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Linear Programming

• Linear Programming is concerned with the problem of

I minimize/maximize a linear function on d continuous variables

I subject to a finite set of linear constraints

• Example:

max 5x1 −3x2

2x1 +3x2 ≤ 2
−x1 +4x2 ≤ 3

−3x2 ≤ 0

max cT x
Ax ≤ b

I x ∈ Rd is the vector of variables

I c ∈ Rd , b ∈ Rn,A ∈ Rn×d are given

• The above problem instances are called Linear Programs (LP).
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Is Linear Programming useful?

• LPs can be used to model several optimization problems:

I shortest path in a graph

I network flows

I assignment

I . . .

• LPs are a fundamental tool for solving harder problems. For example:

I Optimization problems with integer variables (via Branch&Bound, Cutting
planes,...)

I Approximation algorithms for NP-hard problems.

I Commercial solvers (CPLEX, GUROBI, XPRESS, . . . ), Operations
Research Industry, Data Science.
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Algorithms for solving LPs?

• The development of algorithms for solving LPs started in the 40’s. Some
pioneers: Kantorovich&Koopmans, Dantzig, Von Neumann, Ford&Fulkerson. . .

I George Dantzig: published
the Simplex Algorithm for
solving LPs in 1947

• Nowadays, the simplex algorithm is extremely popular and used in practice,
named as one of the “top 10 algorithms” of the 20th century.
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The Simplex Algorithm

• The set of possible solutions of an LP has a very nice structure:

it is a convex
set called a polyhedron (or a polytope, if bounded)

• It is not difficult to realize that an optimal solution of such an LP can be
found at one of the extreme points of the feasible region.

• Simplex Algorithm’s idea: move from an extreme point to an improving
adjacent one, until the optimum is found!

• The operation of moving from one extreme point to the next is called
pivoting
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Pivoting

• Clearly, the path followed by the algorithm depends on the pivoting rule:
How do we choose the next (improving) extreme point?

• Dantzig’s pivoting rule: move along the edge that “seems” more promising in
term of cost-function improvement

I [Klee & Minty’72] showed that
pivoting according to that rule
requires an exponential in d
number of steps.

• Other pivoting rules?
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Pivoting

• Many pivoting rules have been proposed in the literature in the past decades

I Dantzig’s rule

I Greatest improvement

I Bland’s rule

I Steepest-edge

I Random pivot rules

I Cunningham’s pivot rule

I Zadeh’s pivot rule

I . . .

...exhibiting a worst-case (sub)exponential behaviour for the Simplex algorithm
[Klee&Minty’72, Jeroslow’73, Avis&Chvàtal’78, Goldfarb&Sit’79,
Friedmann&Hansen&Zwick’11, Friedmann’11, Avis&Friedmann’17,
Disser&Hopp’19]

• The Simplex algorithm (with e.g. Dantzig’s rule) can ‘implicitly’ solve hard
problems [Adler,Papadimitriou&Rubinstein’14, Skutella&Disser’15,
Fearnley&Savani’15]
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Is there a polynomial pivoting rule?

• After more than 70 years of use/studies, we still do not know the answer!

• LPs can be solved in polynomial-time using other algorithms (Ellipsoid
algorithm [Khachiyan’79], Interior-point methods [Karmarkar’84])

I However, such algorithms run in weakly polynomial-time
(poly(d , n, log L) where L := largest coefficient)

• The existence of a polynomial pivoting rule could imply a strongly
polynomial-time algorithm for solving LPs
(# elementary operations polynomial in the number of different input values)

I Mentioned as one of the mathematical
problems for next century by Fields
Medalist S. Smale in 2000

Related Question: What is the maximum length of a ‘shortest path’ between
two extreme points of a polytope?
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Diameter of polytopes

• We can naturally associate an undirected graph to a given polytope P ⊆ Rd :

I the vertices correspond to the extreme points of P

I the edges are given by the 1-dimensional faces of P

• The diameter of P is the maximum value of a shortest path between a pair of
vertices on this graph

(1-skeleton of P).

Remark: In order for a polynomial pivoting rule to exist, a necessary condition
is a polynomial bound on the value of the diameter!
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Diameter of polytopes

• A famous conjecture, proposed by [Hirsch’57], was the Hirsch conjecture,
stating that the diameter of a d-dimensional polytope with n facets is ≤ n − d .

I Disproved first for unbounded polyhedra [Klee&Walkup’67]

I ..and later for bounded ones [Santos’12] (awarded Fulkerson Prize in 2015)

I holds e.g. for for 0/1-polytopes [Naddef’89]

• Importantly, its polynomial-version is still open:

Is the diameter of a d-dimensional polytope with n facets bounded by f (d , n),
for some polynomial function f (d , n)?

• Best bound: ∼ (n − d)log O(d/ log d) [Sukegawa’18]
(strengthening [Kalai&Kleitman’92,
Todd’14, Sukegawa&Kitahara’15] )

• The diameter of a polytope has been studied from many different
perspectives...
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• The diameter of a polytope has been studied from many different
perspectives...
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Diameter of polytopes

• Many researchers studied the diameter of polytopes describing feasible
solutions of combinatorial optimization problems (and their relaxations).

→ Just to mention a few: Matching, TSP, Flow and Transportation,
Edge-cover, Stable marriage, Stable set, Partition, and many more. . .

• The diameter of a polytope has been investigated also from a computational
complexity point of view.

I [Frieze&Teng’94]: Computing the diameter of a polytope is weakly
NP-hard.

I [S.’18]: Computing the diameter of a polytope is strongly NP-hard.
Computing a pair of vertices at maximum distance is APX-hard.

→ The latter result holds for half-integral polytopes with a very easy
description (fractional matching polytope).
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• Discuss general algorithmic and hardness implications

• Highlight open questions
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The matching polytope

• For a graph G = (V ,E), a matching
is a subset of edges that have no node
in common.

• The matching polytope (PM) is given by the convex hull of characteristic
vectors of matchings of G .
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The matching polytope

• [Edmonds’65] gave an LP-description of PM :

PM := {x ∈ RE :
∑

e∈δ(v) xe ≤ 1 ∀v ∈ V ,∑
e∈E [S] xe ≤

|S|−1
2

∀S ⊆ V : |S | odd

x ≥ 0}

How do we characterize adjacency of extreme points?

Note: For a polyhedron P := {x ∈ Rd : Ax ≤ b} the following are equivalent:

I z , y ∈ P are adjacent extreme points on P;
I There exists an cost vector c ∈ Rd such that z , y are the only optimal

extreme points of max{cT x : x ∈ P};
I The matrix corresp. to the constraints tight for both y , z has rank d − 1.

• Matching is a graph problem. Any graphical characterization of adjacency?
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The matching polytope

Theorem [Balinski&Russakoff’74,Chvàtal’75]

Two vertices of PM are adjacent iff the symmetric difference of the
corresponding matchings induces one component.

Proof: The symmetric difference of two matchings is a union of alternating
cycles and alternating paths.

I Sufficiency: There is an objective function for which these matchings are
the only optimal extreme point solutions.

I Necessity: If not, such an objective function can’t exist!
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The matching polytope

Corollary

The diameter of PM is equal to the size of a maximum matching of G .

Proof:

I Let M be a maximum matching. The distance between any two matchings
is at most |M|.

I The distance between the empty matching (extreme point 0) and the
matching M is |M|.

• Obs 1: From [Edmonds’65] it follows that the diameter of the matching
polytope can be computed in polynomial time.

• Obs 2: We can restate as:

diameter(PM) = max
x∈vertices(PM )

{1T x}
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• The fractional matching polytope is given by a standard LP-relaxation:
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∑
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xe ≤ 1 ∀v ∈ V , x ≥ 0}
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The fractional matching polytope

• [Balinski’65]: PFM is a half-integral polytope.

For a vertex x of PFM

I the edges {e ∈ E : xe = 1} → induce a matching (Mx)

I the edges {e ∈ E : xe = 1
2
} → induce a collection of odd cycles (Cx)

• Adjacency relations have also been studied (see e.g. Behrend’13)

→ Let’s derive some graphical properties of adjacent extreme points!
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Adjacency

• Consider again the LP-description.

PFM : ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

P̄FM :∑
e∈δ(v)

xe + xv = 1 ∀v ∈ V

xf ≥ 0 ∀f ∈ E ∪ V

• Add slack variables → corresponds to adding one loop edge on each node!

• Let ȳ ,z̄ be adjacent vertices of P̄FM , and C̄ȳ , C̄z̄ the set of their odd cycles.

• Claim: |C̄z̄∆C̄ȳ | ≤ 2. Why?

I support(ȳ) ∪ support(z̄) contains one component K̄ with some f : ȳf 6= z̄f .

I ȳ ,z̄ adjacent ⇔ there are |E ∪ V | − 1 linearly independent constraints of
P̄FM that are tight for both ȳ and z̄ ⇒ K̄ has at most ≤ |K̄ |+1 edges.

I Obs: An n-connected graph with n + 1 edges has ≤ 2 odd cycles!
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• Let ȳ ,z̄ be adjacent vertices of P̄FM , and C̄ȳ , C̄z̄ the set of their odd cycles.
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• Claim: |C̄z̄∆C̄ȳ | ≤ 2. Why?
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• Let ȳ ,z̄ be adjacent vertices of P̄FM , and C̄ȳ , C̄z̄ the set of their odd cycles.
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Diameter

Theorem [S.’18]

diameter(PFM) = maxx∈vertices(PFM ){1T x + |Cx |
2
}

• Obs: For a bipartite graph Cx = ∅ → diameter(PFM) = diameter(PM).

Lower bound: Let w be any vertex.

• Show: the distance between w and the 0-vertex is ≥ 1Tw + |Cw |
2

.

I Add a loop edge on each node v in support(w).
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Upper bound

• Given two distinct vertices z and y of PFM , the selection of the moves to
take is not straightforward.

Recall the adjacencies we mentioned:

• An easy “attempt” to go from z to y would be to define:

I (i) a path from z to a 0/1-vertex z̄ by removing one C ∈ Cz at each step

I (ii) a path from y to a 0/1-vertex ȳ by removing one C ∈ Cy at each step

I (iii) a path from z̄ to ȳ (e.g. using the 1-skeleton of PM)

...but unfortunately this may lead to paths longer than the claimed bound!
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I Define a path of the form: z → w → y for some maximal vertex w of
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I Rely on a token argument: assign a token of value 1
2

to each node v and
each cycle C in support(w)
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Algorithmic and hardness implications



Hardness

Theorem [S.’18]

Computing the diameter of a polytope is a strongly NP-hard problem.

• Reduction from the (strongly) NP-hard problem Partition Into Triangles.

I Given: A graph G = (V ,E)

I Decide: V can be partitioned into {V1, . . . ,Vq}: ∀i , Vi induces a triangle

• Given G , consider the fractional matching polytope PFM associated to G .

• Let x be a vertex of PFM . Then: (i) 1T x ≤ |V |
2

(ii) |Cx |
2
≤ |V |

6

Proposition: diam(PFM) = 2
3
|V | ⇔ G is a yes-instance to PIT.

• With some extra effort, we can strengthen the result to show APX-hardness.
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Hardness

• Do the previous results have some hardness implication on the performance
Simplex algorithm? Not in the current form... but some implications can be
derived easily with a little extra work!

• In particular, one can observe the following (see [De Loera, Kafer, S.’19]):

Given a vertex of a bipartite matching polytope and an objective function,
deciding if there exists a neighboring optimal vertex is NP-hard.

• Proof. Reduction: Given a directed graph H we:

I construct a bipartite graph G , extreme point x of PFM(G), obj function c.

I show that ∃ a neighboring optimal extreme point of x iff H is Hamiltonian.
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• Note: Similar observation in [Barahona&Tardos’89] for circulation polytope.

Corollary

Finding the shortest monotone path to an optimal solution is NP-hard, and
hard-to-approximate within a factor better than 2.

• Consequences (unless P=NP):

I For any efficient pivoting rule, an edge-augmentation algorithm (like
Simplex) can’t reach the optimum with a min number of augmentations.
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Final remarks

• Main questions:

I Is the polynomial-Hirsch conjecture true?

I Is there a polynomial pivoting rule for the Simplex algorithm?

• Diameter of the perfect matching polytope?

• All the hardness results discussed are for non simple polytopes.
→ A d-dimensional polytope is simple if every vertex is in exactly d facets

I Can one extend them to simple polytopes?

I Note: the complexity of computing the diameter of a simple polytope is
mentioned as an open question in the survey of [Kaibel&Pfetsch’03]
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From last lecture...

• The Simplex algorithm is an extremely popular method to solve Linear
Programs (LP) (named as one of the “top 10 algorithms” of the 20th century).

• It exploits the fact that an optimal solution of an LP defined on a polytope
can be found at one of its extreme points

• Simplex Algorithm’s idea: pivot from an extreme point to an improving
adjacent one, until the optimum is found!

• Related concept: Diameter of a polytope → Maximum length of a ‘shortest
path’ between two extreme points of a polytope.

...Can we get new insights by enlarging the set of directions?



From last lecture...

• The Simplex algorithm is an extremely popular method to solve Linear
Programs (LP) (named as one of the “top 10 algorithms” of the 20th century).

• It exploits the fact that an optimal solution of an LP defined on a polytope
can be found at one of its extreme points

• Simplex Algorithm’s idea: pivot from an extreme point to an improving
adjacent one, until the optimum is found!

• Related concept: Diameter of a polytope → Maximum length of a ‘shortest
path’ between two extreme points of a polytope.

...Can we get new insights by enlarging the set of directions?



Circuits

• One interesting way to enlarge the set of directions is to look at circuits.

• For a given polytope, the circuits are given by the set of all potential
edge-directions that can arise by translating some of its facets.

• Circuits have a long history [Rockafellar’69,Graver’75,Bland’76].

• Circuits and circuit-augmentation algorithms have appeared in several papers
on linear/integer optimization (see e.g. [Hemmecke, Onn, Weismantel’11]
[Hemmecke, Onn, Romanchuk’13] [De Loera, Hemmecke, Lee’15] [Borgwardt,
Viss’19])
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max-value of a shortest path between two extreme points, assuming that at
any given point we can move maximally along any circuit.

• Note: Polytopes with the same combinatorial structure might have different
circuit-diameter values.
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Interesting aspects – In this lecture

• Algorithmic aspects:

I Can we exploit circuit-augmentation algorithms to make conclusions about
the perfomance of the Simplex algorithm?

→ Emphasis: LPs defined on 0/1 polytopes

• Diameter-related aspects:

I Can we gain insights from the generalized notion of circuit-diameter on
long-standing conjectures in the literature about diameters?

→ Emphasis: TSP polytope
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Circuits

• Formally, for a polyhedron P of the form P = {x ∈ Rn : Ax = b, Bx ≤ d}, a
non-zero vector g ∈ Rn is a circuit if

I g ∈ Kernel(A)

I Bg is support-minimal in the set {By : y ∈ Kernel(A), y 6= 0}

→ Circuits correspond to all edge-directions obtainable by possibly translating
facets.

• Note: If g is a circuit, then αg is a circuit (for any non zero α ∈ R).

• The set of circuits can be made finite by normalizing in some way, e.g.

I (optional:) g has co-prime integer components
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Circuits

• Hence, we get the following graphical characterization [De Loera,Kafer,S.’19]:
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Circuit-augmentation algorithms

• [De Loera, Hemmecke, Lee’15] studied some augmentation algorithms for
rational LPs in equality form based on circuits:

I moving maximally along the circuit that yields the greatest improvement,
one reaches the optimum in (weakly) polynomially many steps!

(→ in contrast w.r.t. the Simplex!)

• Formally, consider an LP max{cT x : Ax = b, u ≥ x ≥ `, x ∈ Rn} (Wlog,
assume coefficents are integral).

Thm [De Loera, Hemmecke, Lee’15]

Using a greatest-improvement pivot rule, one can reach an optimal solution x∗

from an initial one x0 performing O
(
n log

(
δ cT (x∗− x0)

)
circuit augmentations.

→ Here δ is the maximum determinant of any n × n submatrix of the
constraint matrix.

• Obs. Result extends to LPs of general form max{cT x : Ax = b, Bx ≤ `}
(Details in [De Loera,Kafer,S.’19]).
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Circuit-augmentation algorithms

Proof. Relies on the Sign-Compatible Representation Property of circuits:

Thm [Graver’75]

Let v ∈ Kernel(A) \ 0. Then v =
∑n

i=1 αig
i for some αi ≥ 0 and circuits g i

that are sign-compatible with v w.r.t. B (i.e., (Bv)j ≥ 0 iff (Bg i )j ≥ 0)

I Express (x∗ − x0) =
∑n

i=1 αig
i . Then cT (x∗ − x0) =

∑n
i=1 c

T (αig
i ).

I Note: for every i , x0 + αig
i is feasible. Why?

I A(x0 + αig
i ) = b → g i is in Kernel(A)

I ∀j : (B(x0 + αig
i ))j = (Bx0)j + αi (Bg

i )j ≤ `j → sign-compatibility!
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Circuit-augmentation algorithms

• As mentioned, these results imply that a greatest-improvement pivot rule
yields an optimal solution in (weakly) polynomially many steps!

• Question: How hard is selecting the “greatest-improvement” circuit?

Thm [De Loera, Kafer, S.’19]

Selecting the circuit that yields the greatest improvement is NP-hard, already
for the bipartite matching polytope. However, any γ-approximation algorithm
with γ polynomial in the input size, still guarantees convergence in poly-time.

Proof:
I Approximation: Straightforward extension of [DHL’15].
I Hardness: Follows from the hardness of determining whether a given

extreme point has an optimal adjacent neighbor.
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and hard-to-approximate within a factor better than 2.

• Consequences (unless P=NP):

I For any efficient pivoting rule, a circuit-augmentation algorithm can’t
reach the optimum with a min number of augmentations.
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Circuit-augmentation algorithms

• The previous results raise a natural question:

Can a (maximal) augmentation along an edge-direction be a ‘good’
approximation of a greatest-improvement circuit augmentation?

• Recall previous example:

x*

0x

• Interestingly, the answer is ’yes’ for 0/1-polytopes!

Def. For a given extreme point x of an LP and objective function vector c,

a steepest-edge direction g is an edge-direction incident at x maximizing cT g
||g||1
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0/1-Polytopes

• 0/1-Polytopes are of fundamental importance in optimization.

• Recall: Their diameter is linear (Hirsch bound holds [Naddef’89]).

• Note: For 0/1-LPs, paths of strongly-polynomial length to an optimal
solution (on the 1-skeleton) can be constructed from any augmentation oracle.
(See [Schulz,Weismantel,Ziegler’95], [Del Pia,Michini’20]).

Question: Is there a ‘natural’ pivot rule for the Simplex algorithm that
guarantees (strongly)poly-time convergence on 0/1-LPs?

• For pivoting rules like Dantzig, Greatest-improvement, Steepest-edge:

I Strongly-polynomial bounds on the # of distinct basic feasible solutions
generated by Simplex are known for 0/1-LPs in Standard Equality Form
[Kitahara&Mizuno’14][Kitahara,Matsui,Mizuno’12],[Blanchard,De
Loera,Louveaux’20]

...What do we get with the previous framework?
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0/1-Polytopes

Thm [De Loera, Kafer, S.’19]

For a vertex of a 0/1-LP, a (maximal) augmentation along a steepest-edge
direction is an n-approximation of a greatest-improvement circuit
augmentation.

Proof: Let the 0/1-LP be max{cT y : y ∈ P} and x be a vertex.
Consider the following optimization problem:

max cT z

‖z‖1 ≤ 1 (1)

x + εz ∈ P for some ε > 0 (2)

1

1

-1

-1

Obs 1: The feasible region is a polytope. Why?

I Constraint (2) is describing the feasible cone at x

I Constraint (1) corresponds to
(
vT z ≤ 1 ∀v ∈ {1,−1}n

)
– cross-polytope

Obs 2: A steepest-edge direction is an optimal solution. Why?

I x is a 0/1 vector: only one constraint of the cross-polytope can be a facet.
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I α∗cT z∗ ≥ α∗cT z̃ ≥ α∗
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αcT z̃ ≥ 1
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0/1-Polytopes

• Combining the previous theorems, we get the following:

Corollary 1

For 0/1-LPs, moving along the steepest-edge yields an optimal solution from
an initial extreme point in a strongly-polynomial number of steps.

Proof:

I One can reach an optimal solution in O
(
n2 log

(
δ cT (x∗ − x0)

)
edge-augmentations.

I The analysis can be improved relying on the technique of
[Frank,Tardos’87], to make the above number strongly polynomial.
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rule reaches an optimal solution in strongly-polynomial time.
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• As a corollary of the previous algorithmic results [DHL’15, DKS’19], we can
get a (weakly) polynomial bound on the circuit-diameter of rational polyhedra.

Corollary

There exists a polynomial function f (m, α) that bounds above the
circuit-diameter of any rational polyhedron P with m facets and maximum
encoding length of a coefficient in its description equal to α.

Proof:
I Let y and z be two extreme points.
I Construct c by adding the rows of the tight constraints for z .
I Apply the bound on max{cT x : x ∈ P}, with x0 = y and x∗ = z .

Can we exploit circuits to get insights on other long-standing conjectures about
diameters in the literature?
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TSP Polytope

• The TSP polytope is given by the convex hull of characteristic vectors of
Hamiltonian cycles in a complete undirected graph.

• The study of the diameter of the TSP polytope has a long history.

I [Padberg&Rao’74] Showed that the asymmetric TSP polytope has
diameter 2 (i.e. when considering complete directed graphs).
Interestingly, their paper says:

I [Grötschel&Padberg ’86] conjectured that also for the TSP polytope the
diameter is 2. Still open!
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TSP Polytope

• The current best known value is due to [Rispoli&Cosares’98]:

Thm [Rispoli,Cosares’98]

The diameter of the TSP polytope is at most 4.

• Which adjacency relations do [RC’98] use?

I [Papadimitriou’78] proved that testing wether two TSP tours are adjacent
is CO-NP-complete.

I [RC’98] exploit adjacencies for the perfect 2-matching polytope!

• A perfect 2-matching is a set F of edges
such that each node is incident into exactly
2 edges of F .

• Note: A TSP tour is a perfect 2-matching!



TSP Polytope

• The current best known value is due to [Rispoli&Cosares’98]:

Thm [Rispoli,Cosares’98]

The diameter of the TSP polytope is at most 4.

• Which adjacency relations do [RC’98] use?

I [Papadimitriou’78] proved that testing wether two TSP tours are adjacent
is CO-NP-complete.

I [RC’98] exploit adjacencies for the perfect 2-matching polytope!

• A perfect 2-matching is a set F of edges
such that each node is incident into exactly
2 edges of F .

• Note: A TSP tour is a perfect 2-matching!



TSP Polytope

• The current best known value is due to [Rispoli&Cosares’98]:

Thm [Rispoli,Cosares’98]

The diameter of the TSP polytope is at most 4.

• Which adjacency relations do [RC’98] use?

I [Papadimitriou’78] proved that testing wether two TSP tours are adjacent
is CO-NP-complete.

I [RC’98] exploit adjacencies for the perfect 2-matching polytope!

• A perfect 2-matching is a set F of edges
such that each node is incident into exactly
2 edges of F .

• Note: A TSP tour is a perfect 2-matching!



TSP Polytope

• The current best known value is due to [Rispoli&Cosares’98]:

Thm [Rispoli,Cosares’98]

The diameter of the TSP polytope is at most 4.

• Which adjacency relations do [RC’98] use?

I [Papadimitriou’78] proved that testing wether two TSP tours are adjacent
is CO-NP-complete.

I [RC’98] exploit adjacencies for the perfect 2-matching polytope!

• A perfect 2-matching is a set F of edges
such that each node is incident into exactly
2 edges of F .

• Note: A TSP tour is a perfect 2-matching!



TSP Polytope

• The current best known value is due to [Rispoli&Cosares’98]:

Thm [Rispoli,Cosares’98]

The diameter of the TSP polytope is at most 4.

• Which adjacency relations do [RC’98] use?

I [Papadimitriou’78] proved that testing wether two TSP tours are adjacent
is CO-NP-complete.

I [RC’98] exploit adjacencies for the perfect 2-matching polytope!

• A perfect 2-matching is a set F of edges
such that each node is incident into exactly
2 edges of F .

• Note: A TSP tour is a perfect 2-matching!



TSP Polytope

• The current best known value is due to [Rispoli&Cosares’98]:

Thm [Rispoli,Cosares’98]

The diameter of the TSP polytope is at most 4.

• Which adjacency relations do [RC’98] use?

I [Papadimitriou’78] proved that testing wether two TSP tours are adjacent
is CO-NP-complete.

I [RC’98] exploit adjacencies for the perfect 2-matching polytope!

• A perfect 2-matching is a set F of edges
such that each node is incident into exactly
2 edges of F .

• Note: A TSP tour is a perfect 2-matching!



TSP Polytope

• The current best known value is due to [Rispoli&Cosares’98]:

Thm [Rispoli,Cosares’98]

The diameter of the TSP polytope is at most 4.

• Which adjacency relations do [RC’98] use?

I [Papadimitriou’78] proved that testing wether two TSP tours are adjacent
is CO-NP-complete.

I [RC’98] exploit adjacencies for the perfect 2-matching polytope!

• A perfect 2-matching is a set F of edges
such that each node is incident into exactly
2 edges of F .

• Note: A TSP tour is a perfect 2-matching!



TSP Polytope

• Similarly to the matching polytope (see previous lecture) we have:

Two perfect 2-matchings M1 and M2 are adjacent ⇔ M1∆M2 contains a
unique alternating cycle.

• The above yields a sufficient adjacency condition for two TSP tours!

Proof sketch of [RC’98] (n even):

I Note: A TSP tour T is the disjoint union of two perfect matchings.
I Key Lemma: For every pair of tours having a perfect matching in common,

the distance between their corresponding extreme points is at most 2.
I Let T1 = M1 ∪M2, and T2 = M3 ∪M4. There exists M such that

both M1 ∪M and M3 ∪M are tours → bound of 6.
I Improve to 4 by selecting M more carefully, as to have one simple cycle in

the first and last step.

• They also state: 4 is best possible if you always exchange perfect matchings.
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TSP Polytope

Question: Does the bound of 2 hold for the circuit-diameter? Yes!

Thm [Kafer, Pashkovich, S.’18]

The circuit-diameter of the TSP polytope is equal to

I 1 for |V | 6= 5

I 2 for |V | = 5

• For TSP tours T1,T2, let χ1, χ2 ∈ {0, 1}E be the characteristic vectors of
T1,T2.

• Key point: For n 6= 5, χ2 − χ1 is a circuit of the TSP polytope!

→ Which inequalities do we use?
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I 2 for |V | = 5

• For TSP tours T1,T2, let χ1, χ2 ∈ {0, 1}E be the characteristic vectors of
T1,T2.

• Key point: For n 6= 5, χ2 − χ1 is a circuit of the TSP polytope!

→ Which inequalities do we use?



TSP Polytope

• We consider the subtour relaxation [Dantzig,Fulkerson,Johnson’54]
plus certain comb inequalities [Grötschel,Padberg’79]

x(E(S)) ≤ |S | − 1 ∀S ⊂ V , 2 ≤ |S | ≤ |V | − 2

x(δ(v)) = 2 ∀v ∈ V

xuv + xvw + xwu + xuu′ + xvv′ + xww′ ≤ 4 ∀u, v ,w , u′, v ′,w ′ ∈ V

x ≥ 0

• Example:
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Further on circuit-diameters

• The complexity of computing the circuit-diameter of a polytope is currently
not known ...even for the fractional matching polytope.

• Recall: There is a graphical characterization of the circuits of the fractional
matching polytope.
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• Note: We can construct instances where the circuit-diameter is strictly
smaller than the (standard) diameter value.
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Final remarks

• Main questions:

I Is the polynomial-Hirsch conjecture true?

I Is there a polynomial pivoting rule for the Simplex algorithm?

• (Mentioned in the survey of [Kaibel&Pfetsch’03]) What is the complexity of
computing the diameter of a simple polytope?

• Diameter of TSP polytope?

• On circuits:

I (Approximation) algorithms for selecting circuits?

I What is the complexity of computing the circuit-diameter of a polytope?

Thank you!
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