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Abstract 
 

There is a growing amount of health economics literature in Europe using standardised cross-country 

health inequality indexes. Yet, limited efforts have been put forward to examine the extent to which 

such evidence is subject to any specific methodological and publication biases despite studies relying 

upon different samples, heterogeneous health system institutions and which use different empirical 

strategies and data manipulation procedures. We draw upon appropriate statistical methods to 

examine the presence of publication bias in the health economics literature measuring health 

inequalities of self-reported health. In addition, we test for other biases including the effect of 

precision estimates based on meta-regression analysis (MRA). We account for a set of biases in 

estimates of income-related health inequalities that rely on concentration index-related methods and 

self-reported health measures. Our findings suggest evidence of publication bias that primarily 

depends on the cardinalisation of self-reported health and study-specific precision. However, no 

robust evidence of other publication biases has been identified.  

 

Keywords: health inequalities, concentration index, self-reported health, publication bias 
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1. Introduction 

 

Health inequalities are generally regarded as a key outcome measure to evaluate health 

systems performance (WHO, 2000). In response to such as policy need, recent health economics 

research has focused on developing sound methodologies to undertake such measurements, primarily 

drawing from index measures that meet some ideal properties, and more specifically, concentration 

indices. 

 

The wealth of evidence on heterogeneity in existing estimates suggests that there are reasons 

to believe that publication bias exists.  Often studies rely on different datasets of similar European 

countries, use different inferences and often carry out adjustments to adequate the measure of self-

reported health employed to ideal requirements (Van Doorslaer et al, 1997, 2004). However, limited 

meta-analysis, or meta-regression studies have been undertaken to account for the numerous study 

biases that are generally present in the empirical literature, and that we ascertain are not absent from 

health inequality studies. The health economics literature is a prone area for biased estimates (Costa-

Font et al, 2013 for a review). One of the areas where biased estimates can emerge is in the 

measuring of health inequalities due to the large difficulties in measuring health, accounting for 

study and institutional constraints, as well as study year and data alongside other potential 

explanations for publication bias such as precision. However, what is the importance of all those 

potential biases in explaining the heterogeneity in health inequality estimates? 

 

This paper attempts to examine the extent to which inequalities in health are affected by 

precision and publication biases: namely, to investigate whether health inequality estimates are 

indeed biased by some precision effects, the sort of publication outlets they get published on, 

alongside other study characteristics that could potentially shape the empirical estimates in some 

direction. In doing so, it is then possible to use the meta-regression analysis (MRA) - a set of 

techniques developed to integrate and correct estimated regression coefficients. Thus, allows filtering 

the sort of biases, and hence coming up with an unbiased estimate for each country.  A second 

objective lies in explaining the determinants of health inequality taking advantage of MRA. Indeed, 

MRA produces estimates after correcting for precision effects (generally proxied by the standard 

error of the estimates). In addition, such regression can incorporate institutional determinants of the 

countries which the studies refer to, such as whether certain health systems are more prone to exhibit 

health inequalities than others. More specifically, we test for the existence of different biases that 
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explain inequality estimates when study characteristics and methodologies or empirical strategies are 

controlled for.   

 

Given the heterogeneity in inequality measurement methodologies in social science, and in 

the health status measures, we restrict our analysis to studies that employed homogeneous inequality 

indexes (generally representing the methods health economists rely on), and more specifically 

concentration indexes. Furthermore, given the distinct meaning of health status measures, we in 

addition restricted our sample to studies that employ measures of self –reported health.  The 

empirical strategy followed is to first graphically examine funnel graphs, which plot estimates 

against a measure of precision1. The latter is informative of the distribution of the sample of studies 

examined. Next, we undertake multivariate MRA to explain the typically large systematic variation 

among reported effects and estimate the size of potential biases. With sufficient data, we can sensibly 

estimate the effects that various methodological choices have upon the magnitude of the reported 

empirical results.  

 

To summarise, this paper aims at examining the following issues: 

 

a) The country-specific determinants of health and health care inequalities; 

b) While controlling for system specific effects, to isolate the effect of precision from health 

inequality measurement 

c) To identify the causes of the heterogeneity in health equity studies. 

 

The structure of the paper is as follows. In Section 2 we present the methods and data used for this 

analysis. In Section 3 we offer a discussion of the results and Section 4 is devoted to conclusions and 

implications.  

 

2. Methods and Data 
2.1 Methods and empirical strategy 

 

Measuring inequalities in health 

Inequality is in itself a measure of relative dispersion that can be identified visually by comparing 

extremes on a distribution. However, the measure encounters severe difficulties when it comes to 

                                                 
1 A funnel graph is a scatter diagram of a reported empirical estimate (ei) and its precision (1/SEi). 
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finding ways to compare two country distributions over time and space. One way to summarise such 

information is by using inequality indices. Inequalities indices include ranking, Lorenz curves and 

Gini coefficients and Concentration Curves and Concentration Indices. 

 

The Lorenz Curve and Gini coefficient measure the absolute level of inequality in health (LeGrand, 

1989; Wagstaff, Paci and van Doorslaer, 1991) and the expression is given by: 

 

 (1) 

 

where Rh is the relative rank in the health distribution, with individuals ordered from the lowest to 

the highest level of health.  

 

Similarly, concentration curves can be used to evaluate to what extent certain characteristics are 

unequally distributed according to health, not income, and to calculate the concentration indices. 

 

There are three basic requirements of an inequity index: i) to reflect the socioeconomic dimension of 

inequalities in health, ii) to reflect the experiences of the population as a whole, and iii) to be 

sensitive to changes in the distribution of the population among socioeconomic groups. Many 

indices, such as the Gini coefficient, do not satisfy the first requirement. Others, such as ranking, do 

not take into account the other two: they only focus on the experience of the groups at the extreme of 

the distribution and they do not reflect the distribution of the population in several groups. The main 

advantages of Concentration Indices are that they meet the basic requirements and they are an easy 

way to compare inequalities among countries. In addition, they are useful for several reasons: to 

check whether the relative magnitude in some country is important and to evaluate which health care 

systems contribute more to widening levels of inequality. 

 

The Gini coefficient and the Concentration index are directly related through the following 

expression:  

C = {ρ(y,R)/ρ(y,Rh)}G      (2) 

 

Policy makers may also be concerned about other sources of inequality that are captured in a 

measure of total health inequality.  This can be analysed using health Lorenz curves and inequality 

can be measured using the Gini coefficient of health inequality (Le Grand, 1989; Wagstaff, Paci and 

2 ( , )hG Cov y R
µ

 
=  
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van Doorslaer, 1991).  The attraction of this approach is that there is a direct relationship between the 

concentration index and the Gini coefficient for health: the concentration index is proportional to the 

Gini coefficient, where the factor of proportionality is given by the ratio between the correlation 

coefficient for health and income rank and the correlation coefficient between health and health rank 

(Kakwani, 1980; van Doorslaer and Jones, 2003). This means that it is easy to move between these 

particular measures of socioeconomic and pure health inequality. 

 

Methods based on concentration curves and concentration indices have been extensively used for 

measuring inequalities and inequities (Wagstaff and van Doorslaer, 2000). The health concentration 

curve (CC) and concentration index (CI) provide measures of relative income-related health 

inequality (Wagstaff, Van Doorslaer and Paci, 1989).  Wagstaff, Paci and van Doorslaer (1991) have 

reviewed and compared the properties of the concentration curves and indices with alternative 

measures of health inequality. They argue the main advantages as  the following: they capture the 

socioeconomic dimension of health inequalities; they use information from the whole income 

distribution rather than just the extremes; they provide the possibility to represent results visually 

through the concentration curve; and finally, they allow checks for dominance relationships.  

 

The concentration index (CI) is derived from the concentration curve (CC). This is illustrated in 

Figure 1 for a measure of ill-health. The sample of interest is ranked by socioeconomic status. If 

income is used as the relevant ranking variable, the horizontal axis begins with the poorest individual 

and progresses through the income distribution up to the richest individual. This relative income rank 

is then plotted against the cumulative proportion of illness on the vertical axis.  This assumes that a 

cardinal measure of illness is available that can be compared and aggregated across individuals. The 

45-degree line shows the line of perfect equality, along which the population shares of illness are 

proportional to income, such that the poorest 20% of individuals experience 20% of illnesses in the 

population. “Pro-poor” inequality is illustrated by the concave curve in the figure which corresponds 

to the concentration curve. In the example shown, the poorest 20% of income earners experience 

more than 20% of illnesses. The size of inequality can be summarised by the health concentration 

index, which is given by twice the area between the concentration curve and the 45-degree line.  
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Figure 1:  Concentration curve for ill-health 
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Source: Authors’ elaboration 

 

There are various ways of expressing the CI algebraically. The one that is mostly used in the 

literature for its convenience is: 

 

 ( )( )1
21

2 2 cov( , )N
i i i ii

C y R y Rµ
µ µ=

= − − =∑                       (3) 

 

This shows that the value of the concentration index is equal to the covariance between individual 

health (hi) and the individual’s relative rank (Ri), scaled by the mean of health in the population (μ). 

Then the whole expression is multiplied by 2 to ensure the concentration index ranges between -1 

and +1. Equation (1) indicates that the CI is a measure of the degree of association between an 

individual’s level of health and their relative position in the income distribution. It is important to 

highlight that a value of CI = 0 does not mean an absence of inequality, but an absence of the 

socioeconomic gradient in the distribution; this is, an absence of inequality associated with 

socioeconomic characteristics. 
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2.2 Meta-regression analysis 

 

The standard MRA model used in the vast majority of economic applications is: 

 

   ej =   β  +  ∑αk Zjk +  εj    (j=1, 2, …L)              (4) 

Where ej is the empirical effect in question, and Zjk are moderator variables used to explain the large 

study-to-study heterogeneity routinely found in economics research (Stanley and Jarrell, 1989).  

Moderator variables might include:  

1. Dummy variables which reflect whether potentially relevant independent variables have been 

omitted from (or included in) the primary study. 

2. Specification variables that account for differences in functional forms, types of regression, 

and data definitions or sources, etc. 

3. Sample size (Stanley and Jarrell, 1989, p.165).2   

 

The conventional model of publication selection in both economics and medical research is a simple 

MRA between a study’s estimated effect and its standard error. 

 CIi = β1 + β0SEi + εi                       (5) 

 

( Egger et al., 1997; Stanley, 2005; Stanley, 2008).   

 

An obvious statistical problem is that estimated effects in equation (5) will have different variances 

(i.e., heteroschedasticity). Weighted least squares (WLS) are the conventional correction for 

heteroschedasticity. The WLS version of (5) may be obtained by weighting the squared errors by the 

inverse of the estimates’ individual variances (i.e., 1/SE2
i), or by dividing equation (5) by SEi.3  In 

doing so, the resulting model is given by (6): 

 

  ti=  CIi/SEi = β0 + β1 (1/SEi) +β2 Xi+ vi  (6) 

 

 Note that the dependent variable becomes the study’s reported t-value, and the independent 

variable is precision, 1/SEi. As SEi approaches zero in equation (5), the expected effect will approach 

                                                 
2  As discussed in the next section, one of these moderator variables should be the estimate’s standard error if we 
are to identify and control for publication selection bias.   
3  Rather than actually dividing all the observations of each variable by SEi, many meta-analysts choose to use a 
canned statistical routine for WLS using 1/SE2

i as the weights. Estimating equation (6) using OLS gives the same results 
as standard statistical routines for WLS on equation (5).   
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β1, regardless of publication selection bias. For this reason, medical researchers use the estimate of β1 

in equation (5) or (6) as the corrected empirical effect.4  Xi refers to the set of other covariates that 

are study specific and are thought to influence the empirical estimates. Both the funnel graph and this 

MRA model of publication selection reveal the central importance of precision in evaluating 

research. Testing precision’s coefficient (H0: β1=0) serves as a powerful statistical test—precision-

effect test (PET) — for a genuine empirical effect beyond publication selection (Stanley, 2008). 

PET’s validity has been confirmed in simulations and in several economic applications (Stanley, 

2008; Doucouliagos and Stanley, 2009). 

 

Finally, as an extension, a Heckman-like correction called Precision effect estimate with standard 

error (PEESE) is provided, which refers to the precision effect estimate with standard error model, 

and can be used to obtain an estimate that is robust to publication selection bias so that (6) can be 

extended to: 

 

ti=  CIi/SEi = β0 SEi + β1 (1/SEi) + β2 Xi (1/SEi) + vi    (7) 

  

2.3 Data  

 

The data used in this study has been built by carefully reading and coding published studies, 

selecting those that used a homogeneous measure of health that appears to be more prevalent, namely 

self-reported health status. When some of the information was not present in the study, we have 

inferred it from other paper estimates or asked authors to provide it so that a full database could be 

constructed. In some cases, we identified some errors in the original paper and we have corrected 

them in our estimate. From each study, we selected a set of relevant variables including: sample size, 

number of variables, method employed, institutional variables, precision and other relevant 

characteristics.  

 

Table 1 reports the summary statistics of the main variables employed in the study. Specifically, our 

dependent variable is an estimate of the concentration index of self-reported health for a set of 

different countries (CI). Consistently, given that we focus on a measure of ill health estimated using 

the conventional scales, a negative concentration index is suggestive of ill health concentrated among 

                                                 
4  Unfortunately, this estimate is known to be biased downward when there is a genuine nonzero effect (Stanley, 
2008).  To reduce this bias, Stanley and Doucouliagos (2007) offer an alternative MRA estimator.  Also see Moreno et 
al. (2009).   
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the less affluent. However, we take the absolute value of significant estimates to ease the 

interpretation of the results. The average value of the concentration index is roughly 0.05, which 

exhibits a significant standard error (SE), suggesting the existence of significant heterogeneity in 

concentration index estimates, as exhibited in the Funnel plot. Furthermore, conventionally, MRA 

estimates include as covariates the standard error of each CI estimate (which proxies for the 

precision of each estimate) and exhibit a mean value of 0.015. Given that most studies supply 

European data, we have classified estimates based on some identifiable features of the health system, 

namely whether the data refers to a country where the health system is organised as a public national 

health service (NHS) (around 46% in our sample) or not.  The latter is important so long as national 

health services tend to prioritise equity as a system goal under the mission of ‘equal access for equal 

need’. NHS is a dummy variable taking the value of 1 if an estimate refers to a set of countries in 

Northern Europe as well as a few in southern Europe including Britain and Ireland, whilst countries 

organised as social insurance schemes would take that value of zero. Then our study incorporates 

variables proxying the year of the study (Year), which arguably will influence both the magnitude 

and the precision of the inequality estimates given that inequality indexes often have been improved 

over time. In addition, other controls that were deemed relevant were the number of observations (N) 

- the larger the number of estimates, the more reliable they are. Finally, given the complexity in 

measuring health, we examine whether health status as a variable was cardinalised (Cardinal) which 

refers to 88% of the cases included in the analysis, or instead whether health was measured in an 

ordinal or categorical format.   

 

 

Table 1. Summary Statistics 

Variable Definition Number of 
Observations 

Mean (s.e) 

CI Concentration Index 
Estimate 

301 0.048

7 

(0.002) 

SE Standard error of the 
concentration index 

298 0.015 (0.001) 

NHS Estimate from a National 
Health Service 

301 0.465 (0.028) 

Year Year of the estimate - 1978 195 16.4 (0.424) 

N Number of observations 139 6399 (424.5) 

Cardinal  Some form of cardinal 
transformation is performed 

301 0.887 (0.018) 
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3. Results 
 

After extracting estimates for all the studies identified in the sample, we were left with 301 

observations, which constitute a sample of homogeneous observations very much in line with other 

meta-regression studies. Although new studies are being produced every year, the number of studies 

already meeting publication standards is sufficient to perform a meta-regression analysis, given that 

they draw upon methods developed about two decades ago.  

 

Possibly the first and most natural way to examine the results is a simple graphical exploitation of 

the data. A resulting funnel plot reflects the distribution in Figure 1, which reports the absolute value 

of inequality of self-reported health studies plotted against a precision measure, which is the inverse 

of the standard error of the regression. Studies with less precision and hence, larger standard errors, 

are at the bottom of the graph and will produce estimates that are more spread out.  Figure 1 makes 

apparent that there are large differences in the precision of inequality estimates, ranging from 0.2 to 

0. Furthermore, it appears as though there were two distributions in the analysis that superimpose 

each other, one with a concentration index that is very close to zero and another distribution cantered 

around 0.1. However, from simply observing a Funnel plot, it is not possible to ascertain the nature 

of such a distribution. The latter paves the way to pursuing a meta-regression strategy to investigate 

the underlying difference in inequality estimates. MRA will allow us to control for potential 

variables that explain the distribution of average inequality estimates.  

 

Figure 1. Funnel Plot (CI  on X – axis and  1/SE on Y -axis) 
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Source: own elaboration for study estimates 

As the second step, we ran several meta-regression specifications, and performed the conventional 

FAT–PET tests as in equations (6), which are reported in Table 2.  These tests will allow us to 

identify early the presence of publication bias and whether robustness of the empirical estimates is an 

issue.  

 

Results from Table 2 suggest that the coefficient of the intercept is significant and suggests that we 

can reject the null hypothesis of no publication bias. However, estimates differ depending on whether 

regression estimates have clustered the standard errors by belonging to the same study, alongside a 

battery of controls. The significance of the intercept coefficient suggests that irrespective of the 

controls we adjust the mean inequality estimate for, there is still evidence of publication bias. 

Controls include the way in which health system is financed  (i.e. whether estimates refer to an NHS 

country that does not exhibit a significant coefficient), the year of data of each estimate (suggesting 

the presence of inequalities increasing over time), the number of observations (which importantly 

does not seem to influence the regression results), whether the health data was cardinally measured 

(which appears consistently significant), and finally, whether or not the data has both a panel format 

(which does not appear significant). 

 

The coefficient for 1/SE reflects the precision of the MRA or the so –called PET (precision-effect 

test), suggesting that the concentration index ranges from 0.016 to 0 depending on the controls and 

the clustering of the standard errors. Unfortunately, this coefficient is known to be biased downwards 

when there is a genuine effect (Stanley, 2008), hence it contains important information but calls for 

further testing. Only the variable measuring the extent to which self-reported health was measured on 

a cardinal scale appears as significant in the specifications reported in Table 2. These results are 

indicative that possibly some source of bias lies in how health is cardinalised, when it is cardinalised. 

Furthermore, the significance of the intercept suggests that we can reject the null hypothesis of no 

selection bias (according to the FAT - funnel-asymmetry test) even when more controls are taken 

into consideration.  
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Table 2.  Funnel Asymmetry Test (FAT) and Precision Effect Test (PET) 

 coeff 

(s.e) 

Coeff 

(s.e) 

Coeff 

(s.e) 

1/SE 0.013* 

(0.005) 

0.007 

(0.005) 

0.006 

(0.005) 

NHS  -1.849 

(1.491) 

-1.641 

(1.154) 

Year of data  0.0379 

(0.0383 

0.008 

(0.060) 

N  -0.00011 

(9.27E-4) 

1.17E-05 

(6.74E-05) 

Cardinal  -5.624* 

(1.453) 

-6.823* 

(1.369) 

Panel    2.651 

(2.416) 

Intercept 2.155* 

(1.13) 

8.1547* 

(2.888) 

7.596* 

(2.542) 

Study cluster Yes Yes Yes 

F- Test 6.55 17 194.2 

Adjusted R2 0.15 0.47 0.52 

 * Highlighted if significant at least at 5%.  
Notes: 1/SE  refers to a  measure of precision of the inequality estimate reported in each study. NHS refers to a dummy 
variable taking the value of 1 if the estimate refers to  a health system financed by taxes. Year of data refers to the year the 
estimate refers to. Cardinal refers to a dummy variable to account for the cardinalisation of an inequality estimate. Finally, 
Panel refers to a dummy variable to measure whether the estimate has been computed using longitudinal data , and hence  
whether it  filters potential unobserved heterogeneity.  

 

In order to further filter the inequality indices for potential precision effects, Table 3 provides the 

estimates of the so-called precision effect estimate with standard error model (obtained as in 

equation 7). The coefficient for precision effects (1/SE) refers to the precision-corrected 

concentration index coefficient; that is, the concentration index corrected by selection bias, which 

lies between 0.013 and 0.0 depending on the specific study controls that are introduced. However, 

the most important effect we capture refers to the corrected concentration index after standard error 

clustering, suggesting that study-specific variability is more important than study characteristics such 

as the number of observations and other. One potential explanation of such results is the different 
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degree of precision of different estimates, given that they rely on different samples and empirical 

strategies.    

Table 3. Precision Effect Estimate with Standard Error (PEESE) 

 

 

 

 

 

 

 

 

Note: * Significant at least at 5%. 

Notes: 1/SE  refers to a  measure of precision of the inequality estimate reported in each study. NHS refers to a 
dummy variable taking the value of 1 if the estimate refers to a health system financed by taxes. Year of data 
refers to the year the estimate refers to. Cardinal refers to a dummy variable to account for the cardinalisation of 
an inequality estimate. Finally, Panel refers to a dummy variable to measure whether the estimate has been 
computed using longitudinal data, and hence whether it filters potential unobserved heterogeneity.  

 

 

 

 

 

 coeff 

(s.e) 

coeff 

(s.e) 

coeff 

(s.e) 

coeff 

(s.e) 

SE 0.013* 

(0.004) 

0.013* 

(0.006) 

0.007* 

(0.002) 

0.007 

(0.006) 

1/SE 11.42 

(11.91) 

11.4266 

(35.15) 

42.75 

(33.34) 

42.748 

(48.43) 

nhs   -1.64* 

(0.54) 

-1.643 

(1.124) 

yearofdata   0.014 

(0.101) 

0.0145 

(0.062) 

N   1.59E-05 

(6.4E-05) 

1.59E-05 

(6.67E-05) 

Cardinal   -6.76* 

(0.92) 

-6.767* 

(1.383) 

Panel   2.694* 

(0.764) 

2.693 

(2.361) 

Intercept 1.837* 

(0.658) 

1.837 

(1.985) 

6.835* 

(1.801) 

6.834 

(2.651) 

Study 

cluster 

No Yes No Yes 

F- Test 4.31 7.99 178.2 234.7 

Adjusted 

R2 

0.15 0.3 0.42 0.52 
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4. Conclusions 

 

This paper is to the best of our knowledge the first attempt to estimate the extent of 

publication bias of self-reported health inequality estimates. The results of the study are 

important given that there is no clear view on what is the current level of inequalities in 

health in European countries: alternative cross-country analyses provide different results. 

One might expect heterogeneity in inequality estimates to result from study and empirical 

methodologies followed country specific effects, as well as the reliance on different health 

variables, heterogeneous databases and health system specific designs. If measures of 

inequalities in self-reported health reported in the literature were not corrected for 

methodological differences, comparisons of these measures across countries would not be 

appropriate, given that the data/methods used to obtain inequalities in health for each country 

will imply different types of measurement errors. The existing high heterogeneity and 

measurement error in the estimates shown in the literature on socioeconomic inequalities in 

health can be an issue in undertaking cross country comparisons, and potentially to estimate 

the effect of public policies on health inequalities.  

 

This paper draws upon meta-regression analysis (MRA) to examine the influence of 

publication bias alongside precision and other study specific effects on estimates of income-

related health inequalities. We rely on a sample of concentration index estimates and self-

reported health measures, which is the common practice in the health economics literature. 

Our findings suggest evidence of publication bias that primarily depends on the 

cardinalisation of self-reported health. Furthermore, we find an effect from study-specific 

precision. We take advantage of an existing peer-reviewed literature on estimates of 

inequalities in health for different countries in Europe but these estimates have not been 

corrected and hence, comparisons across studies cannot be performed as they have different 

characteristics (including: year of the study, journal of publication, health variable used, 

inequality value, precision (standard error) of the estimated level of inequalities in health, 

among other factors). To date, there has been no analysis of this potential publication bias 

and subsequent correction of the measure of socioeconomic inequalities in health. By 

applying appropriate statistical methods, we are able to provide more comparable estimates 

of inequalities in health for each country. Once these corrected measures are provided, it is 

possible to make more valid comparisons of the ranking of countries according to the 
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adjusted measures of health inequalities. It may also be possible to identify publication and 

other biases in research on health inequalities.  

 

We organise the literature by creating a database with all cross-country studies that provide 

estimates of socioeconomic inequalities in health, including details such as: the estimated 

level of inequalities in health, the precision of this estimate (standard error), the year of the 

study’s publication, the journal, the health variable used, the country analysed, the sample 

size used and several variables that will identify how those inequality measures were 

obtained. This information is analysed using meta-regression analysis (MRA). MRA entails a 

regression analysis of existing studies of socioeconomic inequalities in health, where the 

control variables are the type of study, the sample characteristics and the scope and precision 

of the estimate of socioeconomic inequalities in health, among others. MRA allows us to test 

the sensitivity of the estimate of inequalities in health to the study characteristics.  

 

MRA is especially designed to allow correcting empirical estimates, in our case, measures of 

socioeconomic inequalities in self-reported health for potential biases. By creating a uniform 

structure for scrutinizing studies, our work attempts to make an important contribution to the 

literature on inequalities in health. Correcting for publication biases appear as particularly 

relevant when inequality estimates are employed in ranking health systems or simply when 

comparing estimates across countries, an issue that will be of interest to policymakers. 

Furthermore, once a corrected measure of inequalities in health has been attained, one can 

used such corrected estimates to contribute to research debates, such as those on the equity-

efficiency trade-off, by providing corrected inequality values that can be used in any analysis. 

Finally, this methodology will offer some conclusions on the use of MRA for such purposes. 
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