that fulfill (weakened version of) the Haag-Kastler axioms.

6 / 32
From perturbation theory to rigorous axioms: modern paradigm for studying foundations of QFT

N



Introduction

A mathematical physicist view

As a mathematical physicist, in order to say something about pQFT, I
need to put it into a sound mathematical framework.

I claim that pQFT is, from mathematical perspective, fully compatible
with the idea of locality underlying the algebraic approach of Haag and
Kastler (later referred to as AQFT).

There exists a mathematically rigorous framework that combines the
robustness of pQFT methods and conceptual clarity of AQFT. This
framework goes under the name: perturbative algebraic quantum field
theory (pAQFT)

From this point of view, the Haag-Kastler framework is the concep-
tual foundation, whereas perturbation theory is a tool to produce
models that fulfill (weakened version of) the Haag-Kastler axioms.

6 / 32
From perturbation theory to rigorous axioms: modern paradigm for studying foundations of QFT

N



Introduction

A mathematical physicist view

As a mathematical physicist, in order to say something about pQFT, I
need to put it into a sound mathematical framework.

I claim that pQFT is, from mathematical perspective, fully compatible
with the idea of locality underlying the algebraic approach of Haag and
Kastler (later referred to as AQFT).

There exists a mathematically rigorous framework that combines the
robustness of pQFT methods and conceptual clarity of AQFT. This
framework goes under the name: perturbative algebraic quantum field
theory (pAQFT)

From this point of view, the Haag-Kastler framework is the concep-
tual foundation, whereas perturbation theory is a tool to produce
models that fulfill (weakened version of) the Haag-Kastler axioms.

6 / 32
From perturbation theory to rigorous axioms: modern paradigm for studying foundations of QFT

N



Introduction

A mathematical physicist view

As a mathematical physicist, in order to say something about pQFT, I
need to put it into a sound mathematical framework.

I claim that pQFT is, from mathematical perspective, fully compatible
with the idea of locality underlying the algebraic approach of Haag and
Kastler (later referred to as AQFT).

There exists a mathematically rigorous framework that combines the
robustness of pQFT methods and conceptual clarity of AQFT. This
framework goes under the name: perturbative algebraic quantum field
theory (pAQFT)

From this point of view, the Haag-Kastler framework is the concep-
tual foundation, whereas perturbation theory is a tool to produce
models that fulfill (weakened version of) the Haag-Kastler axioms.

6 / 32
From perturbation theory to rigorous axioms: modern paradigm for studying foundations of QFT

N



1 Introduction

2 Interlude: Spacetime geometry

3 AQFT

4 QFT on curved spacetimes

5 pAQFT

6 Details of the construction

7 / 32
From perturbation theory to rigorous axioms: modern paradigm for studying foundations of QFT

N



Interlude: Spacetime geometry

Space and time

x

t

(t0, x0)

The main principle of special relativity says
that nothing can move faster than light, so∣∣∣∣dx

dt

∣∣∣∣ cannot be higher than c, the speed of

light. From now on we choose units in
which c = 1.

On the spacetime diagram, we can draw at
each point two lines (a cone) representing
|x− x0| = |t− t0|, which limits the region of
spacetime accessible from that point. This
object is called the lightcone with apex
(t0, x0).
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Interlude: Spacetime geometry

Space and time

x

t

(t0, x0)

We introduce the causal structure: taking
(t0, x0) as a reference point, we can
distinguish directions which are:

spacelike (cannot be reached from (t0, x0)),
future-pointing,
past-pointing,
light-like (along the lightcone).

This way we divide the spacetime into
regions that are in the future of (t0, x0), in its
past, or are spacelike to (t0, x0).
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Interlude: Spacetime geometry

Space and time

To summarize: in special relativity at each
point (t0, x0) the lighcone is described by
the equation |x− x0| = |t − t0|, or
equivalently (t − t0)2 − (x− x0)2 = 0.

in general relativity we want to keep the
idea of the lightcone, but the equation
describing the lighcone changes from point
to point. Lighcones at different points can
be tilted and twisted, so observers at
different points have different ideas what is
future, past or spacelike.
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Interlude: Spacetime geometry

Classifications of curves

A curve γ : R ⊃ I → M is

spacelike if g(γ̇, γ̇) < 0,
timelike if g(γ̇, γ̇) > 0,
lightlike if g(γ̇, γ̇) = 0,
causal if g(γ̇, γ̇) ≥ 0,

where γ̇ denotes the tangent vector.

M

I ⊂ R

γ

An important principle of general relativity states that observers
can move only on timelike curves, so the causal structure given by
the metric “tells particles where to go”.
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AQFT

Intuition behind the algebraic
approach to QFT

quantum field theory (QFT) is a framework which allows to
combine special relativity with quantum mechanics (i.e. to
combine small scales and high velocities).

Input from SR: causality, structure of Minkowski spacetime, notions of
future past and spacelike separation.

Input from QM: observables as operators on some Hilbert spaceH,
states (elements ofH), expectation values, correlations, entanglement.

Idea: abstract notion corresponding to the algebra of bounded
operators on a Hilbert space: C∗-algebra.

Idea: implement causality by considering algebras of observables that
can be measured in bounded regions of spacetime.
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AQFT

Algebraic approach
We associate algebras to regions O ⊂M of Minkowski spacetime in
such a way that:

A(O) is the algebra of observables that can be measured in O,

A(O) is a C∗ unital algebra (examples: matrix algebra Mn(C),
bounded opeartors on a Hilbert space),

the condition of Isotony, is satisfied, i.e.:
O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2).

O
O′ O′′M
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AQFT

Haag-Kastler axioms
We associate algebras to regions O ⊂M of Minkowski spacetime in
such a way that:

Locality: algebras associated to spacelike separated regions commute:
O1 spacelike separated from O2, then [A,B] = 0, ∀A ∈ A(O1),
B ∈ A(O2)

Covariance: there exists a family of isomorphisms
αOL : A(O)→ A(LO) for Poincaré transformations L, s.t. for O1 ⊂ O2
the restriction of αO2

L to A(O1) coincides with αO1
L and such that:

αLO
L′ ◦ αOL = αOL′L,

Time slice axiom: the algebra of a neighbourhood of a Cauchy surface
of a given region (Cauchy surface = every inextendible causal curve
intersects it exactly once). coincides with the algebra of the full region.

Spectrum condition: for P, the generator of translations eiaP = U(a),
aP = aµPµ, the joint spectrum is contained in the forward lightcone:
σ(P) ⊂ V+.
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QFT on curved spacetimes

QFT on curved spacetimes

How to generalize the ideas of AQFT to
arbitrary Lorentzian backgrounds?
Recently there was a lot of progress in
QFT on curved spacetimes, with
applications to cosmology and quantum
gravity (talk of Klaus),

In this approach one associates to each
spacetime from a certain class (globally
hyperbolic) the algebra of observables.

The principle of covariance known
from GR is realized by imposing the so
called general local covariance.
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QFT on curved spacetimes

Locally covariant quantum field
theory

A locally covariant quantum field theory is defined as a covariant
functor A between the category of spacetimes and the category of
observables.

This means that to each spacetime M we associate an algebra A(M)
and to every admissible embedding ψ an inclusion of algebras αψ
(notion of subsystems) and the following diagram commutes:

M1
ψ−−−−→ M2

A

y yA

A(M1)
A(ψ)−−−−→ A(M2)

The covariance property reads:

αψ′ ◦ αψ = αψ′◦ψ , αidM = idA(M) ,
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QFT on curved spacetimes

Further axioms

One can also include two further axioms which are important in QFT:
causality and time-slice axiom.

Causality: If there exist admissible embeddings ψj : Mj → M, j = 1, 2,
such that the sets ψ1(M1) and ψ2(M2) are causally separated in M,
then:

[αψ1(A(M1)), αψ2(A(M2))] = {0},

where [., .] is the commutator of given C∗ algebras.

Time-slice axiom: If the morphism ψ : M → M′ is such that ψ(M)
contains a Cauchy-surface in M′, then αψ is an isomorphism.

A stronger set of axioms that guarantees also operational independence
between disjoint spacelike regions, was proposed by Gyeni and Rédei:
Categorial subsystem independence as morphism co-possibility.
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pAQFT

Perturbative algebraic quantum
field theory

Perturbative algebraic quantum field theory (pAQFT) is a
mathematically rigorous framework that allows to build interacting
LCQFT models.

It combines Haag’s idea of local quantum physics with methods of
perturbation theory.

The axioms of pAQFT are the same as the axioms of LCQFT, but we
replace C∗-algebras with formal power series in ~ with coefficients in
topological ∗-algebras.
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pAQFT

Main contributions to pAQFT

Free theory is obtained by the formal deformation quantization of
Poisson (Peierls) bracket: ?-product ([Dütsch-Fredenhagen 00,
Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, . . . ]).

Interaction introduced in the causal approach to renormalization due to
Epstein and Glaser ([Epstein-Glaser 73]),

Generalization to gauge theories using homological algebra ([Hollands
08, Fredenhagen-KR 11]).

For a review see the book: Perturbative algebraic quantum field theory.
An introduction for mathematicians, KR, Springer 2016.
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pAQFT

Physical input

A globally hyperbolic spacetime M.

Configuration space E(M): choice of objects we want to study in our
theory (scalars, vectors, tensors,. . . ).

Typically E(M) is a space of smooth sections of some vector bundle
E π−→ M over M. For the scalar field: E(M) ≡ C∞(M,R).

Dynamics: we start with a Lagrangian L use a fully covariant
modification of the Lagrangian formalism, adapted to the infinite
dimensional situation.
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pAQFT

Construction of models

Start with the Lagrangian L and split it into quadratic part L0 and the
interaction term V so that L = L0 + V .

Construct the classical theory corresponding to L0 using the covariant
formulation of Peierls and quantize it using deformation quantization.
We obtain the free quantum theory functor A0.

Introduce the interaction perturbatively. The idea is to mimic the
Interaction picture in quantum mechanics.

For a given classical observable F one defines the interacting quantum
observable Fint by using a formula that resembles a Dyson series and
goes back to Bogoliubov.

Constructing Fint requires renormalization and is done perturbatively.
The method we use is the Epstein-Glaser renormalization. It is a fully
mathematically rigorous method and it gives the same numerical
results as "standard approaches" to renormalization.
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Details of the construction

Propagators and Green functions

Let M be a globally hyperbolic spacetime (i.e. has a Cauchy surface).

E(M) = C∞(M,R), observables are functionals on E(M).

For the free scalar field the equation of motion is Pϕ = 0, where
P = −(2 + m2) is (minus) the Klein-Gordon operator.

Under some technical assumptions on M, P admits retarded and
advanced Green’s functions ∆R, ∆A. They satisfy:
P ◦∆R/A = idD(M), ∆R/A ◦ (P

∣∣
D(M)

) = idD(M) and

supp(∆R) ⊂ {(x, y) ∈ M2|y ∈ J−(x)} ,
supp(∆A) ⊂ {(x, y) ∈ M2|y ∈ J+(x)} .

supp f

supp ∆A(f )

supp ∆R(f )

Their difference is the causal propagator
∆

.
= ∆R −∆A.
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Details of the construction

Poisson structure and the ?-
product

The Poisson bracket of the free theory is

{F,G} .=
〈

F(1),∆G(1)
〉
.

We define the ?-product (deformation of the pointwise product):

(F ? G)(ϕ)
.
=

∞∑
n=0

~n

n!

〈
F(n)(ϕ),W⊗nG(n)(ϕ)

〉
,

where W is the 2-point function of a Hadamard state and it differs from
i
2

∆ by a symmetric bidistribution, denoted by H.

The free QFT is defined as A0(M)
.
= (F(M)[[~]], ?, ∗), where

F∗(ϕ)
.
= F(ϕ) and F(M) is an appropriate functional space (some WF

set conditions on F(n)(ϕ)s induced by W).
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Details of the construction

Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are test
functions, i.e. F(n)(ϕ) ∈ D(Mn),

The time-ordering operator T is defined as:

T F(ϕ)
.
=

∞∑
n=0

1
n!

〈
F(2n)(ϕ), (~

2 ∆F)⊗n
〉
,

where ∆F =
i
2

(∆A + ∆R) + H and H = W − i
2

∆.

Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance i~∆F”,

T F(ϕ)
formal
=

∫
F(ϕ− φ) dµi~∆F (φ) .

Define the time-ordered product ·T on Freg(M)[[~]] by:

F ·T G .
= T (T −1F · T −1G)
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Details of the construction

Interaction

We now have an algebraic structure with two products
(Freg(M)[[~]], ?, ·T ), where ? is non-commutative, ·T is commutative
and they are related by a causal relation:

F ·T G = F ? G ,

if the support of F is later than the support of G.

Interaction is a functional V ∈ Freg(M)). Using the commutative
product ·T we define the S-matrix:

S(λV)
.
= eiλV/~

T = T (eT
−1(iλV/~)) ,

on Freg((~))[[λ]].

Interacting fields are defined on Freg[[~, λ]] by the formula of
Bogoliubov:

Fint
.
= RλV(F) = −i~

d
dµ
S(λV)−1 ? S(λV + µF)

∣∣
µ=0
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Details of the construction

Interacting star product

Using Møller maps RVλ, one can define the following product on
Freg[[~, λ]]:

F ?int G .
= R−1

λV (RλV(F) ? RλV(G)) ,

It was shown recently (Hawkins & KR 2016) that this expression is
non-perturbative in λ.

Using ?int, we construct the interacting quantum theory functor AλV .

30 / 32
From perturbation theory to rigorous axioms: modern paradigm for studying foundations of QFT

N



Details of the construction

Interacting star product

Using Møller maps RVλ, one can define the following product on
Freg[[~, λ]]:

F ?int G .
= R−1

λV (RλV(F) ? RλV(G)) ,

It was shown recently (Hawkins & KR 2016) that this expression is
non-perturbative in λ.

Using ?int, we construct the interacting quantum theory functor AλV .

30 / 32
From perturbation theory to rigorous axioms: modern paradigm for studying foundations of QFT

N



Details of the construction

Interacting star product

Using Møller maps RVλ, one can define the following product on
Freg[[~, λ]]:

F ?int G .
= R−1

λV (RλV(F) ? RλV(G)) ,

It was shown recently (Hawkins & KR 2016) that this expression is
non-perturbative in λ.

Using ?int, we construct the interacting quantum theory functor AλV .

30 / 32
From perturbation theory to rigorous axioms: modern paradigm for studying foundations of QFT

N



Details of the construction

Renormalization problem

Because of singularities of ∆F, the time-ordered product ·T is (usually)
not well defined on local, non-constant functionals, but the physical
interaction is usually local!

Renormalization problem: extend S(.) to local arguments. This is
reduced to extending the n-fold time-ordered products, since we can
define:

S(V) =

∞∑
n=0

1
n!
Tn(V, ...,V) .

The time-ordered product Tn(F1, ...,Fn)
.
= F1 ·T ... ·T Fn of n local

functionals is well defined if their supports are pairwise disjoint.

To extend Tn to arbitrary local functionals we use e.g. the causal
approach of Epstein and Glaser.
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Details of the construction

Conclusions

pQFT makes predictions that fit experiment with remarkable accuracy,
so should be taken seriously.

pAQFT is a rigorous framework that allows us to put computations
done in pQFT into a different context.

It shares the locality principle and most other axioms of AQFT (or its
locally covariant version LCQFT), but drops the requirement of the
local algebras to be C∗.

This opens up perspectives for better conceptual understanding of
pQFT.

Recent developments (e.g. Bahns & KR, CMP 2017) show that pAQFT
can be used also to obtain non-perturbative results, i.e. to construct
AQFT models.
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Happy Birthday Miklós!
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