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Abstract 

There is a widely discussed problem of publication bias in medical and health services 

research. Where quantitative effects form the basis of a publication a ‘winner’s curse’ curse 

may apply.  This phenomenon may occur as prospective authors of research papers compete 

by reporting ‘more extreme and spectacular results’ in order to increase the chances of their 

paper being accepted for publication. This paper examines this phenomenon using 

quantitative findings on income and price elasticities as reported in health economics 

research. We find robust statistical evidence that higher-impact journals preferentially report 

larger empirical estimates of these elasticities. That is, we find robust evidence of a winner’s 

curse hypothesis contributing to the existence of publication bias found in both the income 

and the price elasticities of health care and drugs, as well as value of life research.  
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I. INTRODUCTION 

 

The rapid growth of health policy research has led to the use of economics based concepts in 

policymaking, including the application of income and price elasticity estimates. More 

specifically, for three decades, economists have debated whether the income elasticity of 

health care demand suggests that health care is a luxury (Newhouse, 1977) with obvious 

consequences for public intervention in health care financing.1 Existing studies show mixed 

results with some scholars suggesting a potential empirical bias (See Costa-Font et al, 2011). 

Similarly, many studies have been devoted to estimating the price elasticity for prescription 

drugs using survey, observational and experimental data, partly to inform copayment levels 

for these products, but there have been marked differences in these estimated elasticities (see 

Gemmill et al, 2007).  Such examples suggest that there might be an alternative explanation to 

the patterns of reported research results as found in health research.  The purpose of this paper 

is to explore whether there is, in fact, a “winner’s curse” in published health policy research.  

 Some researchers have suggested that the publication of medical research suffers from 

a phenomenon defined as ‘winner’s curse.’2 More precisely they state that “The current 

system of publication in biomedical research provides a distorted view of the reality of 

scientific data that are generated in the laboratory and clinic. . . . (T)he more extreme, 

spectacular results (the largest treatment effects, the strongest associations, or the most 

unusually novel and exciting biological stories) may be preferentially published” (Young et 

al., 2008).   

 The purpose of this paper is to test the ‘winner’s curse’ hypothesis as it applies to 

specific aspects of health economics research and, in the process, to investigate the health 

care-income elasticity puzzle more deeply.  Recently developed meta-regression analysis 

(MRA) methods that are able to identify and correct publication selection bias are applied to 

exisiting findings and suggest confirmation of a ‘winner’s curse’ in two areas of health 

research: health care income elasticities and prescription drug price elasticities (Gemmill et 

al., 2007; Stanley, 2008; Moreno et al., 2009; Costa-Font et al., 2011).  That is, these methods 

allow investigation of potential publication bias in these two areas of health research and 

whether higher impact journals amplify this bias by reporting the largest effects.  

 Our findings have important implications for health care policy and financing.  

Whether health care is a luxury or a necessity is more than a technical debate about the finer 

points of econometrics and its application.  This health care-luxury issue may be 

misinterpreted to have important health policy implications.  If health care were considered a 
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luxury good, or so the argument goes, then demand will increase more rapidly than income, 

and richer countries should be expected to spend more than poorer countries per capita.  Also, 

some might use such a ‘luxury’ status to suggest that public financing should play a 

subsidiary role.  The use and abuse of such economic distinctions can be seen in the recent 

debate around the US health care reform (Glied, 2009; Phelps, 2010).   

Furthermore, the price elasticity of prescription drugs is a fundamental parameter in 

the design of drug reimbursement and levels of copayment.  The policy importance of this key 

elasticity is increasing as prescription medicines progressively represent a larger share of total 

health expenditures.   Although there is a sizable literature on price and expenditure 

elasticities of prescribed drugs, estimates vary greatly. Thus, it is critical to have a 

comprehensive and quantitative summary of this large literature, which disentangles potential 

biases and heterogeneity. 

 

 

II. PUBLICATION SELECTION AND THE WINNER’S CURSE 

 

Publication Selection 

For a half-century, medical researchers, as well as some economists have expressed concerns 

about the detrimental effects of publication selection (Sterling, 1959; Tullock, 1959; Feige, 

1975; Rosenthal, 1979; Lovell, 1983; Begg and Berlin, 1988; DeLong and Lang, 1992; Card 

and Krueger, 1995; Sterling, Rosenbaum and Weinkam, 1995; Copas, 1999).  Publication 

selection bias is widely acknowledged as a threat to scientific practice and statistical 

inference.  When reported results are selected for statistical significance or for some ‘positive’ 

finding, empirical phenomena can be manufactured, becoming mere artifacts of the 

publication selection process.  For example, the efficacy of intravenous magnesium to treat 

myocardial infarction (‘heart attack’) and the adverse employment effect of raising the 

minimum wage are seen by many researchers as established facts; yet, these effects can be 

shown to be nothing more than publication selection bias (Egger and Smith, 1995; Higgins 

and Spiegelhalter, 2002; Doucouliagos and Stanley, 2009).    

 Publication selection is the preference for statistically significant or ‘positive’ 

findings.  In the social sciences, it may manifest itself through editors, reviewers, and 

researchers themselves having a preference for statistically significant findings. This practice 

has been colorfully called the ‘file drawer’ problem to describe the tendency for researchers to 

file away, and hence not publish or report, their insignificant results (Rosenthal, 1979).   
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 The real problem of publication selection is not its widespread existence, but rather the 

potentially large biases it imparts upon any summary of empirical findings, medical or 

economic.  For example, the average reported value of a statistical life may be biased by a 

factor of five or more (Doucouliagos et al., 2012), and a similar exaggeration is found among 

the adverse employment effects of minimum wage raises (Doucouliagos and Stanley, 2009).  

Or to use another health care example, the increased rate of smoking cessation caused by 

using nicotine replacement therapy (the patch) is likely to be exaggerated three fold (see 

below).  Accommodating publication selection places the efficacy of nicotine replacement 

therapy in jeopardy.  The spillover effects of such biases into the policy arena may thus have 

damaging effects. 

 

A Winner’s Curse of Research Publication 

Recently, collaboration between medical researchers and economists offers an economic 

interpretation for the “file drawer” problem (Young et al., 2008).  That is, they give an 

economic explanation to the widely observed phenomenon of publication selection.  Fierce 

competition among researchers for the scarce space in the top academic journals allows 

editors and reviewers to demand “more extreme, spectacular results.”3 Young et al. (2008) 

call this phenomenon the ‘winner’s curse’ after the price anomaly where bidders pay an 

irrationally high price in a common value auction market in an effort to ‘win.’  This 

connection to the winner’s curse is to view the bid as the size and importance of the reported 

research findings.  As Johnson (2008) summarizes this phenomenon for the Economist, 

“(T)he winners could be the ones most likely to oversell themselves—to trumpet dramatic or 

important results that later turn out to be false.” 4 

 Unfortunately, there is little to distinguish this ‘winner’s curse of research publication’ 

(WCRP) from the long established and better-known “file drawer” problem of publication 

selection.  However, if WCRP were correct, then the severity of publication bias should vary 

directly with the amount of competition for scarce journal space.  In a publishing context, 

journal quality, which is widely though imperfectly, measured by impact factor, could serve 

as a proxy for the strength of the competition among researchers.  In general, higher ranked 

journals attract a larger number of papers, accept a smaller proportion of them, and can 

thereby demand more significant, striking or novel results.  Thus, we have a testable 

hypothesis that distinguishes WCRP from the more general phenomenon of publication 

selection, because general publication selection need not be correlated with journal impact 

factor. 5   
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 To recap, the winner’s curse implies that the magnitude of reported empirical effects 

will be positively associated with journal input factor, ceteris paribus, after more 

conventional publication selection bias is accommodated.  We test this hypothesis explicitly 

in Section III using estimated aggregate income elasticities of health care and price elasticities 

for prescribed drugs.  First, however, we review meta-analytic methods designed to identify 

and correct publication selection bias illustrating through using published data on the effect of 

antidepressant medications, nicotine replacement therapy, aggregate income elasticities for 

health care and prescription drug price elasticities. 

 

Identifying and Correcting Publication Bias 

By now, publication selection bias has been found in dozens of areas of economics research.  

Examples include: Ashenfelter and Greenstone (2004) and Doucouliagos et al. (2012) for the 

value of life; Rose and Stanley (2005) for the common currency effect on trade; Mookerjee 

(2006) for openness and economic growth, Krassoi-Peach and Stanley (2009) for efficiency 

wages, Doucouliagos and Stanley (2009) for the employment effects of minimum wages, and 

Nelson (2011) for the relation of adolescent drinking to marketing.  Of course, not all areas of 

empirical economics will contain notable publication selection.     

 In medical research, where publication selection is widely acknowledged to be a 

severe problem, “the most commonly used method to detect publication bias is an informal 

examination of a funnel plot” (Sutton et al., 2000, p.1574).  A ‘funnel graph’ is a scatter 

diagram of an estimate and its precision (1/SEi).  When there is no publication selection, this 

scatter diagram should resemble an inverted funnel, hence the name.  A good example of this 

expected funnel symmetry is seen among the 73 randomized clinical trials (RCT) of 

antidepressants registered at the US Food and Drug Administration (FDA) (double-blind, 

placebo-controls Phase II and III).  Medical researchers regard the FDA registry as the ‘gold 

standard,’ because all such clinical trials must, by law, be registered with the FDA.   Figure 1 

plots effect sizes (Glass’s g) on the horizontal axis against the precision of these effect sizes 

(or 1/SEi) on the vertical axis—(Turner et al., 2008).   
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Figure 1: FDA Antidepressant Trials 
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   Source:  Turner et al. (2008). 

 

Note how this graph, Figure 1, resembles an inverted funnel, or perhaps a ‘Christmas tree’ in 

this example.  Because these estimates’ precisions are placed on the vertical axis, we expect 

the estimates to be widely dispersed at the bottom and more tightly packed, horizontally, at 

the top.  However, it is symmetry or its absence (asymmetry) that truly matters.  When there 

is no publication selection, we expect the funnel graph to be roughly symmetric, see the 

diamonds in Figure 1.  The results of the 73 clinical trials of antidepressants registered at the 

FDA are approximately symmetric; however, the fifty that are published are very skewed, 

showing clear signs of being selected to be positive and statistically significant (Turner et al., 

2008; Moreno et al., 2009b). 

Symmetry follows from the fact that each reported estimate will be randomly and 

symmetrically distributed around the ‘true effect,’ assuming for the moment that 

heterogeneity is not coincidentally related to SE.  Furthermore, when researchers report t-

values, they are assuming that their estimates are independent of their standard errors; 

otherwise, the t-test would be invalid.  Of course, there is likely to be more than one ‘true 

effect’ (i.e., heterogeneity), which is routinely modeled by multiple meta-regression analysis.  

Publication selection can be easily placed into this larger, multivariate context of 
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heterogeneity and other types of bias —see Tables 3-5 below.  Before returning to these 

important complexities, publication selection needs to be more fully discussed.   

 Consider a more typical funnel graph, Figure 2, which displays the effectiveness of 

nicotine replacement therapy (NRT) for smoking cessation by using a patch (Stead et al., 

2008).  In medical research, effect is often measured by log odds ratios or by log risk ratios—

log(RR).  Note that this graph is clearly not symmetric but rather skewed to the right.  It is 

this skewness that is indicative of publication selection. 

 

Figure 2: Funnel Plot of the Log Risk Ratios of 42 Clinical Trials of NRT 
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                                       Source:  Stead et al. (2008). 
 

Researchers and reviewers tend to have a preference for ‘positive’ effects and those that are 

statistically significant.  For example, Turner et al. (2008) document how small and 

insignificant results from the RCT of antidepressants are not published in professional 

journals but their results are, by law, reported in the FDA registry—Figure 1.  Those that are 

significantly positive are much likely to also be published (Turner et al., 2008).  Publication 

selection for statistically significant findings will incidentally truncate estimates to have the 

wrong sign or are too small by random sampling errors.  Such truncation will skew the funnel 

graph towards the desired direction—see Figure 2 and the half-moons in Figure 1.  
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Publication selection is more easily seen among smaller, more imprecise, studies (i.e., those at 

the bottom of the funnel graph).  

 Now consider, the funnel graph of the price elasticity of prescribed drugs—Figure 3.  

It appears to be nearly the exact mirror image of the previous funnel plot of NRT (Figure 2).  

This graph is also clearly skewed, but this time exhibiting a preference for significantly 

negative price elasticities.  Such a preference for negative price effects is perfectly 

understandable, because the ‘Law’ of demand requires the quantity demanded of any good to 

fall as its price rises.  Publication selection in favor of negative price elasticities has been 

observed in many other areas of economics research (Doucouliagos and Stanley, 2012).   

 

Figure 3: Funnel Plot of the Price Elasticity of Prescription drugs 
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Lastly, we have the income elasticities of health care expenditures (Figure 4).6 Is this funnel 

symmetric, or skewed towards high income elasticities? Could this represent two funnels—

one centered at zero and the other slightly above one?  These questions motivate our current 

investigation.   
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Figure 4: Funnel Plot of Income Elasticities of Health Care 
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            Source: Costa-Font et al. (2011). 

 

Although these funnel graphs can be quite suggestive (Stanley and Doucouliagos, 2010), any 

visual inspection will remain somewhat subjective.  To avoid subjective or idiosyncratic 

interpretations of funnel graphs, statistical tests have been designed to test their symmetry and 

to test for the presence of an underlying genuine effect.   

 With publication selection, researchers who have small samples and low precision will 

be forced to search more intensely across model specifications, data, and econometric 

techniques until they find larger estimates.  Otherwise, their results will not be statistically 

significant.  In contrast, researchers with more precise estimates need not search quite so hard 

from the practically infinite model specifications to find statistical significance and will 

thereby be satisfied with smaller estimated effects. When publication selection is present, the 

reported effects are positively correlated with their standard errors.  

 The conventional method to identify and accommodate publication bias is the simple 

meta-regression model: 

 effecti = β + α SEi + εi                    (1) 
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(Egger et al., 1997; Stanley, 2008).  Where effecti is some estimated empirical effect, often an 

elasticity, and SEi is its standard error.  Equation (1) is the meta-regression equivalent of a 

funnel graph (Stanley and Doucouliagos, 2010). 

 The conventional t-test of H0: α=0 from MRA model (1) is a valid, if low power, test 

for the presence of publication bias (Egger et al, 1997; Stanley, 2008).  On the other hand, the 

t-test of H0: β=0 is a powerful test for the presence of an authentic empirical effect beyond 

publication selection (Stanley, 2005; Stanley, 2008).  These tests have been called the ‘funnel-

asymmetry test’ (FAT) and the ‘precision-effect test’ (PET), respectively, and can be used to 

confirm (or deny) objectively the subjective impression gleaned from a visual inspection of a 

funnel graph.   

However, in practice, equation (1) is almost never estimated by OLS due to its obvious 

heteroskedasticity.7 Rather, some weighted least squares (WLS) version of (1) is employed, 

which can be obtained by dividing equation (1) through by SEi.   

 

 ti = α + β (1/SEi) + νi            (2) 

 

Where ti is the t-value for each reported empirical effect (TOM is it worthwhile reminding 

people that effect/se=t??).  Alternatively, WLS may be estimated from equation (1) if the 

squared errors are weighted by precision squared (i.e., 1/SEi
2
).  Simulations show that the 

funnel-asymmetry and precision-effect tests can provide valid methods to identify publication 

selection and to test for the presence of a genuine effect beyond publication selection bias 

(Stanley, 2008). 

 Table 1 reports the simple meta-regression results of employing the WLS version of 

MRA model (1) to the four funnel graphs previously presented in Figures 1-4.  First, consider 

the t-test for publication selection (i.e., the funnel-asymmetry test), which examines the MRA 

coefficient on SEi in Table 1 (H0: α=0).  As expected, there is little evidence of publication 

selection bias among the RCTs of antidepressants registered at the FDA (t=1.68; p>.05) – see 

column 1 Table 1.8  In contrast, there is clear evidence of publication selection among the 

published clinical trials of nicotine replacement therapy (t=3.01; p<.01), the price elasticity of 

prescribed drugs (t=-3.54; p<.01), and also among the reported income elasticities of health 

care (t=8.30; p<.0001).   
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Table 1: Simple Meta-Regression Model of Publication Bias and Genuine Effect (WLS) 
 

 
Variables 

FDA Anti-
depressant 
Trials (1)      

NRT 
Patch   

(2)   

Price Elasticity 
of Prescribed 

Drugs (3) 

Income Elasticity 
of Health Care  

(4) 
Intercept .20 (2.77)* 

 
.20(2.00) -.039(-2.23) -.0006 (-0.11) 

SEi .73 (1.68)* 
 

1.09(3.01) -2.50 (-3.54) 6.01(8.30) 

n 73 42 57 164 
        *t-values are reported in parenthesis. 

 

 

After allowing for publication selection, evidence of genuine effects is greatly reduced.  If we 

strictly apply a two-tail precision-effect test to nicotine replacement therapy (H0: β=0), we fail 

to find significant evidence of an empirical effect (t=2.00; p>.05)—see column 2 Table 1.  

However, because pharmaceutical companies are looking for a positive effect, a one-tail, 

directional hypothesis is quite appropriate and results in finding significant evidence of a 

positive effect for NRT (one-tail p<.05).   There is more clear evidence that antidepressants 

have a small effect (t=2.77; p<.01)— column 1Table 1.  Similarly, there is clear evidence of a 

genuine price effect, albeit a small one, for prescription drugs (t=-2.23; p<.05) – column 3 

Table 1.  In contrast, there is no evidence that rising incomes increase the demand for health 

care, regardless of the level of significance one chooses or how one specifies the hypotheses 

(t=-0.03; p>>.05)— column 4 Table 1.  In other words, after allowing for publication 

selection, no evidence of any income effect on health care expenditures remains.  Needless to 

say, this is not consistent with the strong aggregate income effect on health care that defines 

the luxury hypothesis (reject H0: β > 1; t=-198.1; p<.0001).   

 Of course, empirical research is likely to be much more complex than what can be 

captured by any single variable.  No doubt, there are factors other than publication selection 

that affect reported results, and their omission can potentially bias these results.  Implicit in 

our simple MRA model of publication selection is the assumption that there is a single 

underlying empirical effect that each study is estimating, though imperfectly.  However, 

heterogeneity is routinely observed among reported economic estimates, and this area of 

research is no exception.  Thus, we need to consider a more complex meta-regression model 

that accommodates heterogeneity as well as publication selection.  In the next section, we 

explicitly address this issue by investigating any of a number of multivariate MRA models.   
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III. CAN HEALTH RESEARCH BE WINNER’S CURSED? 

 

Meta-Analysis Data 

Having illustrated the publication selection in our examples above, we now focus on a meta-

analysis of health care income and price elasticites and whether there is evidence of a 

‘winner’s curse’ in the area of health research. Meta-analysis requires a comprehensive 

collection of all available estimates on some empirical phenomenon.  Our search identified 

and cross-referenced published studies using Econlit, Medline, and Sociofile.  From each 

study, we have extracted a set of relevant characteristics including: standard errors, journal 

impact factor, the year of publication, type of data, level of aggregation, econometric 

techniques used, and health system.  Descriptive statistics for these variables are reported in 

Table 2.  All income elasticity estimates come from aggregate studies (national or regional), 

because it is at the aggregate level where the health care-luxury good conundrum exists.   

 

 

Table 2.  Definitions of the variables and summary statistics  
Variable Definition Mean Median Standard 

Deviation 
Income Elasticity of Health Care   (n=164) 
Estimated elasticity Income elasticity of demand 0.950             0.942 0.663 
SE Standard error of this elasticity 1.205             0.295 5.170 
Controls     
Region 1 if regional data are used 0.236             0.000 0.426 
Year Year reported 2000 2003 6.091 
NHS Percent of NHS data used 0.526             0.500 0.403 
Public 1 if public expenditures 0.079            0.000 0.270 
Impact Journal impact factor  0.894            0.300 0.923 
Panel 1 if panel data are used 0.164            0.000 0.371 
Price Elasticity of Prescription Drugs    (n=57) 
Estimated elasticity Price elasticity of demand -0.209 -0.140 0.204 
SE Standard error of this elasticity 0.070 0.052 0.069 
Controls     
Impact Journal impact factor 0.954 0.156 1.226 
Tax 1 if tax based system 0.617 1.000 0.490 
Shi 1 if social health insurance  0.217 0.000 0.415 
Short 1 if for a short run elasticity 0.483 0.000 0.504 
Chronic 1 if for a chronic condition 0.267 0,000 0.058 

 

 

Testing the Winner’s Curse Hypothesis 

To test the winner’s curse hypothesis (WCRP) in a multivariate context, we use a general-to-

specific approach (Davidson et al., 1978).  That is, all coded variables are included in the 
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WLS version of MRA model (1), and insignificant variables are removed one at a time.  “The 

strength of general to specific modeling is that model construction proceeds from a very 

general model in a more structured, ordered (and statistically valid) fashion, and in this way 

avoids the worst of data mining” (Charemza and Deadman 1997, p. 78).  The results are 

presented in columns 1 and 5 of Table 3. 

 

 

Table 3: WLS Multivariate MRA 
(Dependent Variable = Estimated Elasticity)   

 
  Income Elasticity of Health Care Price Elasticity of 

Prescribed Drugs 
Variables Column 1 2 3 4 5 

Intercept .562 (4.59)* .489 (4.09)* .484 (4.06)* .001 (.11) * -0.005 (-0.24) 

Impact .265 (3.84) .307 (4.56) .314 (4.72) .352 (5.11) -0.026 (-3.02) 

SE 2.437 (2.94) 2.498 (2.98) 2.444 (2.93) 3.822 (4.79)        -2.721 (-4.10) 

NHS -.561 (-4.59) -.487 (-4.08) -.483 (-4.06) --- --- 

Year -.021 (-2.34) -.002 (-.64) --- --- --- 

Public .086 (2.26) --- --- --- --- 

Adj R2 .46 .44 .44 .39 .278 
*t-values are reported in parenthesis. 
 

 

The remaining columns in Table 3 remove the other moderator variables from the income 

elasticity MRA to ensure our main findings are robust to the choice of moderator variables.  

In all cases, the MRA coefficient on Impact is statistically significant (p<.01), unambiguously 

corroborating WCRP.  Impact is positive and statistically significant in all MRA models for 

income elasticities and significantly negative for price elasticities of prescribed drugs, 

directions that one would expect a prori. 

 The MRA coefficient on Impact is quite large (0.265—0.352) for income elasticites, 

easily making important practical differences in the reported elasticities.  For example, when 

this estimated winner’s curse effect is applied to the highest-rated journal, reported income 

elasticities would be expected to increase by 0.66 to 0.88 from this selection alone.  When the 

estimated WCRP is combined with the estimated publication bias from SE in Table 3, their 

combined effect increases expected elasticity anywhere from 1.00 to 1.42, again for the 
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highest-rated journal.  Needless to say, observed publication bias and WCRP are large enough 

to make an absolute necessity (i.e., income elasticity=0) appear to be a luxury.  Thus, these 

results indicate both the WCRP hypothesis and publication selection among reported health 

care income elasticities, regardless of which MRA model is employed.   

 The pattern of variation found among these estimated MRA coefficients of publication 

selection (SE) is also instructive. Publication selection bias is estimated to be the largest when 

no other moderator variables are included in equation (1), α̂ =6.009 (Table 1 column 4).   As 

moderator variables are added to this simple MRA model, the magnitude of publication 

selection is reduced.  In particular, when Impact is included the coefficient on SE falls to 

3.822 (Table 3 column 4).  Note that the MRA models reported in Table 1 column 4 and 

Table 3 column 4 differ only by the inclusion of Impact.  It seems clear, therefore, that Impact 

picks up some of the publication selection bias previously identified by SE’s MRA 

coefficient.  Thus as expected, the winner’s curse replaces part of the observed publication 

selection among income elasticities on health care, giving added corroboration to the 

operation of a winner’s curse in this area of research.  Note further how the coefficients on SE 

and Impact both decline as additional moderators are added to our MRA model (Table 3).  

Such a coherent pattern would be expected if the associated types of data (NHS and Public) 

were differentially selected in an effort to report large income effects.10   

 As a further check of the robustness of these central findings, we also estimate the 

general-to-specific MRA model (column 1 Table 3) in several additional ways.  It is widely 

recognized that reported empirical estimates will be dependent on one another if multiple 

estimates are collected from a single study (Stanley and Jarrell, 1989; Stanley, 2001).  Table 4 

accounts for possible intra-study dependence using a variety of plausible assumptions about 

its structure. For our purposes, the most important finding is that the size, sign and 

significance of both WCRP (Impact) and publication selection bias (SE) remain unchanged.11   
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Table 4: Intra-Study Dependence and Robustness Checks  
Dependent Variable = Estimated Income Elasticity of Health Care  

 
Variables Column 1: 

WLS 
2: Cluster-

Robust 
3: REML 

Intercept  .562 (4.59)* .562 (3.79)* .348 (3.02)* 

Impact .265 (3.84) .265 (3.01) .333 (3.16) 

SE 2.437 (2.94)        2.437 (2.95)        3.95 (2.12)        

NHS -.561 (-4.59) -.561 (-3.77) -.347 (-3.01) 

Year -.021 (-2.34) -.021 (-2.20) -.020 (-2.00) 

Public .086 (2.26) .086 (2.20) .077 (1.65) 

Adj R2 .46 .46 --- 
              *t-values are reported in parenthesis.  

 
 

For convenience, column 1 Table 3, which reports the general-to-specific WLS MRA, is also 

reported in column 1 Table 4.   Column 2 Table 4 calculates cluster-robust standard errors 

when the data are clustered by study.  Column 3 treats our meta-data as uneven panels 

structured across studies and reported estimates within studies.   REML (restricted maximum 

likelihood) allows for random study effects and can be considered a mixed-effect multilevel 

model.  The only notable difference among any of the statistical results is that one ancillary 

moderator variable (Public) is not statistically significant when a multilevel structure is 

employed.  In all cases, our central hypotheses concerning publication selection are all 

corroborated. 

 As an additional check on the robustness of this robust corroboration of WCRP among 

health care elasticities, we apply these same MRA methods to a second area of health 

economics—price elasticities of prescribed drugs.12 Table 3 column 5 reports the general-to-

specific MRA for prescription drug elasticities.  Only Impact and SE are statistically 

significant.  Their estimated MRA coefficients confirm both a publication bias for 

significantly negative price elasticity (t=-3.02; p<.01) and WCRP (t=-4.10; p<.001).  

Interestingly, when corrected for these publication biases, no statistically significant price 

effect remains (t=-0.24; p>>.05).  That is, there is insufficient evidence to conclude that price 

increases of prescription drugs will cause any decrease in their use once both of these types of 

publication selection are accommodated.  Likewise, when we include the other moderator 



17 
 

variables and/or allow of intra-study dependence (Table 5), both our central hypotheses about 

publication selection are robustly corroborated.13   

 

Table 5: Intra-Study Dependence and Robustness Checks  

Dependent Variable = Estimated Price Elasticity of Prescription Drugs  
 

Variables Column 1: 
WLS 

2: Cluster-
Robust 

3: REML 

Intercept  -0.043 (-1.56) -0.043 (-1.45) -0.030 (-0.89) 

Impact -0.031 (-2.77) -0.031 (-1.94) -0.026 (-1.73) 

SE -2.612 (-3.66) -2.612 (-3.14) -3.065 (-3.13) 

Chronic 0.032 (0.89) 0.032 (1.46) 0.018 (0.63) 

Tax -0.0003 (-0.01) -0.0003 (-0.01) -0.007 (-0.16) 

Shi 0.002 (0.05) 0.002 (0.04) 0.022 (0.44) 

Short 0.056 (1.88) 0.056 (1.46) 0.034 (0.96) 

R2 0.359 0.359 --- 
              *t-values are reported in parenthesis.  

 

 

Evidence from elasticity estimates 

Ultimately, it is not the presence or absence of the winner’s curse or publication bias that truly 

matters.  Rather, it is the actual magnitude of health care income elasticity or the price 

elasticity of prescription that will have long-term consequences on the future of health care 

policy.  When publication selection bias is corrected and/or WCRP is accommodated, 

reported estimates of income elasticity strongly reject the notion that the elasticity of health 

care is greater than one and that health care is a luxury.  Taking the simplest MRA model, 

column 3 of Table 1, the overall size of income elasticity corrected for publication selection 

is, in fact, not different than zero (
^
β =-.0006; t=-.11; p>>.05) and very much less than one 

(reject H0: β > 1; t=-198.1; p<.0001).  Thus, our meta-analysis of health care income 

elasticities is consistent with health care being an absolute necessity, but a not luxury.   

 Similarly, the corrected estimate of the price elasticity for prescribed drugs is only -

0.039 (Table 1), indicating it is highly inelastic. Although this corrected elasticity is 

statistically significant, it is practically negligible. Such a small elasticity suggests that 

pharmaceutical companies could double their prices and suffer only a 4% decline in sales, 
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earning them a 92% increase in their revenues. This finding is consistent with the idea that 

prescribed drugs, like health care in general, are a strong necessity, even at the aggregate 

level.  

 When we use a multivariate MRA that includes the impact factor and possibly other 

moderator variables, some judgment is required to identify the best estimate of these health 

care related elasticities.  That is, we must choose the best or most appropriate values for the 

other independent variables.  As the winner’s curse reflects a form of publication bias, the 

best estimate of income elasticity that minimizes this bias assumes that SE=0 and Impact=0.  

When we impute the elasticities using these values in the multiple MRAs of the price 

elasticity of prescribed drugs, no statistically or practically significant price effect remains, 

regardless of our choice of the other moderating variables.   

Applying this approach to estimate the income elasticity of health care we find that it 

is not statistically different from zero either ( β̂ =.001; t=.11; accept H0: β = 0), column 4 

Table 3.  Adding the proportion of the sample that comes from a National Health Service 

(NHS) type system complicates but does not change this overall assessment.  If we assume 

that everyone is covered by an NHS type system, we get the same results.  However, if 

NHS=0 (i.e., no one is funded by the NHS), the estimate of income elasticity increases to 0.48 

but is still much less than one (reject H0: β > 1; t=-4.33; p<.001).  Note that the MRA 

coefficient on NHS is negative and statistically significant, as one would expect.  As a greater 

proportion of the sample is covered by an NHS type system, health care expenditures would 

be expected to be less sensitive to income changes because of centralized price setting.  

Regardless of which MRA model we use in Table 3 or 4, reasonable choices of the values on 

the other moderating variables return the prediction that health care is a necessity.  Once 

allowance is made for publication selection, the notion that health care is a necessity is 

robustly corroborated by our MRA.  

 

 

IV. CONCLUSION 

 

This paper reports evidence consistent with the hypothesis of a winner’s curse and publication 

selection bias in health care research on income and price elasticities.  The winner’s curse 

hypothesis claims that “the more extreme, spectacular results” are those preferentially 

selected for publication (Young et al., 2008).  This hypothesis is directly related to the long 
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recognized and widely accepted problem of publication selection. If health research were to 

contain a winner’s curse, we would expect to find that larger and more statistically significant 

findings are reported by higher impact journals.  Our meta-analysis of health economics 

research on aggregate income and pharmaceutical price elasticites exhibits precisely this 

pattern; thus, indicating WCRP.  Our meta-regression analysis identifies a clear and robust 

pattern in published health research.  Higher impact journals report larger income elasticities.    

 Once allowance is made for publication selection bias and/or WCRP, the research 

record clearly rejects the idea that health care has an income elasticity greater than one and 

therefore that it is a ‘luxury’ good, in any sense of this term.  All the corrected estimates of 

the income elasticity of health care are less than one but often not statistically different than 

zero, implying that health care is, if anything an absolute necessity.  As Doucouliagos and 

Stanley (2012) show, when an area of research contains contested theories, selection biases 

are minimised.  In contrast, when there is a widely accepted view (e.g., that prescribed drugs 

are price sensitive or that health care is an aggregate luxury good), reported results tend to 

confirm the consensus view, leading to large selection bias unless corrected by MRA. 

We do not wish to claim that the winner’s curse and publication selection bias are the 

only explanation of the widely reported evidence that health care is a luxury at the aggregate 

level.  No doubt there are other potential explanations for the patterns that we find among 

reported price and income elasticities; certainly in the case of the income elasticity similar 

data have been used in multiple studies for example.  Moreover, we did not and cannot 

entirely control for biases associated with spurious regressions, endogeneity, or omitting price 

and technology variables in the income equations.  Thus, it is possible that what we identify 

as publication selection bias or the winner’s curse may also be explained by a systematic 

selection of any number of these or other biases.  However, if there is systematic selection of 

given estimate levels, as our MRA finds, then WCRP and publication selection remain a 

valid, if not unique, explanation.  After all, such preferential selection of random errors and 

biases is the very definition of WCRP and publication selection bias. 

 If our meta-analysis is accepted then it clearly shows that the income elasticity of 

aggregate health care is not statistically greater than one, and that there is practically no 

reduction in the consumption of prescribed drugs due to increases in prices.  Thus policy 

inferences built around the notion that health care is a luxury are wrong not only because they 

misuse a microeconomic concept in a macroeconomic setting, but also because the published 

research record, when corrected for publication bias, is not consistent with the notion that 

aggregate health care is a luxury.   While the shifting of copayments on to patients through 
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demand-risk sharing may do little to combat moral hazard in consumption or rising health 

care expenditure generally.  
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Footnotes 
1 The estimated income elasticity of demand is normally defined in such studies as the 

percentage change in health expenditures associated with a one percent change in income. Or, 

( ) ( )IHEIHEeI /∂∂= ; where HE represents health expenditures and I represents income.  
2 In economics, the ‘winner’s curse’ is the phenomenon where the winning bidder 

systematically pays an inflated price, or receives a lower than expected profit, in common 

value auctions (Thaler, 1988).   
3 Over 90% of submitted research manuscripts are rejected by the top medical and economic 

journals  
4  Ioannidis (2005) found that nearly a third of the most highly cited medical research studies 

(those with more than 1,000 citations) are contradicted by or found to have stronger effects 

than subsequent research published within a few years. 
5 It is widely recognized that researchers have strong preferences for statistically significant 

results, whether these researchers are authors, reviewers or editors.  Such a publication 

selection preference can be justified on the grounds that statistical significance is required if 

the findings are to be notable; that is, different from background noise.  However, such 

generic publication selection need not be correlated with journal impact factor. 
6 Details about how these estimates were collected from the research literature are given in 

Section III below. 
7 SEi is an estimate of the standard deviation of the reported effect, which usually varies 

greatly from one econometric estimate to the next. 
8 However, we find clear evidence of publication bias among the 50 RCTs of antidepressants 

that are published (t=5.47; p< .001)—also see (Turner et al., 2008; Moreno et al., 2009b). 
9 The conventional Q-test for heterogeneity is significant at any level (χ2

(163)=19,272).   
10 If researchers select, in part, across these important data and model dimensions to find the 

desired statistically significant or elastic estimate, it would explain the success of the simple 

MRA models in detecting and modeling this area of research.     
11 The same is true if one uses these same estimation techniques as reported in Table 4 on the 

simpler MRA model that accounts for only Impact and publication selection.   
12 We investigate these two areas of health economics research because they are the only two 

with meta-analyses that include the necessary information on both the SE and the impact 

factor.   
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13 These hypotheses about publication selection are directional.  Thus, conducting a one–tail 

test is entirely appropriate.  The MRA coefficients on Impact in all columns are thereby 

statistically significant at the conventional .05, or lower, level (Table 5).   
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