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Abstract
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experience nearly twice the earnings losses of those who switch sectors, possibly due to
limited occupational mobility. Among non-switchers, losses are larger in labor markets
with high employer concentration, indicating that scarce outside options translate into
lower reemployment wages and weaker bargaining positions. Geographic movers fare
worse than stayers, reflecting negative selection (younger, lower-earning) and reloca-
tion to metropolitan areas where fossil fuel or low-skilled service sectors remain highly
concentrated, leaving monopsony power intact. (JEL Q32, R11, J31, J60, J42)
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1 Introduction

In many advanced and emerging economies, labor markets are being reshaped by the com-

bined forces of automation, trade liberalization, and decarbonization policies, often reducing

demand for narrowly defined tasks in specific regions. These shocks are most damaging when

two conditions coincide: skills are highly sector-specific and a small set of employers domi-

nates hiring. When demand falls, workers struggle to redeploy their human capital, and the

few remaining employers can set wages below productivity. This pair of frictions (skill im-

mobility and monopsony power) arises where tasks are highly specialized and employment is

concentrated among a few firms. It is especially salient in fossil fuel (FF) production regions,

including coal mining and oil and gas extraction, where production is tied to immovable re-

sources and a small number of operators set pay. Understanding how these frictions interact

is essential for policy that aims to protect workers during large industrial transitions. This

is particularly relevant for the energy transition, which delivers global environmental gains

while concentrating job-loss risk in communities long dependent on FF employment.1

In this paper, I bring new evidence to this broader question about how worker mobility

and local employer concentration jointly shape post-separation employment and earnings.

Using the Longitudinal Employer-Household Dynamics (LEHD) data, I track nearly the

universe of US fossil fuel extraction workers from 1999 to 2019. The matched worker-firm

histories let me observe whether displaced workers switch sectors, move regions, or both, and

then quantify how their earnings trajectories depend on the portability of their skills and the

competitiveness of the destination labor market. Where prior work has documented average

earnings declines after plant closures (Jacobson et al., 1993), import surges (Autor et al.,

2014), or environmental regulation (Walker, 2013), I ask how limited sectoral portability and
1Empirical estimates of earnings losses in carbon‑intensive sectors include Curtis (2018), Deschenes (2010),

Greenstone (2002), and Walker (2013).
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monopsony power contribute to the observed earnings impact.2 That distinction is pivotal

for policy: if monopsony dominates, antitrust or new‑entrant incentives may be key; if skill

immobility dominates, retraining or mobility subsidies take center stage.

FF extraction provides a useful empirical setting for this analysis. Because FF extraction

is tied to immovable resource deposits and relies on large, site-specific capital, firms cannot

relocate when prices or regulations change. Employment is therefore clustered among a small

number of local employers, and when local extraction contracts, adjustment is geographically

concentrated: workers face scarce comparable jobs nearby and must either move to other FF

regions or switch into non-FF industries. Tasks in FF extraction, such as operating drilling

rigs, maintaining longwall systems, and managing high-pressure completions, require spe-

cialized, equipment-specific skills with limited transferability to other industries, mirroring

the specificity of many tasks.3

This paper analyzes the short- and long-run impacts of local FF labor demand shocks

on individual workers’ employment and earnings after separation. To capture market- or

commuting zone (CZ)-level exposure to these shocks, I construct a Bartik-style variable

defined as the growth in national FF employment (excluding the CZ itself) multiplied by

each market’s predetermined geological potential for FF extraction. This measure exploits

variation in markets’ economic reliance on fossil fuels and their vulnerability to sectoral

fluctuations: regions with higher geological potential typically have more FF-dependent

economies, making them particularly sensitive to demand shocks.

Matched worker-firm histories allow me to classify separated workers along two margins:

(i) sectoral mobility (whether they leave the FF sector), and (ii) geographic mobility (whether

they leave their origin market). Using detailed worker and firm-level data from the LEHD
2I disentangle the effects of skill-specific human capital from employer monopsony power by estimating

the same labor-demand-shock regressions within mutually exclusive subsamples defined by mobility group
(e.g., workers who leave both the FF sector and their local labor market) and high- vs. low-monopsony
areas. By holding local concentration fixed when comparing sectoral switchers to non-switchers, and skill
portability fixed when comparing high- and low-monopsony markets, the differences in coefficients isolate
how each friction independently contributes to earnings losses after separation.

3See, for example, Autor et al. (2014) on China‑trade shocks and Acemoglu and Restrepo (2020) on
automation.
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and the Longitudinal Business Database, I compare earnings outcomes across these worker

groups to reveal how both worker selection and local monopsony power jointly influence

earnings recovery.

In the full sample of about 1.35 million workers, a 1% decline in national FF employment

lowers exposed workers’ employment probability by 0.3 p.p. and annual earnings by 0.16%

on average. The earnings effects are small immediately after separation, plausibly reflecting

temporary factors such as severance or brief reemployment. In the medium term, earnings

decline steadily as adjustment costs accumulate, job matches shift toward lower pay, or

nonemployment spells lengthen, with only partial recovery after ten years.

To identify the specific causes of job separations, I construct a mass-layoff sample that

includes workers separated from employers that either closed or experienced job cuts ex-

ceeding 30%. The findings from the mass-layoff sample align closely with those from the

full sample, suggesting that layoffs are the primary driver of the observed earnings losses.

Evidence from the mass-layoff subsample and the tight co-movement of employment and

earnings points to longer nonemployment spells as the primary channel. At the same time,

when I restrict to observations with positive earnings and hold the worker sample fixed, the

patterns are similar. This implies that losses also occur among the employed, consistent with

lower wages or hours in new matches; therefore, intensive margins likely contribute as well.4

Workers who remain in the FF sector after separation (“Nonswitchers”) experience deeper

and more persistent losses, consistent with selection into roles with limited portability. In

drilling, roughly 75% of positions are FF-specific, meaning a significant portion of jobs are

in occupations that are rarely found outside FF industries, whereas oil‑and‑gas extraction

employs a more transferable mix of tasks and occupations. I find that separated drilling

workers, who are disproportionately male, rarely switch and incur the largest losses, while

women in more transferable roles exit at higher rates and face milder setbacks. Workers who

leave their local labor markets after separation (“Movers”) display larger short‑run losses
4Because conditioning on positive earnings selects on post-treatment employment, interpret this evidence

as suggestive rather than a full decomposition.
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than Nonmovers. Stylized facts and subgroup estimates point to two forces: a composition

effect—the affected group is disproportionately younger, with shorter tenure and lower pre-

separation earnings—and the costs of match rebuilding after displacement.

I measure destination markets’ concentration in two ways: FF-specific HHI (within-

FF bargaining conditions) and all-sector HHI (overall outside options). For Nonswitcher-

Nonmovers, high FF-HHI yields large, persistent losses, while low FF-HHI workers nearly

return to their baseline earnings in the long run; using all-sector HHI, the same group shows

modest losses in high-HHI markets and sizable gains in low-HHI markets. For Switcher-

Nonmovers, FF-specific HHI is largely uninformative since jobs are outside FF, whereas

all-sector HHI remains decisive (modest losses at high HHI and modest gains at low HHI).

These results indicate that, when outside options are scarce, incumbent FF employers capture

much of the switching surplus. By contrast, in more competitive markets the availability of

non-FF job offers strengthens workers’ bargaining power, even for Nonswitchers who remain

in the FF sector.

Among Nonswitcher-Movers, high FF-specific HHI is associated with large long-run losses

and low FF-HHI with only modest losses; with all-sector HHI, high-HHI destinations produce

large losses and competitive destinations modest gains. For Switcher-Movers, FF concentra-

tion does not price wages, but overall concentration still matters: modest losses in high-HHI

markets and approximately zero effects in low-HHI markets. Given that Movers predom-

inantly relocate from rural to urban areas, the estimates imply that the FF niche often

remains highly concentrated even in urban labor markets. Consequently, mobility does not

automatically improve bargaining conditions; meaningful gains from geographic arbitrage

arise mainly when the destination has low overall employer concentration.

My first contribution revisits the classic job‑displacement debate through the lens of

two explicit cushions that normally soften a lay‑off: the skill cushion, representing the ease

of transferring displaced workers’ human capital, and the competition cushion, reflecting

the degree of local employer competition that supports workers’ outside options. Seminal
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studies such as Jacobson et al. (1993) document large and persistent earnings losses but

implicitly presume that at least one cushion is thick, either because general skills travel well

or because post‑displacement pay is set in competitive markets.5 Instead, I show that when

both cushions are thin, as in resource‑dependent enclaves where tasks are highly specialized

and employment is dominated by a handful of firms, earnings losses are roughly twice what we

would predict from skill mismatch alone. This analysis builds on recent evidence showing that

displacement scars arise from distinct sources such as loss of match‑specific human capital

(Lachowska et al., 2020), reduced bargaining leverage in monopsonistic markets (Berger et

al., 2022), and diminished outside‑option rents (Jarosch, 2023). To my knowledge, however,

this paper is the first to explicitly quantify how limited employer competition significantly

amplifies earnings losses in contexts where skill transferability is already low.6 In doing

so, it connects the job-loss and monopsony literatures and highlights promoting employer

competition as a distinct policy tool, separate from traditional retraining programs.

A second contribution extends the literature on reallocation frictions by showing that

earnings losses are compounded when workers face constraints on both geographic and sec-

toral adjustment. Earlier work has tended to isolate one margin: trade‑shock work em-

phasizes regional stickiness even when industry switching is possible (Autor et al., 2013);

migration models stress moving costs that mute geographic responses to wage differentials

(Kennan & Walker, 2011); and macro‑spatial models of structural change treat industry

switching with fixed mobility parameters (Caliendo et al., 2019). Closer to my approach, a

few papers (Colmer et al., 2024; Walker, 2013) study earnings conditional on both sector and

location. I contribute to this literature by unpacking mechanisms on two fronts: first, I doc-
5Prior research has documented that displacement leads to persistent earnings losses (Davis & Wachter,

2011; Schmieder et al., 2023), attributing these to factors such as the loss of firm-specific wage premiums
and productivity (Couch & Placzek, 2010), limited mobility over the life cycle (Jung & Kuhn, 2019), and skill
mismatches in re-employment (Farber, 2017).

6Yi et al. (2024) study German male manufacturing workers, attributing post-shock earnings losses
solely to regional industry composition and sectoral proximity. My analysis extends this by incorporating
actual observed worker mobility—across sectors and regions—and local employer concentration. I show that
limited employer competition approximately doubles the earnings losses already stemming from poor skill
transferability, an amplification channel not captured by Yi et al. (2024)’s absorptiveness index.
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ument selection into sector switching and relocation using observable worker characteristics;

second, I link the cross-group dispersion in earnings losses to features of destination labor

markets. These patterns help reconcile why large local shocks leave permanent employment

gaps (Yagan, 2019) and suggest that skill‑transfer barriers (Kambourov & Manovskii, 2009;

Parent, 2000) and monopsony power7 interact with traditional frictions such as migration

costs or housing constraints.

Last but not least, this paper contributes to the emerging literature on the labor market

impacts of decarbonization in two distinct ways. First, I examine the entire FF supply

chain—including coal mining, oil and gas extraction, drilling, and related support services

—rather than focusing solely on specific worker groups (e.g., coal miners8) or aggregate

employment measures at the industry or regional level (Allcott & Keniston, 2018; Bartik et

al., 2019; Feyrer et al., 2017). This broader approach demonstrates that skill- and location-

specific scarring effects observed in coal mining generalize across the FF sector as a whole.

Second, I provide the first causal estimates illustrating how simultaneous sectoral decline

and local employer concentration jointly suppress wages and employment opportunities. In

this regard, the paper complements prior work by Walker (2013), which focused on regulated

manufacturing plants, by specifically quantifying reallocation costs within industries directly

targeted by the energy transition. Thus, my results yield granular evidence to inform policy

design, highlighting the importance of promoting worker retraining, geographic mobility, and

competitive labor markets in regions.

The rest of the article is structured as follows: Section 2 provides an overview of the

FF extraction industry in the US. Section 3 outlines the theoretical framework for labor

reallocation under frictions, and Section 4 describes the data used in this study. Section 5

presents descriptive findings on the sectoral and geographic mobility of FF workers. Section 6

and Section 7 explain the empirical strategy and reports the results, respectively. Section 8
7A handful of studies show that monopsony power suppresses wages in concentrated labor markets (Azar

et al., 2022; Schubert et al., 2024; Thoresson, 2024).
8Previous studies have examined job losses and earnings declines among individual coal mining workers

in the US (Colmer et al., 2024) and the United Kingdom (Rud et al., 2024).
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discusses the policy implications. Section 9 concludes.

2 Background on the Fossil Fuel Industry

The cyclical nature of FF extraction employment underscores the sector’s pronounced

sensitivity to external economic and regulatory shocks, creating a highly volatile employ-

ment environment.9 The top-left panel of Figure 1 illustrates significant fluctuations in

FF employment in the US over recent decades, driven largely by geopolitical events and

environmental regulations. These disruptions frequently trigger large-scale, geographically

concentrated layoffs (Black et al., 2005; Marchand, 2012; Rud et al., 2024).10

The bottom-left panel plots annual series for all separations, employer-driven job losses

(firm-level net employment reductions), and layoffs from 2000 to 2019. Periods when national

FF employment falls, such as 2008-09 and 2014-15, line up with sharp increases in employer-

initiated separations and layoffs. This comovement indicates that downturn spikes in total

separations are driven mainly by involuntary exits. The surge in layoffs shows how external

shocks translate into heightened job instability in the FF sector.

Local FF labor markets are highly concentrated and spatially immobile, which gives

employers substantial wage-setting power and makes reallocation costly. The top-right panel

in Figure 1 documents this concentration: 30% of commuting zones have fewer than 10 FF

employers, compared with 2% in construction and 6% in manufacturing; at the county level,

about one third of US counties have fewer than five FF employers (versus 3% in construction

and 6% in manufacturing). The mechanism is geographic: extraction is tied to fixed resource

deposits, so production cannot relocate when prices or regulations change. Employment

therefore clusters where reserves are abundant, as shown by the strong spatial correlation
9Hereafter, FF extraction refers to the following NAICS 6-digit industries: Crude Petroleum Extraction

(211120); Natural Gas Extraction (211130); Bituminous Coal and Lignite Surface Mining (212111); Bitumi-
nous Coal Underground Mining (212112); Anthracite Mining (212113); Drilling Oil and Gas Wells (213111);
Support Activities for Oil and Gas Operations (213112); Support Activities for Coal Mining (213113).

10Notable events include the Clean Air Act Amendments, the Great Recession, and OPEC’s decision to
maintain high oil supply alongside intensified EPA standards during 2012-2016, causing sharp employment
declines. Between 2014 and 2017 alone, FF employment dropped by approximately 30%.
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between reserves and employment intensity (Figure A.4). When local extraction contracts,

comparable jobs nearby are scarce, and workers either move to other labor markets or switch

out of fossil fuels locally, often at lower pay.11

The capital intensity of FF extraction is a direct corollary of resource immobility. Because

production occurs where deposits are located, firms make large, sunk investments in site-

specific infrastructure (e.g., drilling pads, mine pits, processing and transport assets), which

ties activity to place and makes relocation infeasible (Figure A.5). This creates a challenging

situation where workers with specialized FF skills may need to either relocate to other FF

regions or transition to different industries entirely, as the location-dependent nature of FF

resources inherently restricts the geographic flexibility of FF employment opportunities.

Sector-specific roles in the FF sector show notably lower occupational mobility than sim-

ilar roles in other sectors (bottom-right panel in Figure 1). Highly specialized positions dom-

inant in the FF sector, such as roustabouts and mining machine operators,12 typically have

substantially lower Outside Options Index (OOI) values (Caldwell & Danieli, 2024; Schubert

et al., 2024), indicating fewer alternative employment opportunities for workers. Although

general occupations with higher skill transferability, such as managers or office clerks, exist

within the sector, they account for only a small portion of the workforce. This pronounced

specialization among most FF occupations severely restricts workers’ transitions to non-FF

industries, especially during industry downturns.13 Consequently, when contractions occur,

FF workers frequently encounter severe skill mismatches, prolonging unemployment spells

or compelling them to accept positions that poorly align with their expertise.

11This is consistent with the relatively high share of FF workers citing job-related reasons for moving (Fig-
ure A.3) and with FF wages exceeding those in nearby alternatives such as manufacturing and construction
(Figure A.2).

12See Figure A.6 for the distribution of major occupations in the FF sector.
13Figure A.1 shows that occupations such as derrick operators, continuous mining machine operators,

and wellhead pumpers show nearly 100% concentration in the FF sector. In contrast, major occupations in
other sectors are often more widely distributed and can be found in multiple industries outside their primary
sector. This suggests that FF workers possess highly specialized skills that are almost entirely applicable
within the FF industry, creating significant barriers to transferring their skills when seeking employment in
other sectors.
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Figure 1: National Fossil Fuel Employment (Top-Left) and Employer-Driven Job Loss (Bottom-Left), and CZ-Level Fossil Fuel
Employers (Top-Right) and Outside Options Index, Sector-Specific vs. General Occupations by Sector (Bottom-Right)

Notes: The top-left panel shows annual US fossil fuel employment, defined as total employment in oil and gas extraction, coal mining, and mining support activities
(collectively classified under NAICS code 21; Quarterly Census of Employment and Wages, US BLS). Shaded area (March 2012-December 2016) highlights the
period of intensified Environmental Protection Agency (EPA) standards. “OPEC Announcement” indicates the Organization of the Petroleum Exporting Countries
(OPEC)’s decision to maintain oil supply, triggering an oil price collapse. The bottom-left panel presents quarterly data on total job separations and employer-driven
job losses (Longitudinal Employer-Household Dynamics, US Census Bureau), along with layoffs (Job Openings and Labor Turnover Survey, US BLS). Employer-
driven job losses represent the “net” reduction in employment at firms experiencing declines during a given quarter. This measure excludes separations offset by
immediate hiring, thereby filtering out routine quits that firms quickly replace. The top-right panel illustrates the number of employers in the FF sector in each
CZ in 2019. The bottom-right panel compares occupational mobility between sector-specific and general occupations across four sectors: Fossil Fuel, Construction,
Manufacturing, and Utility. Examples of sector-specific occupations include derrick operators in Fossil Fuel, carpenters in Construction, team assemblers in
Manufacturing, and power-line mechanics in Utility. The Outside Options Index (OOI), based on Shannon entropy, measures the diversity of workers’ potential
employment transitions. Each boxplot shows the distribution of OOI across occupations, with the box representing the interquartile range, the line indicating the
median, and dots showing individual occupations. Lower OOI suggests more limited mobility and fewer viable outside options. Data source: Quarterly Census of
Employment and Wages, County Business Patterns, US BLS, and Schubert et al. (2024).
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3 Conceptual Framework

3.1 Individual Skill Transferability and Labor Allocation

To study worker reallocation after a shock, I build a two‑period model with two sectors

—fossil fuel (F ) and non‑fossil fuel (N)—and two local labor markets, A (the origin) and

B (a potential destination). In period 1, both markets k∈{A,B} are in steady state, with

nF,k
1 fossil fuel workers and nN,k

1 non‑fossil fuel workers. At the start of period 2, a nega-

tive, sector‑specific shock hits market A’ s fossil fuel industry, leaving market B essentially

unaffected.14 For simplicity, all fossil fuel workers in market A (nF,A
1 , the “AF ” group) are

separated from their employers.

I make the following assumptions for reallocation with frictions:

1. Worker heterogeneity and eligibility. Each worker i has skill transferability

θi ∈ [0, 1] (fraction of F productivity that carries to N), time‑invariant and uniformly

distributed. An eligibility threshold θ∗∈(0, 1) governs access to N : workers with θ≥θ∗

are “high‑type”; otherwise “low‑type”. Low types cannot access N anywhere.

2. Assignment. Conditional on being high‑type, a worker switches locally to AN with

probability P (θ). If not, the worker either relocates to B’s F or N with probabilities

MF (θ) and MN(θ) (residual probability is staying in AF ). Low types may move only

to BF . These probabilities summarize frictions such as licensing, information, and

networks.15 Figure 2 illustrates these assignments.

3. Effective labor and portability. In the N sector, a worker produces θ in A and
14This one‑market assumption mirrors many resource shocks in practice (e.g., coal in Appalachia vs. the

Powder River Basin). Allowing small spillovers to B would not change the qualitative results but would
burden notation.

15The model focuses on the reallocation of these displaced AF workers; all other workers (AN , BF , and
BN ) are held fixed after the shock. Thus, it is a model of net flows out of AF rather than gross two‑way
“cross‑hauling” of labor that often occurs in the data. Background churn between sectors and regions can
be several times larger than net flows. Abstracting from it isolates the displacement margin of interest. It
is also deliberately not a Roy model: AF workers do not choose the best sector. Instead, their period‑2
destinations are generated by reduced‑form probabilities that depend on worker type θ and origin market
A. This design isolates displacement and frictions without solving a full selection problem.
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ψ(θ)≤ θ in B capturing imperfect portability of N -relevant skills across markets; in

sector F , productivity is normalized to 1 in both markets.16

AF at t=1

θ < θ∗

θ ≥ θ∗

1− q
q

AF BF

1−MF (θ) MF (θ)

BN AN BF AF

(1− P (θ))MN(θ)

P (θ)

(1− P (θ))MF (θ)

(1− P (θ)) [1−MF (θ)−MN(θ)]

Figure 2: Post-Shock Assignment of Displaced Fossil Fuel Workers in Market A by Type

3.2 Equilibrium Wages under Market Power

In each sector j and local market k, employers collectively face an upward‑sloping la-

bor‑supply schedule, so the sector–market wage needed to employ L workers rises with L. I

model the sector–market inverse labor‑supply as

wj,k(L) = χj,k L1/εj,k , εj,k > 0, (1)

where wj,k(L) is the wage required to employ L workers in (j, k), χj,k captures local condi-

tions, and εj,k is the elasticity of labor supply to the market. Thus, a higher εj,k means a

more elastic supply and less wage‑setting power; lower values indicate more restrictive labor

supply and stronger market power.
16By definition, θ can be interpreted as a worker attribute that matters in sector N (e.g., proficiency in

tasks outside fossil fuel). The mapping ψ(·) is weakly increasing with ψ(θ)≤ θ and represents losses from
geographic mismatch or missing local complements in B. I normalize productivity in F to 1 everywhere and
absorb any relocation/search frictions for F into other terms, so the model isolates productivity and match
losses associated with moving from F into N .
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Profit maximization equates the marginal revenue product of labor (MRPL) with the

marginal expenditure on labor. Under (1), marginal expenditure is ME = wj,k(1 + 1/εj,k),

implying a markdown of wages relative to MRPL (Berger et al., 2022):

µj,k ≡ wj,k

MRPLj,k
=

εj,k

1 + εj,k
∈ (0, 1]. (2)

When µj,k=1, the market is competitive; smaller µj,k indicates a larger wedge and stronger

wage‑setting power. I interpret µj,k as a market‑level markdown that summarizes all sources

of wage wedges in (j, k) (e.g., employer market power, recruiting frictions, coordination),

without requiring a single‑firm monopsony.

Assuming that each sector in each market produces goods using a Cobb-Douglas pro-

duction function, wages in each sector–market pair are determined by the marginal product

of labor. To isolate the effects of labor supply and sectoral price shifts on wages, I simplify

the model by normalizing both total factor productivity and capital to one. With these

normalizations, the equilibrium wage equation becomes

wj,k
t = µj,kαjpjt(L

j,k
t )α

j−1 (3)

where αj is the labor share of output. pjt is the price in each sector j’s product, which is

assumed to be market-neutral.

3.3 Framework Implications

Wages in a sector–market pair reflect two forces: a markdown term µ (capturing monop-

sony) and a congestion term that depends on effective labor. With α∈ (0, 1), holding prices

and µ fixed, a larger effective labor pool lowers the wage; holding effective labor fixed, a

larger µ (weaker monopsony) raises the wage. The sign results below therefore hinge on

two objects: (i) differences in markdowns across sectors and markets and (ii) differences in

effective labor generated by the assignment primitives (P,MF ,MN , ψ). See Appendix A for
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the formal definitions of L̃j,k
2 , integrals over θ, micro sufficient conditions for the congestion

comparisons, and proofs.

• Proposition 1 (Switchers vs. nonswitchers in A). Suppose (i) pF2 ≤1 (a nontrivial

negative F price shock) and (ii) µN,A≥µF,A. If, in addition, the assignment primitives

imply a thinner effective N pool than the F pool in A (formal sufficient congestion

conditions in Appendix Prop. A.1), then

wN,A
2 > wF,A

2 .

The switcher premium is larger when local switch success P (θ) is low, relocation favors

BF over BN , and A’s N incumbents are small (all reduce L̃N,A
2 /L̃F,A

2 ).

• Proposition 2 (Switchers vs. nonswitchers in B). Under the same logic, if (i)

µN,B≥µF,B and (ii) assignment primitives put more effective labor into BF than BN

(Appendix Prop. A.2), then

wN,B
2 > wF,B

2 .

Congestion tends to be stronger in BF because both low- and high-types can end up

in F , while only high-types can reach BN and are discounted by ψ(θ)≤θ.

• Proposition 3 (Mover penalty in F ). If the destination F market is at least as

monopsonistic as the origin (µF,B ≤ µF,A) and the assignment primitives generate a

larger effective F pool in B than in A (Appendix Prop. A.3), then

wF,B
2 < wF,A

2 .

The penalty grows with the mass of low-type movers (MF on L), with high-type non-

switchers who relocate to BF (large MF on H), and with a large F incumbent base in

B.
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• Proposition 4 (Mover penalty in N). If the destination N market is sufficiently

more monopsonistic than the origin (µN,B <µN,A) and effective N labor in B is thick

relative to A (Appendix Prop. A.4), then

wN,B
2 < wN,A

2 .

The penalty is larger when local switch success is low (small P (θ), which keeps AN

thin), when relocation into BN among eligibles is common (large MN(θ) on [θ∗, 1]),

when portability is strong (ψ(θ) close to θ), and when B has a larger incumbent N

base.

4 Data

4.1 Matched Employer-Employee Data

This study utilizes data from the US Census Bureau’s Longitudinal Employer-Household

Dynamics (LEHD) program spanning 1999 to 2019. The LEHD is a comprehensive quarterly

dataset that links employer and employee records, covering over 95% of private-sector jobs

in the US. The dataset includes information on worker earnings, primarily sourced from

confidential state Unemployment Insurance (UI) earnings data,17 as well as key demographic

characteristics such as age and sex.

The LEHD provides key employer-level characteristics, including industry classification

(6-digit NAICS codes), age, employment size, and ownership type. Using the LEHD’s

employer-state identifier (SEIN), I match each job to the Employer Characteristics File

(ECF). To supplement this, I incorporate a restricted-use Longitudinal Business Database

(LBD) data, which covers all states and tracks firm dynamics, including parent-child rela-

tionships between employers and overarching firms. In this study, I define employers as
17Earnings data encompass gross wages, bonuses, stock options, and similar compensation types.
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individual business units (e.g., a mine site, field office, or drilling yard). The LBD also

tracks business entry and exit, allowing me to determine whether a business unit remains

operational or shuts down over time.

I use the LEHD from 29 states,18 which collectively represents approximately 80% of

national fossil fuel employment (Figure A.7). This coverage provides a robust foundation

for analyzing fossil fuel workers. While I can track the earnings history of business units

and their workers only in the 29 LEHD-approved states, this study leverages a restricted-use

dataset, which provides annual records with residential geography at the census tract level

for workers in all states, regardless of the LEHD approval status. This granularity enables

precise measurement of migration rates within the US. It also allows me to determine

whether a worker’s earnings record disappears due to relocation to a non-approved state or

because they have left the US labor market entirely due to retirement or emigration.

Using these datasets, I construct a worker-level panel that captures annual earnings,

place of residence, individual demographics, and employer characteristics. If a worker is

employed by multiple employers in a given year, the employer providing the highest earnings

is designated as the worker’s main employer (Lamadon et al., 2022; Sorkin, 2018). This

comprehensive framework enables a detailed analysis of labor dynamics across both fossil

fuel and non-fossil fuel sectors, while also tracking individual worker relocation decisions,

such as whether they moved to a different CZ.

4.2 Sample Selection for Separated Fossil Fuel Workers

To identify separated workers from the fossil fuel (FF) sector, I follow this data sampling

procedure: First, I restrict the sample to workers who were employed in the FF sector for

more than four consecutive quarters, ensuring the selection of workers reasonably attached

to the industry. Second, I include only workers who were separated from their FF employer
18The states that approved my project for accessing the LEHD are listed in abbreviations: AZ, CA, CO,

CT, DE, IA, IN, KS, MD, ME, MT, ND, NE, NM, NJ, NV, OR, OH, OK, PA, SC, SD, TN, TX, UT, VA,
WA, WI, and WY.
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during the sample period. To exclude separations due to firm restructuring rather than

layoffs, I do not count moves between different employers within the same firm as separations.

Third, I focus on workers born between 1945 and 1995, ensuring they spent at least ten years

between the ages of 15 and 65 during the sample period. Finally, I adjust all earnings to the

2010 Personal Consumption Expenditures Price Index and exclude workers whose average

non-zero quarterly earnings fell below the federal minimum wage threshold of $3,260 per

quarter (as of 2010). These steps yield a sample of approximately 1.35 million workers, equal

to about 1.0% of US employment and 1.3% of the national wage bill.

5 Stylized Facts

Summary. The LEHD data reveal five stylized facts:

1. Following separation, FF workers exhibit unusually high geographic mobility: about

20.7% leave their CZ within one year and 38.2% by year seven, well above comparable

sectors.

2. Relocation tends to facilitate sector switching, but this effect is much weaker in the

FF sector, where even movers are far less likely to leave the sector than other sectors.

3. Drilling-wells workers are 5-10 p.p. more likely to remain in FF jobs than those from

extraction or coal mining, consistent with more FF-specific occupations.

4. Movers are younger (the under-35 share is 12 p.p. higher), implying shorter tenure and

lower pre-separation earnings, while sex, race, and education are similar across groups.

5. Net flows show out-migration from rural resource regions (e.g., Wyoming, West Texas,

Appalachia) and in-migration to not only other FF-rich parts but also metropolitan CZs

in Texas, the Mid-Atlantic, and California, consistent with relocation toward thicker

urban labor markets.

16



5.1 Worker Classification by Mobility Status

To analyze the sectoral and geographic mobility of workers, I examine individuals’ em-

ployment and residence history for seven years following their separation from the fossil fuel

(FF) sector. For residence, I track an individual’s county of residence and assign them to

a commuting zone (CZ) based on 2010 delineations.19 CZs serve as the unit of local labor

markets in this study. For instance, a worker employed in the FF sector in 2009 would have

one of three employment statuses in 2010: employed by another FF employer, employed

outside the FF sector, or missing earnings.20 In this context, 2010 is defined as the first year

of post-separation.

I classify workers into four mutually exclusive groups based on their mobility status after

separation, considering both sectoral and geographic reallocation. These groups are defined

by whether a worker left the FF sector and whether they left their CZ within seven years of

separation. Workers are considered to have left the FF sector if they worked in the non-FF

sector for more than two years during this period. Similarly, workers are classified as having

left their CZ (based on their residence location) if they moved out of the CZ where they were

separated and did not return. Workers who left both the FF sector and their CZ are grouped

as Switcher-Mover. Those who left the FF sector but remained in or returned to their original

CZ are classified as Switcher-Nonmover. The remaining two groups—Nonswitcher-Nonmover

and Nonswitcher-Mover—are defined in the same way, considering workers who stayed in the

FF sector. Additionally, I define broader groups based on single dimensions: for example,

workers who left their CZ, regardless of whether they left the FF sector or not, are referred

to as the Mover group.
19This study uses 2010 CZ delineations, as they represent the midpoint of the sample period. The 625

CZs are clusters of counties with strong internal commuting ties, determined using commuter flow data from
the 1990 and 2000 Decennial Censuses and the 2006–2010 American Community Survey (Fowler et al., 2016).

20If a worker has missing earnings and resides in a non-LEHD-approved state, that worker-year observation
is excluded.
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5.2 Employment Transition Patterns of Fossil Fuel Workers

5.2.1 Geographic and Sectoral Mobility

The top-left panel of Figure 3 shows the geographic mobility of separated workers from

the FF sector and three comparison sectors following job separation.21 Geographic mobility

is measured by the share of workers who left the CZ where they were previously employed.

FF workers exhibit markedly higher rates of out-migration compared to their counterparts

in other sectors. Specifically, 20.7% of FF workers had relocated out of their original CZ

just one year after separation, and this share increases steadily to 38.2% by the seventh

year. This level of geographic mobility stands out in contrast to patterns observed in other

sectors and broader labor market trends.22 These findings underscore the particularly high

geographic mobility of FF workers following job loss. This pattern aligns with the inherently

immobile nature of FF jobs described in the background section and reflects the distinct

employment structure and regional concentration of the FF industry.

The top-right panel of Figure 3 plots, by years since separation, the difference between

the share of switchers among Movers and among Nonmovers across different sectors. The

series are positive throughout and jump in the first year before flattening, implying that

relocation generally facilitates sector switching by exposing workers to a wider set of vacan-

cies and lowering search or retraining frictions. The FF line is much lower—about 3 to 4

percentage points, compared with 7 to 12 in construction, manufacturing, and utilities—

showing that even movers from FF jobs are less likely to leave the sector. This is consistent

with sector-specific skills and licensing that transfer more readily across FF regions than
21To compare FF workers’ mobility with that of workers in other sectors, I construct analogous groups for

individuals separated from the construction, manufacturing, and utility sectors. For each of these sectors,
I follow the same sampling and classification procedure used for FF workers. This consistent approach
allows for direct comparison of both geographic and sectoral mobility across sectors that are similar in skill
requirements, physical demands, and wage levels.

22For example, Horn et al. (2022) calculate the share of workers who found a new job in a different MSA
by the end of their sample period (the fourth quarter of 2014) using LEHD data from 2002 to 2014. They
find that only 19.2% of workers separated from mass-layoff establishments across all industries eventually
left their metropolitan statistical areas (MSAs) over the long run, a mobility rate that closely mirrors the
patterns observed among separated construction, manufacturing, and utility workers in my data.
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into other industries. Taken together, the patterns point to a high-pay but low-opportunity

trade-off for FF workers: staying means few local openings and repeated disruptions, while

switching often requires giving up the FF wage premium and does not fully eliminate earn-

ings losses, making stable long-term employment difficult under either path. Consistent with

this interpretation, Movers show slightly lower nonemployment than Nonmovers across in-

dustries (Figure A.8), indicating that mobility can aid reattachment, although a nontrivial

subset still faces prolonged nonemployment.

5.2.2 Observable Selection across Worker Groups

The bottom-left panel of Figure 3 plots the share of Nonswitchers by pre‑separation

subsector within the FF industry, separately for Nonmovers and Movers. In both mobility

groups, workers from the drilling-wells subsector are 5 to 10 p.p. more likely to remain in

FF employment than workers from oil and gas extraction or coal mining. The gap persists

even among Movers, indicating that drilling workers tend to stay in FF jobs after relocating.

This pattern aligns with the occupational mix documented in Figure A.18 and discussed

in Section 2: drilling roles are highly FF-specific, which limits the portability of skills and

reduces occupational mobility outside the industry.

Age differences are also notable (bottom-right panel of Figure 3). A larger share of

Movers are young: the under-35 share is about 12 p.p. higher than for Nonmovers. Given

the positive age–tenure relationship, this composition suggests Movers tend to have shorter

job tenure, and it aligns with their lower pre-separation earnings (Figure A.9). In contrast,

demographic characteristics such as sex, race, and educational attainment show little vari-

ation between Movers and Nonmovers (Figure A.10). Across all groups, the share of female

workers fluctuates by only 5–6 p.p., while White workers consistently make up about 88%

of each group. Likewise, the proportion of workers with at least a bachelor’s degree remains

stable at around 18–21%.
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Figure 3: Geographic Mobility (Top-Left) and Sectoral Mobility (Top-Right) by Sector, and Conditional Probability of Staying
the FF Sector by Pre-Separation Subsector (Bottom-Left) and Age Composition Differences across Worker Groups (Bottom-
Right)

Notes: The bottom-right plot distinguishes sectoral nonswitchers from switchers. The right plot compares geographic nonmovers to movers. Year 0 denotes the
year of job separation. Each bar in the bottom-right panel represents the percentage‐point difference in the share of workers within an age bracket for each group.
Data source: LEHD.
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5.2.3 Migration Pattern of Movers

Geographic reallocation underscores the important role that urban areas play as labor

market hubs, offering FF workers access to more diverse employment opportunities and po-

tentially greater economic stability. Figure 4 presents the net migration patterns of workers

who separated from the FF sector. Striped and dotted regions represent areas with negative

net migration, and solid, pattern-free regions mark positive net migration. Large, predom-

inantly rural CZs such as Wyoming, West Texas, and parts of Appalachia show substantial

net outflows, indicating that separations in these areas often trigger exits from resource-

dependent regions. Net inflows concentrate in two destination types: FF-rich rural CZs

experiencing expansions (for example, North Dakota during the shale boom) and geograph-

ically small, high-density metropolitan CZs. Notable urban destinations include centers in

Texas, the Mid-Atlantic, and California. Taken together, the pattern suggests that after job

loss, FF workers reallocate either to new FF frontiers in rural areas or to diversified urban

labor markets with broader opportunities and more resilient demand.

Figure 4: Net Migration Flows of Separated Fossil Fuel Workers Across US Regions

Notes: Data source: LEHD.

21



6 Methodology

To understand how workers adjust to labor demand shocks in the FF sector across CZs,

I construct a measure of exposure to these shocks. My objective is to estimate the short-

run and long-run impacts of plausibly exogenous local labor demand shocks on individual

workers’ earnings. Following the approach of Hanson (2023), the exposure to FF labor

demand shocks in CZ c in year t is defined as:23

FFShockct = ∆ log
(∑

c′ ̸=c

EmpFF
c′,t

)
×Depthc (4)

where ∆ log(
∑

c′ ̸=cEmp
FF
c′,t ) represents the log change in leave-one-out national FF employ-

ment, which directly captures labor demand conditions in the FF sector.24 This approach

aligns with the rationale for using national industry employment growth rates as exogenous

shocks to estimate regional labor supply elasticities (Bartik, 1991). As discussed in Section 2,

changes in national FF employment are largely driven by external factors, such as global oil

price fluctuations, which are plausibly exogenous and unlikely to be influenced by local labor

market conditions. Because the identifying variation arises from large negative national de-

mand shocks, which primarily represent involuntary, employer-driven layoffs, any voluntary

separations occurring during unrelated boom periods (e.g., due to family or career reasons)

could introduce classical measurement error.25

I incorporate cross-sectional variation in CZs’ sensitivity to shocks to identify differential

exposure to common labor demand shocks. Specifically, I use a single resource-depth mea-
23In the regression analysis, the shock in Eq. (4) is multiplied by −1 to simplify interpretation, allowing

higher values of the exposure measure to represent larger negative changes.
24It is reasonable to believe that total FF employment is a noisy proxy for coal employment, as coal faces

secular, policy-driven declines while oil and gas fluctuates primarily with oil prices. However, Figure A.11
shows a positive short-run correlation between annual changes in national coal and total FF employment,
reflecting shared macroeconomic and energy-demand shocks, regional labor market spillovers, and synchro-
nized investment cycles. This suggests that total FF employment reasonably captures relevant short-run
variation in coal employment.

25This would bias the estimate toward zero, not create spurious evidence of earnings losses.
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sure from the national geological survey that covers both oil and coal-bed gas formations.2627

This geological measure is advantageous for three reasons. First, it is predetermined using

data from the 1970s, decades before my sample period, making it plausibly exogenous and

unlikely to be influenced by contemporaneous local labor supply conditions like population

composition or local amenities.28 Second, regions with deeper resources historically devel-

oped more FF-dependent economies, as deeper resources are associated with more intensive

extraction activities for oil and gas formations and coal seams (Luppens et al., 2009). Third,

deeper resources generally entail higher extraction (e.g., drilling or well completion) costs

(U.S. EIA, 2016), making these sites among the first to close during fossil fuel price down-

turns and thus more vulnerable to demand shocks.2930

Figure 5 illustrates the relationship between the depth of resources and both the share

and l4evel of FF employment in each CZ in 1990. The statistically significant positive corre-

lations indicate that areas with deeper FF resources historically became more FF-dependent.

Accordingly, CZs with greater resource depth tended to exhibit higher employment shares

in FF activity and were more likely exposed to sectoral downturns than shallower-resource
26The data source is the 1995 National Assessment of United States Oil and Gas Resources, conducted

by the US Geological Survey. For further details, refer to the report available at the following link: https:
//pubs.usgs.gov/circ/1995/1118/report.pdf.

27I normalize depth by dividing the raw measure by the sample maximum, yielding a unit-free index
that preserves cross-sectional ranking. Under this scaling, the distributed-lag path traces the response to a
one-unit national shock for high-exposed versus low-exposed locations.

28The depth measure comes from the USGS geologic-input file for undiscovered resources. It is set by
burial history and seismic mapping before any economic screening; whether a trap ever becomes commercially
viable is evaluated only later in the “economic module.” Hence depth is a fixed geologic parameter, not an
equilibrium or extractability measure. See Allcott and Keniston (2018) for an example of employing USGS
geological estimates of undiscovered reserves as a measure of local oil and gas endowment within a Bartik-
style analysis.

29The approach relies solely on monotonicity, meaning greater depth raises extraction costs in both oil
and coal sectors, without requiring identical cost functions across these sectors. The cost functions need not
share a common functional form (linear, quadratic, etc.), nor must depth affect labor intensity uniformly
across fuels; these differences influence only the magnitude of estimated effects, not their validity.

30Another geological candidate is net thickness, but depth may more directly reflect local vulnerability
to demand shocks due to its relationship with drilling costs, such as rig time, casing requirements, and
high-pressure completions. In contrast, net thickness primarily indicates resource volume, which might be
less sensitive to marginal changes in extraction activity and employment.
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areas.31

Figure 5: Depth of Fossil Fuel resources and 1990 Fossil Fuel Employment Share (Left) and
Employment Level (Right)

Notes: In the left panel, the size of each point reflects the total FF employment in the CZ. Data source: Quarterly
Census of Employment and Wages, US BLS and US Geological Survey.

To confirm that my exposure measure specifically captures fossil fuel shocks rather than

acting as a general industrial share reflecting multiple unobserved sectoral shocks, I conduct

a sectoral-independence (exogeneity) test, shown in Figure A.13. For each industry, I regress

1990 sectoral shares of total employment (top panels) and log employment levels (bottom

panels) on the depth measure, indicating no systematic relationship between resource depth

and pre-treatment industrial structure outside the FF sector. Because depth is therefore

uncorrelated with outcomes through alternative industry channels, it satisfies the “tailored-

share” requirement emphasized by Borusyak et al. (2025): exposure should mediate only the

specific treatment shock (here, fossil fuel demand) rather than a broad set of potential shocks

that could violate parallel trends.32

To further support the share-exogeneity condition underlying credible exposure measures

inspired by shift-share designs, Figure A.14 tests whether the depth measure is correlated
31Figure A.12 shows a positive correlation between the depth and the lagged coal mining employment

share (1990) across CZs, though the relationship is observed in a relatively small number of CZs. This
correlation suggests that resource depth also serves as a useful predictor of exposure to common labor
demand shocks in the coal mining industry, which has experienced a substantial decline since the late 2000s.

32Because my shock measure assumes share exogeneity, one concern might be negative Rotemberg weights,
which could (i) invalidate the interpretation of the average treatment effect as a convex average of local effects,
or (ii) allow a few markets with large but opposing weights to dominate the results (Goldsmith-Pinkham et
al., 2020). In my setting, however, these issues do not arise. My shock measure relies on a leave-one-out
national series for the single sector and strictly positive, time-invariant geological shares, ensuring Rotemberg
weights remain strictly non-negative and well-dispersed. See Appendix B for details.
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with labor-supply fundamentals. Across CZs, depth exhibits statistically insignificant corre-

lations with key socioeconomic indicators, including the 1990 share of young workers, share

of adults with at most a high-school diploma, median household income, and unemployment

rate. Given that demographic structure, baseline earning capacity, and labor-market slack

represent major potential confounders influencing workers’ ability or willingness to adjust to

shocks, these insignificant relationships suggest that depth does not proxy for unobserved

labor-supply heterogeneity.

For the regression specification using matched employer-employee data, I begin with a

model incorporating worker and firm fixed effects (Abowd et al., 1999). To focus on the

variation in shocks over time, I first-difference the model, following the approaches of Autor

et al. (2013) and Borusyak et al. (2022). This isolates temporal variation in the exposure to

shocks and estimates the impact of these shocks on changes in outcomes, rather than levels,

to mitigate concerns that shares are equilibrium objects likely codetermined with outcome

levels (Goldsmith-Pinkham et al., 2020).

For worker i employed by employer j in industry m in CZ c in year t, I estimate the

following regression model, where worker fixed effects (FEs) are eliminated through first-

differencing:

∆yict =
10∑

k=−4

βkFFShockc,t−k + γj(i,t) + δ1,s(c)t + δ2,m(j)t + εict (5)

where yict is the outcome of my interest, such as an employment indicator (interpreted as

the probability of employment), or log annual earnings.33 Thus, ∆yict is either the change in

the employment indicator (entry or exit) or year-over-year log-earnings growth, and express-

ing outcomes in changes makes effect sizes comparable across workers and horizons. γj(i,t)

represents employer FEs, which control for time-invariant characteristics specific to each em-

ployer. Additionally, I include state-by-year FEs (δ1,s(c)t) to account for time-varying shocks

at the state level, such as policy changes or shifts in macroeconomic conditions. Industry-
33Earnings are transformed as log(earnings+ 1) to accommodate zero-earnings observations.
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by-year FEs (δ2,m(j)t), where industry is defined at the 6-digit NAICS level, are also included

to capture time-varying shocks specific to industries. εict is the error term. Standard errors

are clustered at the employer and state-by-year levels34 to account for heteroskedasticity and

autocorrelation: potential correlation in errors within the same employer, which could arise

from firm-specific shocks or policies, and within the same state and year, which could result

from regional economic conditions or state-level policy changes.

I include the lead and lag terms of the exposure measure (FFShockc,t−k) in the model,

with βk as the coefficients of interest. This structure creates a distributed-lag model, en-

abling the estimation of both short-term and long-term effects of labor demand shocks on

individual workers’ earnings.35 This approach offers two key advantages over the standard

difference-in-differences method typically used in displacement studies. First, by relying only

on exogenous variation in shocks across similar local markets, the identification strategy

captures involuntary separations, thereby eliminating the upward bias caused by selection

(i.e., more productive workers remaining employed), a common issue in comparisons with

non-displaced incumbents. Second, the annual lagged coefficients track the full dynamic

response of earnings, highlighting when losses stabilize or intensify. This approach implic-

itly incorporates general-equilibrium effects such as crowd-out (increased competition among

displaced workers) and crowd-in (creation of non-FF job vacancies).36

34See, e.g., Hummels et al. (2014) and Rose and Shem-Tov (2023) for similar clustering choices.
35Although my regression estimates earnings growth, the ten-year cumulative coefficient represents the

long-run log-level change when the lag length is sufficiently large (see Appendix C for proof). Consequently,
empirical comparisons using

∑10
k=0 β̂k correspond directly to comparisons between equilibrium wages in the

theoretical model.
36Previous studies rely on cumulative annual earnings or cohort-level averages: for example, Autor et

al. (2014) calculate cumulative worker outcomes on a rolling annual basis for each year in their sample
period, and Walker (2013) simplifies the computational demands of working with the LEHD by aggregating
data into annual cohort earnings, where cohorts are defined based on county and industry. My approach
avoids aggregation and selection bias by directly examining year-by-year impacts at the individual level.
By explicitly incorporating lead terms, the model also accounts for potential anticipatory effects, offering a
comprehensive view of the timing and magnitude of shocks on worker outcomes.

26



7 Results

7.1 Market-Level Analysis of Fossil Fuel Labor Demand Shocks

I begin by examining labor market dynamics through nonemployment rates in each local

labor market. The individual-level analysis, captured in the worker-year panel, focuses

on workers’ direct exposure to labor demand shocks, while CZ-level nonemployment rates

provide insights into aggregate local labor market conditions.

I define the FF nonemployment rate for CZ c in year t as the share of workers employed

in FF industries in t−1 who report zero earnings in t.37 Expressing the measure as a rate

normalizes for CZ size and the initial scale of the local FF workforce, making outcomes

comparable across places and over time. Although this measure is restricted to the FF

labor force, it is locally consequential: a rise in it lengthens job‑search durations, shifts

wage‑setting, and triggers migration responses that affect both displaced and incumbent

workers.

This CZ-level indicator is informative about general-equilibrium adjustment: increases in

FF nonemployment propagate to local wages, search frictions, spending, and reallocation into

non-FF activities. To isolate these local dynamics, I relate the rate to the same FF labor

demand shock used in the main specification while including CZ and industry-year fixed

effects; these absorb time-invariant CZ attributes and common industry-wide movements, so

remaining variation reflects local spillovers and reallocation tied to the shock. Formally,

∆NonempRatecmt =
10∑

k=−4

βkFFShockc,t−k + δ1,c + δ2,mt + εcmt (6)

37Formally, nonemployment rate is defined as:

NonempRatecmt =

∑
i∈c 1(Ei,t−1 > 0, Ei,t = 0)∑

i∈c 1(Ei,t−1 > 0)

where Ei,t denotes the earnings of worker i in year t, who resides in CZ c and is employed in industry
m (defined at the 6-digit NAICS level). To avoid misclassifying retirees or those who exit the workforce, I
exclude workers above retirement age and account for potential migration by checking whether they reappear
in the residence history after a gap.
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where δ1,c is CZ-level fixed effects and δ2,mt is industry-by-year fixed effects. Standard errors

are clustered at the CZ level.

Figure 6 plots coefficients for the FF nonemployment rate, where k indexes years relative

to the onset of the local FF labor demand shock (k = 0 is the exposure year). It shows no

significant pre-trend in the nonemployment rate for FF workers: the lead coefficients (k=−4

to −1) are near zero with tight confidence intervals. Beginning at k = 0 the cumulative

effect turns positive; within one year (k=1) the cumulative effect is about 0.1 p.p. It then

flattens between years 1 and 3, hovering around 0.25 pp, which is consistent with a short-run

adjustment in which some displaced workers find temporary jobs or rely on severance/savings

before a second wave of separations. After year 3, the effect grows steadily, reaching roughly

0.5 p.p. by year 6 and exceeding 1 p.p. by year 10. The widening gap is consistent with

scarring: prolonged FF contractions depress local job creation, weaken search effectiveness,

and deter in-migration, leaving a rising share of the original FF workforce nonemployed.

Figure 6: Fossil Fuel Labor Demand Shocks and CZ-Level Nonemployment Rate
Notes: This figure presents estimated coefficients (gray points) and 95% confidence intervals (gray error bars) for lead
terms (FFShockc,t−k, k=–4 to –1), representing pre-exposure effects. The solid black line shows the cumulative effects
of local fossil fuel labor demand shocks from year 0 through year 10 since exposure (k=0 to 10). The dashed black
lines indicate the corresponding 95% confidence intervals for these cumulative effects, computed from the variance-
covariance matrix. A detailed summary of all estimates can be found in Table A.2.
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7.2 Worker-Level Analysis of Fossil Fuel Labor Demand Shocks

7.2.1 Effects on Probability of Employment

I next examine worker-level annual employment using Eq. (5) in the full worker sample.

The outcome is an employment indicator equal to 1 if the worker has any quarter with

positive earnings in year t (0 otherwise).38 The left panel of Figure 7 shows flat pre-trends

and then a steady decline after exposure: the employment probability falls in the first two

years, continues to drop through about year 8, and shows only a small partial rebound

thereafter. By year 10, the estimated level effect is -0.30: an exposed worker is 30 p.p. less

likely to have at least one quarter with positive earnings in that year. Put simply, relative

to a comparable worker in a less-exposed market, roughly three more out of every ten record

no earnings that year.

7.2.2 Effects on Annual Earnings

The right panel in Figure 7 visualizes the cumulative βk coefficients (labeled as ‘Full Sam-

ple’) from k=0, illustrating the short-term and long-term impacts of the shocks on annual

earnings. The lead coefficients are statistically indistinguishable from zero, confirming the

absence of pre-trends. Table 1 summarizes the estimated impacts, presenting three specifi-

cations: individual-period effects (βk; column 1), cumulative effects until n years (
∑n

k=0 βk;

column 2), and cumulative effects adjusted with a discount factor (δ = 0.96; column 3) to

account for worker’s time preferences.

Initially, the impact on earnings is relatively modest and shows mixed patterns, possibly

due to short-term factors such as severance payments, residual wages from previous employ-

ment, or temporary support mechanisms. During the medium term (years 3–6), earnings

consistently decline, signaling growing adjustment costs and difficulties such as lower-paying
38As a robustness check, I use a stricter employment definition: an indicator equal to 1 only if the worker

has positive earnings in at least two quarters of year t. This captures sustained attachment and filters
out one-off, seasonal, or noisy spells that can inflate the “any-quarter” measure; Figure A.15 shows similar
estimates under both definitions, indicating the results reflect genuine changes in employment attachment
after FF demand shocks rather than timing-within-year artifacts.
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reemployment or extended periods of nonemployment. In the long term (years 7–10), the

effects stabilize, with earnings cumulatively declining by approximately 0.16% annually in

response to a 1% decline in national FF employment for a CZ at the sample mean depth.

When incorporating the discount factor (δ = 0.96), the time-discounted estimates suggest

an annual earnings decline of about 0.14%. Furthermore, my estimates show that an in-

terquartile range (IQR) difference in exposure (6.37%) results in annual earnings losses of

approximately 2.5%, consistent with prior findings examining individual worker earnings.39

The parallel movement of employment probability and earnings indicates that persistent

earnings losses are driven by FF-shock–induced job separations, indicating that adjustment

occurs mainly on the extensive margin.

While I define separations as changes between parent firms rather than movements be-

tween individual business units (to rule out cases of firm restructuring), it still remains

possible that some separations represent temporary leaves rather than true displacement.

To mitigate this concern, I construct a mass-layoff sample, following the sampling frame-

work used in previous job displacement studies (Davis & Wachter, 2011; Yagan, 2019). The

mass-layoff sample includes workers who separated in year t from employers that either: (1)

closed between t−1 and t, or (2) had at least 50 employees in t−1 and experienced job cuts ex-

ceeding 30% between t−1 and t.40 The results from the mass-layoff sample are quantitatively

similar to those of the full sample (Figure 7), suggesting that the main findings are likely

driven by layoffs rather than other types of job separations. This aligns with the findings on

nonemployment duration, where job losses correspond closely to earnings declines.

To examine the intensive margin of worker adjustment (e.g., the change in hours or

pay when workers switch to a new employer), I keep the same set of workers as in the

main sample but restrict the post-separation panel to worker-years with positive annual
39For comparison, Autor et al. (2014) reports annual earnings losses of 2.6% for US manufacturing workers

due to import penetration; Yagan (2019) finds 1.3% losses for US workers across sectors following Great
Recession local shocks; and Kovak and Morrow (2024) reports 2.3% losses for Canadian manufacturing
workers after industry-specific shocks (Canadian traiff cuts).

40This refined sample consists of about 751,800 workers.
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earnings, so comparisons reflect outcomes among the employed.41 This approach eliminates

the influence of transitions into nonemployment while maintaining a meaningful comparison

of earnings changes among employed workers. The right panel in Figure 7 shows that the

results from the nonzero-earnings sample also remain similar in magnitude to the full sample

estimates. This implies that transitions into nonemployment are a central channel, with

similar patterns among positive-earnings observations providing suggestive evidence that

reduced wage premia or hours in new matches also contribute on the intensive margin.

Figure 7: Cumulative Effects on Probability of Employment and Earnings
Notes: The left panel presents estimated coefficients (gray points) and 95% confidence intervals (gray error bars) for
lead terms (FFShockc,t−k, k=–4 to –1), representing pre-exposure effects. The solid black line shows the cumulative
effects of local fossil fuel labor demand shocks from year 0 through year 10 since exposure (k=0 to 10). The dashed black
lines indicate the corresponding 95% confidence intervals for these cumulative effects, computed from the variance-
covariance matrix. The right panel shows the cumulative effects from k=0 to 10 only. A detailed summary of all
estimates can be found in Table A.3 and Table A.4.

7.2.3 Effects on Nonemployment Duration

Columns 4 to 5 in Table 1 present the individual-period and cumulative impacts on

nonemployment duration, measured by the number of zero-earning quarters at the worker

level. This variable leverages the quarterly earnings records in the LEHD, capturing within-

year unemployment spells with greater precision. Similar to the earnings results, the cu-

mulative effects up to 10 years after exposure to shocks are visualized in Figure A.16. The

duration of nonemployment exhibits an inverse pattern to earnings losses: the number of
41Since the outcome variable is the log change in earnings, excluding cases where earnings drop from a

nonzero amount in year t−1 to zero in year t prevents sharp declines that would otherwise result in large
negative log changes due to differencing.
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zero-earnings quarters begins to increase significantly in the short term and intensifies dur-

ing the medium term, reaching its highest point about 8 years after initial exposure. At

this peak, an interquartile range (IQR) difference in the exposure measure corresponds to an

average annual increase of approximately 10 weeks in workers’ nonemployment. In the long

term, the cumulative effect begins to decline, indicating partial recovery as workers either

re-enter the labor market or exit entirely (e.g., through retirement).

Table 1: Earnings and Nonemployment Responses to Fossil Fuel Labor Demand Shocks

Earnings Nonemployment Duration
lag (k) (1) (2) (3) (4) (5)

-4 -0.149 -0.040
(0.583) (0.174)

-3 -0.196 -0.008
(0.339) (0.116)

-2 -0.026 -0.120
(0.458) (0.138)

-1 -0.092 -0.100
(0.518) (0.151)

0 0.400 0.400 0.400 -0.212 -0.212
(0.498) (0.498) (0.498) (0.147) (0.147)

1 -1.105∗ -0.705 -0.660 0.230 0.019
(0.567) (0.736) (0.719) (0.158) (0.214)

2 0.454 -0.251 -0.242 -0.082 -0.063
(0.679) (0.658) (0.620) (0.171) (0.199)

3 -0.907∗∗∗ -1.157 -1.044 0.229∗∗ 0.166
(0.294) (0.724) (0.675) (0.090) (0.215)

4 -0.739∗∗ -1.896∗∗ -1.672∗∗ 0.374∗∗∗ 0.540∗∗
(0.350) (0.830) (0.761) (0.119) (0.251)

5 -0.704 -2.599∗∗ -2.245∗∗ 0.207 0.748∗∗
(0.585) (1.132) (1.006) (0.173) (0.342)

6 -0.649 -3.248∗∗∗ -2.753∗∗∗ 0.120 0.868∗∗∗
(0.652) (1.080) (0.922) (0.207) (0.328)

7 -0.761 -4.009∗∗∗ -3.325∗∗∗ 0.152 1.020∗∗∗
(0.691) (1.247) (1.026) (0.221) (0.351)

8 -0.259 -4.268∗∗∗ -3.512∗∗∗ 0.035 1.055∗∗∗
(0.596) (1.148) (0.900) (0.177) (0.351)

9 0.971∗ -3.297∗∗ -2.839∗∗∗ -0.338∗∗ 0.717∗
(0.522) (1.404) (1.097) (0.141) (0.396)

10 -0.031 -3.328∗∗ -2.860∗∗ -0.264 0.453
(0.521) (1.521) (1.171) (0.182) (0.467)

Estimate Indiv. Cumul. Cumul. Indiv. Cumul.
(δ=0.96)

Obs. 21,520,000 21,520,000 21,520,000 21,520,000 21,520,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and
state-by-year are shown in parentheses. Standard errors for the cumulative coefficients are calculated based on the
variance-covariance matrix. For the time-discounted cumulative estimates, standard errors are computed using the
delta method. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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7.3 Earnings Losses by Sectoral and Geographic Mobility

In response to labor demand shocks, workers may adjust by moving between industries

and/or regions to mitigate earnings losses. These adjustments can have significant long-

term impacts on workers’ earnings, depending on their reallocation choices. The left panel

in Figure 8 shows the earnings impact of FF labor demand shocks over time using the full

sample, disaggregated by the four worker reallocation groups defined in Section 5. At k=0,

Nonswitcher-Nonmovers exhibit the largest initial earnings gains. These gains are likely

driven by short-term factors such as severance payments, residual pay, or bonuses tied to

continued employment in the FF sector. In contrast, Switcher-Nonmovers experience smaller

initial earnings gains, reflecting their transition out of the FF sector and the absence of such

sector-specific benefits during this process.

Interestingly, Nonswitcher-Movers experience greater earnings losses compared to Nonswitcher-

Nonmovers. This gap likely reflects the added costs and disruption of moving while staying

in a volatile sector; by contrast, exiting the FF sector can place workers in more stable

industries. Over the medium and long run, Nonswitcher-Nonmovers show moderate cu-

mulative declines, whereas Switcher-Nonmovers exhibit the most stable paths, consistent

with successful local sectoral transitions. Even so, Switcher-Nonmovers experience modest

long-run losses, consistent with losing employer premia (Schmieder et al., 2023) or match-

specific rents (Lachowska et al., 2020) at displacement. Table A.7 reports pairwise tests of

differences in the 10-year cumulative effect (
∑10

k=0 β̂k) across groups: pooling over mobility

status, Nonswitchers incur about statistically significant 44% larger cumulative earnings

losses than Switchers. Finally, workers who change CZs experience the largest losses regard-

less of switching status; Movers’ cumulative losses are roughly 2.2 times those of Nonmovers,

underscoring the substantial costs of geographic adjustment.

I re-estimate worker-group effects in the mass-layoff subsample to test whether the full-

sample patterns persist in a setting dominated by involuntary separations. The right panel

of Figure 8 shows estimates that closely track the full-sample results, strengthening the cred-
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ibility of the baseline and supporting the interpretation that the main effects are primarily

driven by involuntary job loss from FF labor demand shocks.

Figure 8: Fossil Fuel Labor Demand Shocks and Earnings Impact by Reallocation Margins
Notes: A detailed summary of all estimates can be found in Table A.5 and Table A.6.

7.3.1 Selection into Switching: Greater Occupational Mobility Among Switch-

ers

A consistent empirical finding is that Nonswitchers suffer larger and more persistent

earnings losses than Switchers. Classic sector‑specific human capital models (e.g., Topel,

1991; Walker, 2013) would predict the opposite if the sector remained viable, because leaving

a sector destroys specific capital. My findings are not driven by secular decline per se as the

design differences out worker fixed effects and includes rich controls, so it reflects how local

FF shocks translate into earnings. The shock may lower the relative price of FF-specific

tasks, reducing the return to FF-specific capital and making staying associated with lower

pay even without switching. I explore several mechanisms that reconcile the result.

Evidence on transferability by subsector. Because LEHD does not report occu-

pations, I proxy the specificity of workers’ pre‑separation skill bundles using 6‑digit NAICS
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subsectors. Employers in Oil and Gas Extraction typically have a lower share of highly

specialized FF roles (approximately 30%), reflecting a mix of extraction with sales, logistics,

and administrative functions; by contrast, Drilling Wells often exceeds 75% in FF‑specific

positions.42 Consistent with higher specificity, separations from drilling subsectors are dis-

proportionately followed by not switching out of FF, as discussed in Section 5.2.2.

The left panel of Figure 9 illustrates cumulative earnings losses for FF workers by their

pre-separation subsectors: Oil & Gas Extraction, Coal Mining, Support Activities, and

Drilling Wells. The results indicate that workers from subsectors with more specialized

and FF-specific skill requirements experience notably larger and more persistent earnings

declines after separation. In contrast, workers from the Oil & Gas Extraction subsector,

which typically involves broader and more transferable skill sets, suffer relatively minor

earnings losses over time. This supports the argument that limited occupational mobility

imposes significant long-term costs, as workers with highly specialized skills lose substantial

skill premiums when transitioning out of the FF sector. Given the narrow applicability

of their expertise in non-FF industries, these specialized workers are frequently forced into

positions with lower bargaining power and diminished earning potential, which explains the

persistence of their earnings losses.

Cross‑sectional corroboration by sex. Task content also varies systematically by sex.

Female workers in the FF sector tend to exhibit higher occupational mobility, largely because

they often hold roles with more transferable skills, such as accounting or administrative

support (Figure A.19). In contrast, male workers predominantly fill mining-specific positions,

such as heavy vehicle technicians or derrick operators, which involve fewer transferable skills.

This difference in skill transferability aligns with evidence that female workers are more likely

to switch sectors, whether or not they relocate geographically (Table A.1). Consequently, as

shown in the right panel of Figure 9, female workers experience significantly smaller earnings

losses compared to their male counterparts, suggesting that limited job mobility contributes
42Figure A.18 details the distribution of FF‑specific roles by subsector.
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to higher adjustment costs following economic shocks.

Figure 9: Fossil Fuel Labor Demand Shocks and Earnings Impact by Subsector (Left) and
by Sex (Right)

Notes: A detailed summary of all estimates can be found in Table A.8.

The positive-selection result is informative for two main reasons. First, my empirical

design isolates a single FF employment shock while holding labor-demand conditions fixed,

demonstrating that re-employment outcomes systematically depend on workers’ skill porta-

bility. This provides direct evidence that previous displacement studies that combine multi-

ple shocks and industries could not separately identify (Autor et al., 2014; Lachowska et al.,

2020). Second, although I do not explicitly control for job tenure, first-differencing removes

worker-level fixed effects, absorbing permanent wage determinants such as general experi-

ence, match quality, and much of the tenure effect. The remaining earnings gap between

Switchers and Nonswitchers thus underscores sectoral skill portability as an independent

margin of adjustment beyond what those permanent factors alone can explain.

7.3.2 Selection into Moving: Shorter‑Tenure and Lower‑Earning Workers Are

More Likely to Relocate

At first glance, it may seem surprising that Movers experience larger earnings losses than

Nonmovers, as standard models typically predict relocation only if expected lifetime benefits

outweigh the costs (Greenwood, 1975; Kennan & Walker, 2011). However, two considerations

help reconcile this finding.
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Negative selection on tenure and human capital portability. First, Movers ex-

perience larger earnings losses than nonmovers not simply because they are younger, but

because relocation destroys firm-specific and place-specific capital and forces reentry at lower

rungs of the job ladder. The left panel in Figure 10 shows that low-tenure workers lose more

than high-tenure workers. This pattern is consistent with a composition effect: low-tenure

workers are more likely to move (as discussed in Section 5), Movers lose substantially more

on average, and the pooled tenure gradient combines Mover and Nonmover outcomes.

Age-mobility patterns indicate that older Nonmovers fare worse in stagnant local markets,

consistent with Autor et al. (2014) and Jacobson et al. (1993), whereas younger Movers ex-

perience larger losses as they rebuild matches after relocating (Figure A.21). Among Movers,

tenure likely raises the threshold for relocation: seniority, firm- and place-specific networks,

and job-ladder positions make moving costly, so only high-tenure workers with strong des-

tination prospects choose to move, creating positive selection. Consequently, high-tenure

Movers tend to incur smaller losses than low-tenure Movers, who move with weaker options

and higher adjustment costs. This sorting reconciles the facts: Movers have larger losses

on average than Nonmovers, and the pooled data show a low-tenure penalty even though,

within Nonmovers, losses rise with age.

Negative selection on pre‑separation earnings and liquidity. Second, Movers

are negatively selected on pre‑separation earnings: descriptive evidence in Section 5 shows

that, even before separation, they earn less on average than Nonmovers. The right panel

in Figure 10 documents that workers in the bottom quartile of the pre‑separation earnings

distribution experience the largest post‑separation losses. Lower initial earnings plausibly

correlate with tighter liquidity constraints, limiting the ability to finance lengthy searches

or retraining and pushing workers toward quicker, lower‑paying acceptances. This channel

is consistent with displacement settings where shocks reduce demand disproportionately in

lower‑skill tasks (Autor et al., 2014).

These findings point to a previously overlooked negative selection within the exposed
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Figure 10: Fossil Fuel Labor Demand Shocks and Earnings Impact by Job Tenure (Left) and
by Pre-Separation Earnings (Right)

Notes: A detailed summary of all estimates can be found in Table A.9.

workforce: involuntary mobility driven by economic necessity. This stands in contrast to

classic migration models, which view relocation as a deliberate, optimizing choice made

mainly by higher-skill workers seeking wage gains, which is a view supported by evidence on

voluntary moves (Borjas et al., 1992; Collins & Wanamaker, 2014; Kennan & Walker, 2011).

In a nationwide FF contraction, however, relocation is better characterized as push-driven:

workers move primarily because local opportunities collapse, not because of unobserved

destination pull. The frequent shifts from rural to urban areas that I observed in Figure 4

are consistent with this interpretation, as cities offer thicker labor markets and broader

fallback options; these moves mitigate losses rather than pursue new gains.

7.3.3 Employer Concentration: Wage-Setting Conditions

As discussed in Section 2, FF employment is typically concentrated among a small num-

ber of local employers, consistent with substantial monopsony power in the sector. Limited

employer competition restricts workers’ bargaining power and makes alternative employ-

ment options scarce, effectively trapping workers in the declining FF industry, akin to the

experience of displaced manufacturing workers (Autor et al., 2014). Combined with limited

information about employment prospects outside their industry and overly optimistic expec-

tations about sector recovery, workers may underestimate the potential benefits of switching

sectors. Consequently, they remain in the FF sector, incurring prolonged earnings losses as
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their local labor markets offer few comparable or better-paying alternatives.

To quantify FF employer concentration within local labor markets, I construct a sector-

specific Herfindahl-Hirschman Index (HHI) using the LBD. A simple Cournot-oligopsony

model provides the intuition for using concentration as a proxy for monopsony. With mul-

tiple employers in the same sector and local market facing an upward-sloping market labor

supply, each firm internalizes that hiring one more worker raises the wage paid to all existing

employees. This increases the firm’s marginal hiring cost, and the size of that increase is

proportional to the firm’s employment share in the market. Aggregating across firms yields

a market-level markdown µ that is smaller (a deeper wedge) when employer concentration is

higher and larger when market labor supply is more elastic. Hence, more concentrated FF

markets feature a lower µ and, via Eq. (3), lower wages holding prices and effective labor

fixed. Appendix D formalizes this mapping and its comparative statics.

Let m = 1, ...,M index 6-digit NAICS FF subsectors and j = 1, ..., Jm index firms in

subsector m.43 Specifically, the HHIFF for CZ c in year t is defined as:

HHIFF
ct =

M∑
m=1

(Emct

Ect

)
︸ ︷︷ ︸

Emp. share
of subsector

×
Jm∑
j=1

s2jmct︸ ︷︷ ︸
Concentration

within subsector

(7)

where Emct is employment in subsector m and Ect is total FF employment in CZ c at year

t; sjmct = Ejmct/Emct is firm j’s employment share within its subsector. Both the subsector

employment weight (outer term) and the firm-level concentration measure (inner term) are

expressed as shares, ensuring the composite index ranges between 0 and 1 and facilitating

comparability across CZs with different subsector compositions. Weighting subsector-level

concentration by its local employment share captures both firm-specific monopsony power
43Firm-level employment shares thus provide a direct, ex‑ante proxy for local monopsony power

(Benmelech et al., 2022). Although this approach does not explicitly capture job-entry dynamics, it pro-
vides a robust proxy for monopsony conditions, particularly in industries experiencing limited hiring activity
or declining employment.
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and subsectoral dominance,44 reflecting the wage-setting environment faced by workers.

Motivated by the fact that many Movers relocate to diversified urban labor markets

in Section 5.2.3, I construct an all-sector concentration measure, HHIAll, using firm-level

employment shares across all 6-digit NAICS subsectors within a CZ (analogous to Eq. 7).

This metric captures overall employer concentration, which reflects the breadth of outside

options and wage-setting conditions regardless of whether a worker remains in FF or switches

sectors. To ensure this measure is predetermined and unaffected by subsequent employment

shocks, I fix each CZ’s HHI at its average value from 1990-1994, at least four years prior

to my analysis window of worker separations. I classify each separated worker’s destination

labor market, defined as the CZ where the worker’s subsequent job is located, as a high-

concentration one (e.g., high-HHIFF ) if the HHI of that CZ lies above the median of the

HHI distribution across all CZs in the data; otherwise, I classify it as a low-concentration

market.

Nonswitcher-Nonmover. Panel A in Figure 11 shows stark divergence under HHIFF :

workers in high‑concentration FF markets suffer large, persistent losses, whereas those in

low‑concentration FF markets experience a mid‑run dip followed by near recovery in the long

run. Panel B reveals the broader mechanism: under HHIAll, high‑concentration destinations

still depress long‑run earnings (modest losses), but in low‑concentration destinations the same

workers realize large gains. Even without switching, abundant cross‑sector outside options

force FF employers to bid up pay over time. Taken together, HHIFF isolates within‑sector

labor market power, while HHIAll shows how overall market competitiveness can more than

offset that force. It suggests that sectoral reallocation is not the only route to recovery: in

sufficiently competitive overall markets, even sector stayers can more than claw back losses

as the job ladder steepens via non‑FF offers. Where the whole market is concentrated, the

same human capital is priced under stronger markdowns and gains are muted.

Switcher-Nonmover. Under HHIFF , long‑run effects are null in both high and
44For instance, oil extraction dominance in the Permian Basin or coal mining prominence in Appalachia.
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low bins, as expected once workers no longer sell FF‑priced skills. Panel B shows where

wage‑setting power re‑enters: under HHIAll, high‑concentration destinations yield modest

losses, while low‑concentration destinations yield modest gains. This pattern aligns tightly

with the selection evidence in Section 7.3.1: switching creates surplus through transferable

skills, but whether that surplus is paid out depends on the competitiveness of the overall

local market. In dynamic models with on‑the‑job search, the steady‑state wage rises with

the arrival rate and quality of alternative offers. High HHIAll compresses these outside

options, either via fewer potential bidders or lower recruiting intensity, so the firm cap-

tures the switching surplus; low HHIAll lets workers climb the local job ladder and realize

gains, indicating that the same human‑capital redeployment yields opposite earnings paths

depending solely on market power at destination.

Nonswitcher-Mover. Moving into a destination with high HHIFF leads to large long-

run losses, whereas moving into a low-HHIFF destination attenuates the damage to modest

losses. This is consistent with FF employers at destination continuing to price these work-

ers’ FF-specific skills: when few FF rivals can poach, the within-FF job ladder is flat and

markdowns persist; when many FF rivals are present, poaching is stronger and losses are

smaller. Panel B emphasizes the role of overall employer power: high-HHIAll destinations

yield large losses, while low-HHIAll destinations deliver modest gains. Because the worker

stays in FF, the destination’s FF concentration still governs the relevant offer arrival rate

within FF. At the same time, general competition in the broader market (low HHIAll) raises

the background threat point, since even non-FF firms can credibly bid for the worker. Mobil-

ity arbitrages geography only if it lands workers in competitive overall markets. Relocation

resets the match, but the long-run path is shaped by poaching rates at destination, and low

HHIAll can overturn the common mover penalty documented in Section 7.3.2.

Switcher-Mover. Panel A shows modest long-run losses in both HHIFF bins, as

expected because FF-sector concentration no longer prices Switcher-Movers once they leave

FF. Panel B shows that HHIAll is decisive: high-concentration destinations yield modest
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losses, while low-concentration destinations deliver approximately zero long-run effects. This

pattern aligns with dynamic monopsony: in competitive markets (low HHIAll), higher offer

arrival rates and stronger poaching steepen the job ladder and neutralize mover frictions; in

concentrated markets (high HHIAll), low poaching and larger markdowns prevent workers

from fully capitalizing on the switching surplus. Re-skilling therefore cushions mobility costs,

but only competitive destinations fully offset them; where overall concentration is high, even

switchers retain modest long-run losses.

How these results relate to the migration pattern of Movers. Urbanization typi-

cally lowers overall employer concentration, so destinations more often have low HHIAll; in

my estimates, this corresponds to modest gains for Nonswitcher-Movers and approximately

zero long-run effects for Switcher-Movers. Even in urban areas, the FF niche may remain

highly concentrated, and HHIFF can remain high even when HHIAll is low because a few

FF firms may dominate the subsector. Consistent with this, Nonswitcher-Movers still incur

large losses in high-HHIFF destinations, since their pay is set within FF. By contrast,

after switching, HHIFF no longer prices Switcher-Movers; their outcomes depend almost

entirely on HHIAll, with modest losses in high-HHIAll markets and near-neutral effects

where HHIAll is low. Thus, rural to urban migration is a useful proxy for lower HHIAll, not

for lower HHIFF , which could explain why Nonswitcher-Movers are shaped by both indices

while Switcher-Movers are governed mainly by HHIAll.
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Figure 11: Fossil Fuel Labor Demand Shocks and Earnings Impact by Employer Concentration in Destination Markets
Notes: A detailed summary of all estimates can be found in Table A.11 and Table A.12.
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One concern is that Movers self-select out of high- versus low-concentration origins and

that unobserved characteristics tied to origin HHI could drive the gaps. To probe this, I

re-index Movers by their origin (pre-separation) HHI within each of the four worker groups.

Figure A.22 shows that long-run earnings impacts are statistically indistinguishable between

high- and low-origin HHI bins across all groups. Given the main specification with a bunch

of fixed effects, any origin-based selection influencing post-shock slopes would be expected

to show up in this split. The absence of such differences serves as a suggestive falsification-

style check against origin-driven selection and is consistent with destination market forces,

such as monopsony markdowns and congestion, playing an important role in the observed

heterogeneity.

7.3.4 Linking Empirical Results to the Framework

The earnings impact ranking follows from the interaction of the price channel, destination-

side monopsony, and selection on effective labor discussed in Section 3. The price channel

is not common across groups: after the aggregate FF shock, remaining in the FF sector

mechanically tilts wages down relative to switching. Conditional on prices, destination gaps

load on the markdown factor and congestion. Positive selection into switching (higher PH)

feeds more high types into AN and drains AF . Switchers then outperform Nonswitchers

even before differences in µ are considered. Negative selection into moving and match

rebuilding shift congestion the other way across locations: low-type movers into BF (MF
L )

and high types who fail to switch locally but still enter BF (MF
H ), together with a larger

BF incumbent base. Entrants to BN contribute fewer effective units than local switchers

to AN because their productivity is scaled by potential geographic frictions such as moving

costs or losses of place-specific capital. These assignment patterns generate a common mover

penalty in F and much smaller congestion in N .

The employer concentration patterns are the empirical footprint of how µj,k and L̃j,k in

the framework move across groups. (i) For Nonswitcher-Nonmovers, strong FF-side employer
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power at destination implies small µF,· and persistent losses, while weaker FF-side power

permits near recovery. When overall concentration is stronger, µF,· becomes larger from

stronger outside options and a smaller L̃F as higher probability of switching (PH) reallocates

high types to N , producing the large gains observed. (ii) For Nonswitcher-Movers, small µF,B

in concentrated destinations combines with higher BF from MF
L , MF

H , and incumbents to

yield large losses; where overall concentration is low, µF,B improves and the mover penalty

is partially offset, producing modest gains. (iii) For Switcher-Nonmovers, FF-side power no

longer prices pay, so outcomes sort on µN,·. Large µN,· in competitive destinations allows the

switching surplus to appear as modest gains, with PH simultaneously thinning L̃F . (iv) For

Switcher-Movers, wages depend on µN,B and the effective contribution of entrants to BN .

When overall concentration keeps µN,B small and entrants’ productivity is scaled by ψN
H ,

modest losses remain, whereas in competitive destinations a large µN,B neutralizes mover

frictions and long-run effects are approximately zero.

7.4 Robustness Checks

7.4.1 Additional Age Controls

To verify that life-cycle earnings profiles are not driving the baseline effects, I re-estimate

the baseline specification adding time-varying age and age squared as controls.45 As shown

in Figure A.23, the series with age controls closely overlaps the baseline estimates: pre-trends

remain near zero, the post-shock decline and subsequent trajectory are virtually unchanged,

and confidence intervals largely coincide across horizons. Minor deviations are unsystematic

and within sampling error, indicating that the main effects reflect FF labor-demand shocks

rather than differential aging or shifts in age composition.
45Because the model is estimated in first differences and already includes rich state-year and industry-

year controls, making the age terms mechanically collinear with time variation and thus potentially over-
controlling. For this reason, I keep the parsimonious specification as the baseline and treat the age-augmented
version as a robustness check.
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7.4.2 Different Clustering Choices

Figure A.24 keeps the point estimates fixed and varies only how standard errors are

clustered. When the cluster is broadened to CZ, employer and CZ, or employer and state,

the intervals widen enough that zero occasionally falls just inside the 95 percent band, yet

the estimates remain statistically different from zero at the 10 percent level (90 percent

bands exclude zero). Thus, the earnings decline is still economically meaningful and at least

marginally significant under alternative clustering rules.46

7.4.3 Asymmetry of Earnings Responses

I test whether FF labor demand shocks affect workers’ earnings asymmetrically, such

as downturns having a more harmful impact than the beneficial effects of upturns, by in-

troducing a quadratic term into the baseline distributed-lag model (Notowidigdo, 2020).47

Figure A.25 shows that all confidence intervals comfortably include zero, indicating that

the squared shock term is neither statistically nor economically meaningful at any horizon.

Thus, the earnings response appears effectively linear and symmetric: the magnitude of a

worker’s earnings change depends only on the size, not the direction, of the FF employment

shock. This result supports the baseline specification by confirming that modeling shocks

linearly captures the full earnings impact without overlooking important nonlinear effects.
46Notably, the two-way employer and state cluster is more conservative than the baseline, but the employer

and state-year specification is conceptually preferable because it captures within-state, within-year shocks
(e.g., regional demand swings or policy changes) that could induce correlation in worker-year errors.

47Formally, I estimate the following regression:

∆yict =

10∑
k=−4

β
(1)
k FFShockc,t−k +

10∑
k=−4

β
(2)
k FFShock2c,t−k + γj(i,t) + δ1,s(c)t + δ2,m(j)t + εict

. Figure A.25 presents the estimated coefficients β(2)
k and their 95% confidence intervals across k.
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8 Discussion

8.1 Additional Factors Affecting Worker Adjustment Costs

8.1.1 Industry-Cycle Phase at Separation

I examine additional factors beyond adjustment margins that influence workers’ earnings.

I start with sectoral demand conditions at the time of separation, which change the mix of

exits: in boom years, most separations are quits or quick switches, whereas in bust years, they

are largely employer-initiated layoffs. Accordingly, I split workers by separation year into a

boom cohort (separations through 2011, when the shale revolution expanded the sector) and

a bust cohort (2012 onward, when the oil price plunge and stricter EPA standards reduced

fossil fuel demand). This comparison isolates how the industry cycle at separation shapes

subsequent earnings. Figure A.26 shows similar earnings paths for the two cohorts through

about five years after exposure. After year five, the paths diverge: the post-2012 bust cohort

experiences a steeper and more persistent decline, ending with long-run cumulative losses

roughly twice those of the pre-2012 boom cohort. This pattern is consistent with deeper

scarring from layoffs in weak local labor markets, including lower reemployment rates and

poorer matches, relative to the largely voluntary separations in the boom (Katovich et al.,

2025).

8.1.2 Job Discrimination

Figure A.27 shows the earnings and nonemployment impacts of FF labor demand shocks

across racial groups. In the top panel, Black workers experience significantly larger cumula-

tive earnings losses compared to White workers and workers of races other than White and

Black, with losses peaking at more than twice the magnitude of their counterparts. One

possible explanation is racial discrimination in hiring, which may exacerbate adjustment

costs for marginalized groups (Bertrand & Mullainathan, 2004; Giuliano et al., 2009). The

bottom panel shows that Black workers also endure disproportionately higher nonemploy-
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ment durations, peaking at over two quarters, while White and other workers face relatively

smaller increases. These disparities suggest that structural barriers, including bias in hir-

ing processes and limited access to reemployment opportunities, disproportionately burden

Black workers.

8.1.3 Unionization

Figure A.28 depicts the earnings impacts disaggregated by the age and size of workers’

previous FF employers. Workers displaced from old firms experience significantly greater

cumulative earnings losses compared to those from young firms, with the gap widening in

the medium to long term. Similarly, workers from large firms face steeper earnings declines

than those from small firms, with losses peaking after several years. Unionization may explain

some of these differences in earnings losses (Kuhn & Sweetman, 1999; Lee & Mas, 2012). Old

mining firms often have a long-standing tradition of unionization48 and union density tends

to be higher in large firms.49 Union benefits, such as higher wages, severance pay, and job

protection, may make workers more reliant on unionized environments, leading to larger

earnings losses when they are displaced and can no longer benefit from these protections.

For Movers, the absence of union influence in new regions could exacerbate their earnings

losses, as they lose access to the wage premiums and protections typically associated with

unionized jobs.

8.2 Leveraging Machine Learning for Policy Interventions

To draw policy-relevant lessons, I estimate treatment-effect heterogeneity with a causal

random forest (CRF). CRF scales to large datasets and flexibly captures nonlinearities and

interactions without pre-specifying them: it partitions observations by Xi into locally similar
48It can be exemplified by organizations like the United Mine Workers of America (founded in 1890) and

the International Union of Operating Engineers (founded in 1896).
49For union density by firm size, see the following link: https://www.oecd.org/content/dam/oecd/en/

publications/reports/2017/06/oecd-employment-outlook-2017_g1g7934d/empl_outlook-2017-en.pdf

48
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groups and estimates the average effect within each group.50 Formally,

∆yi = β(Xi)FFShocki + f(Xi) + εi, (8)

where ∆yi is the difference in average earnings before and after separation. β(Xi) is the con-

ditional average treatment effect (CATE), and f(Xi) absorbs baseline outcome heterogeneity.

The characteristics Xi include both people-level variables such as job tenure, pre-separation

earnings, sex, and education, and place-level variables such as origin/destination local em-

ployer concentration (HHIAll), pre-separation unemployment rate, industry diversity index,

and median income.51

To summarize what drives heterogeneity in earnings losses from exposure, I use two

complementary summaries of the CRF in Eq. (8). First, permutation importance, which is a

model‑agnostic diagnostic of the fitted forest, ranks each covariate in Xi by its contribution

to predicting treatment-effect heterogeneity (Davis & Heller, 2020). I randomly permute that

variable in the out-of-bag sample, recompute β̂(X)), and record the increase in out-of-bag

mean-squared error; larger increases signal greater importance.

Second, a precision-weighted linear projection provides direction and magnitude. I regress

the forest’s CATE predictions τ̂i = β̂(Xi) on Xi using weights wi = 1/V̂ar(τ̂i). The coeffi-

cients show how predicted earnings impacts covary with each factor, holding others fixed, so

they describe patterns of heterogeneity.52

Permutation importance diagnostics show that job tenure is the single most influential

moderator (the left panel of Figure 12). Among pre-separation place covariates, local un-

employment, industry diversity, and median income rank next in that order. Employer

concentration (HHI) also shows nontrivial importance, indicating that concentration is a rel-
50CRF uses sample-splitting (“honesty”) and out-of-bag prediction to guard against overfitting, so patterns

in β(X) generalize beyond the training sample.
51I cluster by the commuting zone where each worker finds a new job, ensuring that standard errors reflect

within‑CZ correlations and spatial clustering of shock exposures. See Appendix E for additional details on
the CRF estimation.

52See Appendix E for details on permutation importance and the precision-weighted projection.
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evant correlate of heterogeneity on either side of the move. Among people covariates, age

and pre-separation earnings carry a modest signal, whereas education and female contribute

little.5354

The right panel of Figure 12 depicts how the predicted earnings response to an IQR

increase in exposure varies with people‑ and place‑level characteristics. One SD increase in

job tenure is associated with the largest shift (−3.46%), and higher median income in the local

area is similarly associated with a smaller predicted response (−2.38%).55 By contrast, higher

unemployment rate (1.76%) and greater employer concentration (0.9%) are associated with

larger predicted responses, with industry diversity showing a smaller positive association.

Pre‑separation earnings and age have a modest negative association, while female and above-

high-school education are not statistically distinguishable from zero.

Both diagnostics point to job tenure as the primary moderator. Conditional on tenure,

the remaining variation in the model’s predicted earnings response is more closely linked to

place-based conditions than to the observed individual demographics. This should be treated

as hypothesis-generating: permutation importance is a relative, correlation-sensitive ranking,

and the linear projection is a model-based descriptive summary of the fitted forest, not a

doubly robust causal inference. At most, these patterns can help prioritize where to pilot

or scale market-level services, subject to pre-specified robustness checks and out-of-sample

validation.

8.3 A Back-of-the-Envelope Estimate of Earnings Losses

I provide a back-of-the-envelope calculation of the cost of the energy transition in terms

of foregone earnings for displaced FF workers. Using my main regression estimates, a 1%

decline in national FF employment leads to a cumulative earnings loss of roughly $14,157
53Permutation importance is a relative, nonadditive diagnostic and is sensitive to correlation across co-

variates; accordingly, I do not aggregate importances into people versus place totals and instead summarize
by ranks and top-K counts.

54The small negative for female reflects sampling noise.
55See Table A.20 for the summary statistics of the covariates.
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Figure 12: Causal Random Forest: Permutation Importance (Left) and Linear Projection
(Right)

Notes: A detailed summary of all estimates can be found in Table A.21.

per worker over 11 years. Multiplying this loss by my sample of 1.35 million FF workers

implies an aggregate earnings reduction of approximately $23.9 billion.56

This study focuses narrowly on the reallocative costs to FF workers and employs a partial

equilibrium approach.57 However, it is instructive to benchmark these worker-level losses

against broader economic gains, notably from job creation in clean energy sectors. The

clean-energy industry has rapidly grown, adding about 100,000 jobs annually, comparable in

wages to FF jobs. Over 11 years, this growth implies roughly 1.1 million new jobs and about

$664 billion in cumulative earnings (U.S. Department of Energy, 2024). Assuming displaced

FF workers represent about 0.5% of transitions from “brown” to “green” jobs,58 the earnings

specifically attributable to re-employment of former FF workers would amount to around

$3.2 billion. This figure is substantially below the estimated $23.9 billion in earnings losses,

highlighting the distinct and substantial economic hardships faced by FF workers, despite

broader gains from clean-energy job growth.

Several limitations qualify this comparison. First, the estimates are partial-equilibrium
56This calculation assumes a discounted annual cumulative earnings decline of 2.3%. Because my sample

covers approximately 80% of national FF employment, this estimate reasonably approximates the national
impact. For context, this figure exceeds by more than fourfold the reallocative costs ($5.4 billion) borne by
manufacturing workers affected by the 1990 Clean Air Act Amendments (Walker, 2013), underscoring the
significant economic burden of the energy transition on FF workers.

57Thus, it does not capture broader macroeconomic adjustments such as spillover effects, productivity
changes, or secondary employment impacts across other industries.

58This assumption aligns with empirical estimates from worker-level transition studies (Colmer et al.,
2023; Curtis et al., 2024).
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and they scale an 80% sample to a national total under linear, homogeneous responses.

General-equilibrium feedbacks such as local multipliers, wage re-leveling, migration, and

price effects could raise or reduce the measured losses. Second, the clean-energy benchmark

is not directly comparable to the counterfactual for displaced FF workers. It reports gross

earnings, it combines temporary construction jobs with permanent operations jobs, and it

depends on uncertain transition shares. These features mean that the benefits cannot be

netted one-for-one against the estimated losses. Nevertheless, this simple comparison remains

useful as an order-of-magnitude yardstick that helps gauge the scale of potential adjustment

costs and the need for targeted policy, even though it is not a net welfare measure.

9 Conclusion

The evidence assembled in this study underscores how unusually volatile and geographi-

cally concentrated the US fossil fuel extraction sector has been over the past three decades.

FF employment swings sharply with commodity-price cycles and regulatory shocks, and the

jobs themselves are tied to fixed resource locations and highly specialized occupations. As

a result, separation from an FF employer typically triggers far more mobility than in other

blue‑collar industries: one year after displacement, 20% of workers have already moved to a

new labor market, a share that rises to almost 40% within seven years, and roughly one‑half

have switched out of the sector altogether. Yet these moves involve significant costs. Work-

ers who remain in FF roles face intense monopsony power in sparsely populated resource

hubs, whereas those who exit the sector must accept substantial reductions in earnings due

to the limited transferability of drilling and mining skills to other industries.

The causal estimates show that local labor‑demand shocks in the FF sector translate

into persistent losses for both places and people. A 1% decline in national FF employment

lifts the non‑employment rate of the local FF workforce by about one p.p. within a decade

and reduces individual annual earnings by roughly 0.16% on average, which is equivalent
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to a 2.5% hit for workers in CZs at the 75th versus the 25th percentile of exposure. These

losses operate through both extensive and intensive margins: displaced workers accumulate

roughly ten additional weeks without earnings over the ten‑year window, and those who do

find new jobs accept lower wage premiums.

Heterogeneity analyses reveal stark asymmetries. Nonswitcher-Nonmover who remain in

FF jobs in the same locality absorb the largest scarring, owing to monopsonistic wage‑setting

and the collapse in sector‑specific skill prices, while Switcher-Nonmovers enjoy the most

stable paths after reallocating to non‑FF work close to home. Movers, despite incurring

the costs of relocation, often fare worse than stayers because they are disproportionately

younger, lower‑tenure and concentrated in destinations where FF employment is dominated

by a handful of firms. Sub‑sector and gender splits corroborate these mechanisms: workers

from drilling and support activities, and male workers in highly specialized roles, endure the

steepest long‑run declines.

Taken together, these findings suggest that a successful energy transition may need to

address three linked frictions: limited sectoral skill transferability, geographic immobility,

and local labor-market power. Policies that subsidize re-training into adjacent high-demand

occupations, streamline recognition of prior experience, and provide targeted relocation or

commuting assistance could lower the private costs of moving out of declining resource en-

claves. In parallel, measures that enhance competition in destination labor markets, in-

cluding careful merger oversight, support for small and medium-sized clean-energy firms,

and greater transparency around prevailing wages, may reduce monopsony rents and help

displaced workers receive compensation closer to their marginal productivity. Finally, wage-

insurance or time-limited earnings top-ups tied to re-employment could cushion the medium-

term income losses observed in the estimates without materially weakening search incentives.

Addressing these margins within a broader “just transition” policy framework may help mit-

igate earnings losses for current FF workers and promote a more widely shared distribution

of the gains from decarbonization.
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Appendix

A Details and Proofs for the Conceptual Framework
A.1 Effective labor (definitions moved from main text)

Let q ≡ Pr(θ≥θ∗), and for any function X(θ) define

XH ≡ sup
θ∈[θ∗,1]

X(θ), XH ≡ inf
θ∈[θ∗,1]

X(θ), XL ≡ sup
θ∈[0,θ∗)

X(θ), XL ≡ inf
θ∈[0,θ∗)

X(θ).

Effective labor at t=2:

L̃N,A
2 = nN,A

1︸︷︷︸
incumbents

+nF,A
1

∫ 1

θ∗
P (θ) θ dθ︸ ︷︷ ︸

switchers from AF

, (A.1)

L̃F,A
2 = nF,A

1

∫ θ∗

0

[
1−MF (θ)

]
dθ︸ ︷︷ ︸

low-type nonswitchers stay in AF

+nF,A
1

∫ 1

θ∗

[
1− P (θ)

][
1−MF (θ)−MN(θ)

]
dθ︸ ︷︷ ︸

high-type nonswitchers stay in AF

, (A.2)

L̃N,B
2 = nN,B

1︸︷︷︸
incumbents

+nF,A
1

∫ 1

θ∗

[
1− P (θ)

]
MN(θ)ψ(θ) dθ︸ ︷︷ ︸

movers from AF to BN

, (A.3)

L̃F,B
2 = nF,B

1︸︷︷︸
incumbents

+nF,A
1

∫ θ∗

0

MF (θ) dθ︸ ︷︷ ︸
low-type movers to BF

+nF,A
1

∫ 1

θ∗

[
1− P (θ)

]
MF (θ) dθ︸ ︷︷ ︸

high-type movers to BF

. (A.4)

A.2 Wage equations
With pN2 ≡1 and common α∈(0, 1):

wN,k
2

wF,k
2

=
µN,k

µF,k
· 1

pF2
·

(
L̃N,k
2

L̃F,k
2

)α−1

, (A.5)

wj,B
2

wj,A
2

=
µj,B

µj,A
·

(
L̃j,B
2

L̃j,A
2

)α−1

. (A.6)
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A.3 Micro sufficient conditions for congestion comparisons
Within A (switchers vs. nonswitchers). A mean‑based sufficient condition for L̃F,A

2 >
L̃N,A
2 is

θ∗
(
1−MF

L

)︸ ︷︷ ︸
low‑type nonswitchers in AF

+ q
(
1− PH

)
sH︸ ︷︷ ︸

high‑type nonswitchers in AF

>
nN,A
1

nF,A
1︸ ︷︷ ︸

AN incumbents (scaled)

+ q PH θH︸ ︷︷ ︸
high‑type switchers to AN

,

(A.7)
where sH(θ)≡1−MF (θ)−MN(θ).

Within B (switchers vs. nonswitchers). A sufficient condition for L̃F,B
2 >L̃N,B

2 is

θ∗MF
L︸ ︷︷ ︸

low‑type movers to BF

+ q
(
1− PH

)
MF

H︸ ︷︷ ︸
high‑type movers to BF

+
nF,B
1 − nN,B

1

nF,A
1︸ ︷︷ ︸

incumbent advantage of BF

> q
(
1− PH

)
MN

H ψH︸ ︷︷ ︸
movers to BN

.

(A.8)
Note: Low types cannot reach N , so the supremum on MN is over H.

Within F (movers vs. nonmovers). A sufficient condition for L̃F,B
2 ≥ L̃F,A

2 is

nF,B
1

nF,A
1︸︷︷︸

BF incumbents (scaled)

+ θ∗MF
L︸ ︷︷ ︸

low‑type movers

+ q
(
1− PH

)
MF

H︸ ︷︷ ︸
high‑type movers

≥ θ∗
(
1−MF

L

)︸ ︷︷ ︸
low‑type stayers

+ q
(
1− PH

)
sH︸ ︷︷ ︸

high‑type stayers

.

(A.9)

Within N (movers vs. nonmovers). A sufficient condition for L̃N,B
2 ≥ L̃N,A

2 is

q
(
1− PH

)
MN

H ψH︸ ︷︷ ︸
movers to BN

+
nN,B
1 − nN,A

1

nF,A
1︸ ︷︷ ︸

N incumbent gap favoring B

≥ q PH θH︸ ︷︷ ︸
switchers to AN

. (A.10)

A.4 Proofs
All results use α ∈ (0, 1) so that, holding µ and prices fixed, higher effective labor reduces

the sector–market wage.

Proposition 1. Under (A.7), L̃N,A
2 /L̃F,A

2 < 1. With pF2 ≤ 1 and µN,A ≥ µF,A, (A.5) implies
wN,A

2 > wF,A
2 . Strictness follows if at least one inequality is strict.

Proposition 2. Under (A.8), L̃N,B
2 /L̃F,B

2 < 1. With µN,B ≥ µF,B, (A.5) (with k=B) yields
wN,B

2 > wF,B
2 .
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Proposition 3. Under (A.9), L̃F,B
2 ≥ L̃F,A

2 . If additionally µF,B ≤ µF,A, then (A.6) with
j=F implies wF,B

2 ≤ wF,A
2 .

Proposition 4. Under (A.10), L̃N,B
2 ≥ L̃N,A

2 . If µN,B ≤ µN,A, then (A.6) with j=N gives
wN,B

2 ≤ wN,A
2 . Strong portability (ψ(θ) close to θ), low local switch success, high relocation

into BN among eligibles, and a larger N incumbent base in B strengthen (A.10) by increasing
L̃N,B
2 .

A.5 Comparative statics (corollaries)
1. ∂

(
wN,A

2 /wF,A
2

)
/∂PH < 0: higher local switch success increases L̃N,A

2 and lowers the
switcher premium in A.

2. ∂
(
wF,B

2 /wF,A
2

)
/∂MF (·) > 0 for the denominator and < 0 for the numerator: more

relocation to BF raises L̃F,B
2 and deepens the mover penalty in F .

3. ∂wN,B
2 /∂ψ(·) < 0: better portability raises L̃N,B

2 and reduces wN,B
2 (all else equal).

4. If µN,k/µF,k rises or pF2 falls, wN,k
2 /wF,k

2 rises (direct markdown/price effects).

B Rotemberg Weights for the Fossil Fuel Labor De-
mand Shock Measure

In a conventional Bartik setting with multiple industry-specific shocks, Rotemberg
weights arise because each local industry’s share is multiplied by the covariance between
that industry’s national shock and the overall composite shock. Since these covariances can
differ in sign, some localities receive negative weights, meaning they actually reduce the
first-stage variation identifying the two-stage least squares (2SLS) estimates.

In contrast, my instrument uses only a single time-invariant geological measure (Depthc)
combined with a leave-one-out national series for the single sector (∆ log(

∑
c′ ̸=cEmp

FF
c′,t )).

Mathematically, the Rotemberg weights simplify to

αc =
Depth2cV ar(∆log(Emp

FF
−c,t))∑

rDepth
2
rV ar(∆log(Emp

FF
−r,t))

.

Because the square of depth is always non-negative, these weights are guaranteed non-
negative, sum to one by construction, and thus cannot become negative through offsetting
shocks, unlike traditional multi-industry Bartik instruments. Consequently, problems high-
lighted by Goldsmith-Pinkham et al. (2020) as identification being driven by a few large but
cancelling weights—are mathematically ruled out in my single-sector framework.

Remaining concerns about local-average-treatment-effect (LATE) biases and omitted
variables are further minimized by the geological nature of depth, established millions of
years before current settlement patterns. To bias the estimates, any omitted socioeconomic
characteristic would need to correlate strongly with depth squared and move consistently
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with national fossil employment cycles. Commuting-zone fixed effects and extensive state-
year controls effectively neutralize static correlations with historical coal prosperity, union
strength, or demographics.

C Proof of Equivalence Between Cumulative Elastic-
ity from First-Difference Distributed-Lag Model and
Long-Run Elasticity from Level-Based Model

Proof. Consider a standard level-based log-log partial-adjustment model:

log(yt) = γ log(xt) + ρ log(yt−1) + ut, |ρ| < 1. (A.1)

In this specification, the long-run elasticity (level-to-level elasticity) is defined as:

βLR =
γ

1− ρ
. (A.2)

Taking the first difference of the level-based model, I explicitly derive:

∆ log(yt) = γ∆ log(xt) + ρ∆ log(yt−1) + ∆ut. (A.3)

Now, iteratively substituting lagged differences in earnings growth (∆ log(yt−1)) explicitly,
I express the model purely in terms of current and past changes in log(xt):

∆ log(yt) = γ∆ log(xt) + ρ [γ∆ log(xt−1) + ρ∆ log(yt−2) + ∆ut−1] + ∆ut (A.4)
= γ∆ log(xt) + γρ∆ log(xt−1) + γρ2∆ log(xt−2) + · · ·+ ρk∆ log(yt−k) + (error terms).

(A.5)

Continuing substitution infinitely, and assuming stationarity and stability (|ρ| < 1), I
obtain the infinite distributed-lag representation clearly in terms of changes in x only:

∆ log(yt) = γ∆ log(xt) + γρ∆ log(xt−1) + γρ2∆ log(xt−2) + · · ·+ εt. (A.6)

In the distributed-lag first-difference specification estimated empirically, I truncate this
infinite series at lag K:

∆ log(yt) =
K∑
k=0

βk∆ log(xt−k) + εt, (A.7)

where the cumulative elasticity is the sum of all estimated distributed-lag coefficients:

K∑
k=0

βk. (A.8)

If the lag length K is sufficiently large for full adjustment, I can explicitly equate this
cumulative elasticity from the truncated first-difference distributed-lag model to the infinite
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geometric series above:

K∑
k=0

βk ≈ γ(1 + ρ+ ρ2 + . . . ) =
γ

1− ρ
. (A.9)

I show the cumulative elasticity obtained from the first-difference distributed-lag spec-
ification directly equals the standard long-run elasticity from the level-based specification
(Eqn. (A.2)). Thus, it follows:

K∑
k=0

βk ≈ βLR (A.10)

This equivalence explicitly clarifies that the cumulative elasticity from the estimated first-
difference log-log distributed-lag model is interpretable as the familiar long-run elasticity
from the standard, no-difference, level-based log-log model.

D Cournot–oligopsony microfoundation and the HHI–
markdown map

Consider sector j in local market k with N employers. The market inverse labor supply
is

w(L) = χL1/ε, ε > 0, (A.11)

so w′(L) = w(L)
εL

. Let firm i choose Li with total employment L =
∑N

i=1 Li and share
si ≡ Li/L. The firm’s marginal expenditure on labor is

MEi = w(L) + Liw
′(L) = w(L)

(
1 +

si
ε

)
. (A.12)

With marginal revenue product of labor MRPLi, the first-order condition is

MRPLi =MEi = w(L)
(
1 +

si
ε

)
, (A.13)

which implies a firm-level markdown

µi ≡
w(L)

MRPLi

=
1

1 + si
ε

∈ (0, 1]. (A.14)

Define HHI ≡
∑N

i=1 s
2
i . Define the market-level markdown as the ratio of the common

wage to the employment-weighted average MRPL:

µmarket ≡ w(L)∑N
i=1 siMRPLi

. (A.15)
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Using the first-order condition (MRPLi = w(L)(1 + si/ε)),

N∑
i=1

siMRPLi = w(L)
N∑
i=1

si

(
1 +

si
ε

)
= w(L)

(
1 +

HHI
ε

)
, (A.16)

so we obtain the exact HHI–markdown map

µmarket =
1

1 + HHI
ε

. (A.17)

Hence ∂µmarket/∂HHI < 0 and ∂µmarket/∂ε > 0. Under symmetry (si = 1/N so HHI = 1/N),

µmarket =
1

1 + 1
Nε

=
Nε

1 +Nε
. (A.18)

Remark. If instead one averages firm-level markdowns,

N∑
i=1

siµi =
N∑
i=1

si
1 + si

ε

, (A.19)

a first-order expansion 1/(1 + x) ≈ 1 − x gives
∑

i siµi ≈ 1 − HHI/ε. Moreover, by the
weighted AM-HM inequality,

N∑
i=1

si
1 + si

ε

≥ 1∑N
i=1 si(1 +

si
ε
)
=

1

1 + HHI
ε

= µmarket, (A.20)

with equality under symmetry.
Connecting to the main text, equilibrium wages in sector j and market k satisfy

wj,k
t = µj,k

t αjpj,t
(
L̃j,k,t

)αj−1
, (A.21)

so, holding pj,t and L̃j,k,t fixed, higher concentration (larger HHI) reduces µj,k
t and therefore

wages. The textbook monopsony with a single employer (N = 1) is the special case µ =
ε/(ε+ 1).

E Causal Random Forest Estimation
In my causal random forest estimation, I set the number of trees to 1500. Given the

substantial sample size of approximately 1.35 million workers, employing a large number of
trees is particularly reasonable, as it ensures the stability and accuracy of the estimates by
averaging predictions across many independently trained models. With such extensive data,
having many trees helps exploit the dataset’s full informational content without introducing
excessive computational burden.

I specified the minimum node size as 500 to ensure that each subgroup identified by the
forest contains enough observations to produce reliable, precise estimates of the treatment
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effect, significantly reducing noise from random fluctuations in small sub-samples. Given
the vast size of the dataset, this node size strikes a balance between detailed subgroup
differentiation and the statistical reliability needed for valid policy implications.

Additionally, I set the sample fraction at 0.1, meaning each tree uses a random subsample
of roughly 135,000 workers. This large subsample size maintains computational efficiency
without sacrificing predictive accuracy, as it remains sufficiently large to detect meaningful
patterns in the data. The honesty option with a 60% split further protects against overfitting
by clearly separating the data used for identifying subgroup structures from the data used
to estimate subgroup-specific effects.

Details on permutation importance calculation. Permutation importance quanti-
fies how crucial each covariate is to the causal forest’s prediction accuracy. First, a baseline
mean squared error (MSE) is computed between the forest’s predictions and the observed
pseudo-outcomes on a subset of evaluation data. To enhance computational speed, predic-
tions use a randomly chosen “subforest” of up to 500 trees instead of the full model.

Next, the procedure tests each covariate individually. It randomly shuffles the values of
one covariate at a time and recalculates the MSE after each shuffle. This process is repeated
three times for each covariate. Shuffling removes the relationship between that covariate and
the outcomes; therefore, an increase in MSE above the baseline indicates that the covariate
significantly contributes to prediction accuracy. Finally, the average increase in MSE over
the three shuffles provides the measure of permutation importance: higher values mean the
covariate is more important for explaining differences in outcomes.

Details on precision-weighted linear projection of forest predictions. After
estimating a causal forest for

∆yi = β(Xi)Exposurec(i) + f(Xi) + εi,

I obtain for each worker i the predicted individual effect τ̂i = β̂(Xi) and its prediction
variance V̂ar(τ̂i). To summarize how the fitted heterogeneity varies with people- and place-
level covariates Xi, I run the precision-weighted linear projection

τ̂i = α +X⊤
i γ + ui,

estimated by WLS with weights wi = 1/V̂ar(τ̂i) and standard errors clustered at the CZ
level. This regression should be interpreted as a descriptive, model-based summary of the
heterogeneity learned by the forest: the coefficient γj is the change in the predicted effect
(per one unit of the exposure) associated with a one-unit difference in covariate Aij, holding
other covariates fixed.
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Appendix Tables

Table A.1: Summary Statistics of Workers and Subgroups by Sectoral and Geographic Mo-
bility

All Nonswitcher- Switcher- Nonswitcher- Switcher-
Workers Nonmover Nonmover Mover Mover

(1) (2) (3) (4) (5)

Variable (Dummy)
Young (< 35) 0.292 0.236 0.258 0.351 0.368
Middle (35−50) 0.377 0.339 0.391 0.378 0.407
Old (> 50) 0.331 0.425 0.351 0.271 0.225

Female 0.176 0.186 0.210 0.134 0.147
Male 0.825 0.814 0.790 0.867 0.853

White 0.877 0.881 0.870 0.884 0.877
Black 0.056 0.052 0.064 0.051 0.054
Other Races 0.067 0.067 0.066 0.066 0.070

< High School 0.178 0.170 0.171 0.188 0.188
High School 0.314 0.313 0.306 0.319 0.320
College 0.310 0.305 0.314 0.306 0.312
> College 0.199 0.211 0.208 0.187 0.180

Number of Workers 1,349,500 398,900 385,000 251,500 324,100

Notes: Each cell, except those in the last row, displays the average value for the corresponding variable. The
numbers are rounded in line with Census disclosure rules. Data source: LEHD.
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Table A.2: Fossil Fuel Labor Demand Shocks and Nonemployment Rate
Nonemployment Rate

lag (k) (1) (2)

-4 0.014
(0.049)

-3 0.027
(0.051)

-2 0.025
(0.044)

-1 0.013
(0.026)

0 0.068∗
(0.040)

1 0.141∗∗ 0.210∗∗
(0.060) (0.093)

2 -0.007 0.202∗∗
(0.023) (0.098)

3 -0.052 0.151∗∗
(0.037) (0.076)

4 0.119∗∗∗ 0.269∗∗
(0.046) (0.115)

5 0.128∗∗ 0.397∗∗
(0.065) (0.174)

6 0.152∗∗ 0.550∗∗
(0.061) (0.226)

7 0.047 0.597∗∗
(0.044) (0.261)

8 0.107∗∗ 0.704∗∗
(0.047) (0.299)

9 0.158∗∗ 0.862∗∗
(0.069) (0.360)

10 0.167∗∗ 1.029∗∗
(0.077) (0.431)

Estimate Indiv. Cumul.
Obs. 18,000 18,000

Notes: The numbers are rounded in line with
Census disclosure rules. Standard errors clustered by
commuting zone are shown in parentheses. Standard
errors for the cumulative coefficients are calculated
based on the variance-covariance matrix. Signif.
Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.3: Fossil Fuel Labor Demand Shocks and Employment Impact
Indicator for Employment Indicator for Short-Term Employment

lag (k) (1) (2) (3) (4)

-4 0.016 0.017
(0.042) (0.054)

-3 0.016 0.019
(0.031) (0.033)

-2 0.024 0.003
(0.034) (0.038)

-1 0.026 0.000
(0.035) (0.044)

0 -0.009 -0.009 -0.020 -0.020
(0.042) (0.042) (0.044) (0.044)

1 0.077∗∗ 0.068 0.115∗∗ 0.095
(0.038) (0.054) (0.055) (0.070)

2 -0.014 0.053 -0.085 0.010
(0.038) (0.052) (0.070) (0.056)

3 0.054∗ 0.107∗∗ 0.077∗∗∗ 0.087
(0.029) (0.054) (0.024) (0.064)

4 0.046 0.153∗∗ 0.090∗∗∗ 0.176∗∗
(0.038) (0.068) (0.033) (0.071)

5 0.052 0.205∗∗ 0.061 0.237∗∗
(0.054) (0.093) (0.057) (0.097)

6 0.059 0.264∗∗∗ 0.037 0.274∗∗∗
(0.052) (0.084) (0.059) (0.092)

7 0.051 0.315∗∗∗ 0.062 0.336∗∗∗
(0.050) (0.094) (0.059) (0.102)

8 0.030 0.346∗∗∗ 0.024 0.360∗∗∗
(0.043) (0.091) (0.052) (0.103)

9 -0.051 0.295∗∗∗ -0.073 0.287∗∗
(0.041) (0.114) (0.048) (0.127)

10 0.013 0.308∗∗ -0.009 0.278∗∗
(0.044) (0.124) (0.052) (0.141)

Estimate Indiv. Cumul. Indiv. Cumul.
Obs. 21,520,000 21,520,000 21,520,000 21,520,000

Notes: For columns 1 and 2, the outcome is an employment indicator equal to 1 if the worker has
any quarter with positive earnings in year t (0 otherwise). For columns 3 and 4, the outcome is an
employment indicator equal to 1 if the worker has more than one quarter with positive earnings in
year t (0 otherwise). The numbers are rounded in line with Census disclosure rules. Standard errors
clustered by employer and state-by-year are shown in parentheses. Standard errors for the cumulative
coefficients are calculated based on the variance-covariance matrix. Signif. Codes: ***: 0.01, **:
0.05, *: 0.1.
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Table A.4: Fossil Fuel Labor Demand Shocks and Earnings Impact with Full, Mass-Layoff,
and Nonzero-Earnings Sample

Baseline Mass-Layoffs Nonzero Earnings
lag (k) (1) (2) (3) (4) (5) (6)

-4 -0.149 -0.117 -0.553
(0.583) (0.664) (0.418)

-3 -0.196 -0.242 -0.351
(0.339) (0.428) (0.308)

-2 -0.026 0.330 -0.151
(0.458) (0.549) (0.387)

-1 -0.092 -0.030 -0.147
(0.518) (0.625) (0.463)

0 0.400 0.335 0.170
(0.498) (0.583) (0.385)

1 -1.105∗ -0.705 -1.204∗ -0.869 -0.835∗ -0.665
(0.567) (0.736) (0.680) (0.840) (0.492) (0.598)

2 0.454 -0.251 0.392 -0.477 0.469 -0.196
(0.679) (0.658) (0.780) (0.771) (0.579) (0.600)

3 -0.907∗∗∗ -1.157 -1.181∗∗∗ -1.658∗ -0.871∗∗∗ -1.067
(0.294) (0.724) (0.336) (0.876) (0.262) (0.685)

4 -0.739∗∗ -1.896∗∗ -1.175∗∗∗ -2.833∗∗∗ -0.607∗ -1.674∗∗
(0.350) (0.830) (0.438) (1.028) (0.316) (0.814)

5 -0.704 -2.599∗∗ -0.867 -3.700∗∗∗ -0.762 -2.435∗∗
(0.585) (1.132) (0.699) (1.399) (0.558) (1.134)

6 -0.649 -3.248∗∗∗ -0.579 -4.279∗∗∗ -0.685 -3.120∗∗∗
(0.652) (1.080) (0.768) (1.343) (0.577) (1.190)

7 -0.761 -4.009∗∗∗ -0.443 -4.722∗∗∗ -0.938 -4.058∗∗∗
(0.691) (1.247) (0.802) (1.516) (0.575) (1.311)

8 -0.259 -4.268∗∗∗ -0.089 -4.811∗∗∗ -0.320 -4.378∗∗∗
(0.596) (1.148) (0.660) (1.433) (0.462) (1.322)

9 0.971∗ -3.297∗∗ 1.600∗∗ -3.211∗ 0.470 -3.908∗∗
(0.522) (1.404) (0.677) (1.731) (0.445) (1.537)

10 -0.031 -3.328∗∗ -0.013 -3.223∗ -0.151 -4.059∗∗
(0.521) (1.521) (0.618) (1.838) (0.434) (1.664)

Estimate Indiv. Cumul. Indiv. Cumul. Indiv. Cumul.
Obs. 21,520,000 21,520,000 11,880,000 11,880,000 17,830,000 17,830,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and state-by-year
are shown in parentheses. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.5: Fossil Fuel Labor Demand Shocks and Earnings Impact by Reallocation Margins
(Full Sample)

Nonswitcher- Switcher- Nonswitcher- Switcher-
Nonmover Nonmover Mover Mover

lag (k) (1) (2) (3) (4) (5) (6) (7) (8)

-4 -0.111 0.050 -0.112 -0.274
(0.830) (0.562) (0.663) (0.392)

-3 -0.120 -0.162 -0.294 -0.227
(0.547) (0.405) (0.483) (0.294)

-2 -0.013 0.274 -0.518 -0.165
(0.581) (0.444) (0.640) (0.378)

-1 0.221 0.295 -0.300 -0.237
(0.721) (0.506) (0.635) (0.404)

0 1.016 0.540 -0.626 0.126
(0.731) (0.435) (0.759) (0.387)

1 -1.038 -0.022 -0.985∗ -0.445 -1.109 -1.735∗ -1.219∗∗∗ -1.093∗∗
(0.725) (1.003) (0.506) (0.683) (0.740) (0.959) (0.429) (0.556)

2 0.359 0.337 0.915∗ 0.470 -0.403 -2.138∗∗ -0.266 -1.359∗∗∗
(0.910) (0.919) (0.533) (0.678) (0.831) (0.874) (0.472) (0.497)

3 -0.943∗∗ -0.606 -0.605∗ -0.135 -1.222∗∗ -3.360∗∗∗ -0.647∗∗∗ -2.006∗∗∗
(0.436) (1.007) (0.321) (0.787) (0.492) (0.918) (0.236) (0.541)

4 -1.096∗∗ -1.702 -0.580∗ -0.715 -0.462 -3.822∗∗∗ -0.535 -2.541∗∗∗
(0.502) (1.177) (0.331) (0.886) (0.660) (1.131) (0.351) (0.670)

5 -0.848 -2.550 -0.352 -1.067 -1.040 -4.862∗∗∗ -1.065∗∗ -3.606∗∗∗
(0.778) (1.614) (0.519) (1.170) (0.919) (1.446) (0.504) (0.871)

6 -0.905 -3.455∗∗ -0.340 -1.407 -0.655 -5.517∗∗∗ -0.721 -4.327∗∗∗
(0.945) (1.466) (0.601) (1.163) (0.757) (1.388) (0.484) (0.883)

7 -0.844 -4.299∗∗ -0.485 -1.892 -0.785 -6.301∗∗∗ -0.708 -5.035∗∗∗
(0.928) (1.769) (0.608) (1.280) (0.809) (1.548) (0.529) (0.954)

8 -0.180 -4.479∗∗∗ -0.235 -2.127∗ -0.255 -6.557∗∗∗ -0.272 -5.306∗∗∗
(0.795) (1.563) (0.449) (1.234) (0.823) (1.567) (0.511) (0.941)

9 1.484∗∗ -2.995 0.849∗ -1.278 0.569 -5.988∗∗∗ 0.352 -4.954∗∗∗
(0.650) (1.858) (0.465) (1.440) (0.735) (1.951) (0.410) (1.145)

10 0.302 -2.693 0.075 -1.203 -0.488 -6.476∗∗∗ -0.471 -5.425∗∗∗
(0.652) (2.023) (0.531) (1.646) (0.723) (2.067) (0.385) (1.219)

Estimate Indiv. Cumul. Indiv. Cumul. Indiv. Cumul. Indiv. Cumul.
Obs. 6,338,000 6,338,000 6,699,000 6,699,000 3,590,000 3,590,000 4,897,000 4,897,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and state-by-year are shown in
parentheses. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix. Signif. Codes: ***: 0.01, **:
0.05, *: 0.1.
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Table A.6: Fossil Fuel Labor Demand Shocks and Earnings Impact by Reallocation Margins
(Mass-Layoff Sample)

Nonswitcher- Switcher- Nonswitcher- Switcher-
Nonmover Nonmover Mover Mover

lag (k) (1) (2) (3) (4) (5) (6) (7) (8)

-4 -0.158 0.186 -0.210 -0.297
(0.953) (0.619) (0.788) (0.487)

-3 -0.105 -0.222 -0.181 -0.466
(0.760) (0.488) (0.596) (0.340)

-2 0.687 0.344 -0.305 0.084
(0.770) (0.532) (0.777) (0.439)

-1 0.338 0.463 -0.646 -0.737∗
(0.932) (0.632) (0.756) (0.440)

0 1.037 1.037 0.451 0.451 -0.627 -0.627 0.012 0.012
(0.896) (0.896) (0.493) (0.493) (0.868) (0.868) (0.480) (0.480)

1 -0.965 0.072 -1.082∗ -0.631 -1.296∗ -1.923∗ -1.301∗∗ -1.289∗
(0.932) (1.206) (0.568) (0.790) (0.784) (1.043) (0.513) (0.662)

2 0.471 0.543 0.968 0.337 -0.418 -2.341∗∗ 0.012 -1.276∗∗
(1.074) (1.152) (0.644) (0.813) (0.892) (0.964) (0.566) (0.630)

3 -1.357∗∗∗ -0.814 -0.702∗ -0.364 -1.487∗∗ -3.828∗∗∗ -0.778∗∗∗ -2.054∗∗∗
(0.517) (1.316) (0.405) (0.976) (0.586) (1.098) (0.278) (0.694)

4 -1.646∗∗ -2.460 -0.929∗∗ -1.294 -0.827 -4.655∗∗∗ -1.026∗∗∗ -3.080∗∗∗
(0.714) (1.605) (0.413) (1.125) (0.858) (1.373) (0.397) (0.826)

5 -0.957 -3.417 -0.474 -1.768 -1.430 -6.085∗∗∗ -1.292∗∗ -4.372∗∗∗
(0.996) (2.175) (0.619) (1.471) (1.081) (1.675) (0.576) (1.095)

6 -0.724 -4.141∗∗ -0.229 -1.997 -0.711 -6.796∗∗∗ -0.620 -4.992∗∗∗
(1.213) (1.993) (0.680) (1.504) (0.883) (1.649) (0.546) (1.104)

7 -0.193 -4.334∗ -0.349 -2.346 -0.420 -7.216∗∗∗ -0.668 -5.660∗∗∗
(1.155) (2.249) (0.717) (1.710) (0.855) (1.824) (0.605) (1.172)

8 0.170 -4.164∗∗ -0.261 -2.606 0.121 -7.096∗∗∗ -0.314 -5.974∗∗∗
(1.008) (1.954) (0.500) (1.712) (0.853) (1.866) (0.556) (1.184)

9 0.536 -3.629 1.021∗ -1.585 1.275 -5.821∗∗∗ 0.637 -5.337∗∗∗
(0.859) (2.213) (0.612) (1.991) (0.956) (2.244) (0.507) (1.411)

10 0.218 -3.411 0.147 -1.438 -0.488 -6.309∗∗∗ -0.388 -5.725∗∗∗
(0.823) (2.366) (0.654) (2.249) (0.882) (2.369) (0.442) (1.467)

Estimate Indiv. Cumul. Indiv. Cumul. Indiv. Cumul. Indiv. Cumul.
Obs. 3,522,000 3,522,000 3,527,000 3,527,000 2,127,000 2,127,000 2,705,000 2,705,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and state-by-year are shown in
parentheses. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix. Signif. Codes: ***: 0.01, **:
0.05, *: 0.1.

Table A.7: Cumulative Coefficient Differences between Stayers and Leavers
10∑

k=0
β̂Nonswitcher
k −

10∑
k=0

β̂Switcher
k

-1.499∗∗∗
(0.667)

10∑
k=0

β̂Nonmover
k −

10∑
k=0

β̂Mover
k

3.016∗∗∗
(0.610)

Notes: The numbers are rounded in line with Census disclosure
rules. Standard errors are calculated based on the variance-
covariance matrix. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.8: Fossil Fuel Labor Demand Shocks and Earnings Impact by Pre-Separation Sub-
sector and Sex

Pre-Separation Subsector Sex
Oil & Gas Coal Support Drilling
Extraction Mining Activites Wells Female Male

lag (k) (1) (2) (3) (4) (5) (6)

-4 -0.002 0.130 -0.059 -0.350 0.189 -0.202
(0.574) (0.665) (0.608) (0.769) (0.555) (0.585)

-3 -0.114 0.271 -0.242 0.122 0.215 -0.255
(0.297) (0.731) (0.352) (0.597) (0.366) (0.345)

-2 0.231 0.579 -0.221 -0.587 0.108 -0.038
(0.481) (0.618) (0.456) (0.733) (0.368) (0.473)

-1 -0.141 0.204 0.086 -0.523 0.145 -0.188
(0.454) (0.556) (0.554) (0.849) (0.407) (0.534)

0 0.364 -0.062 0.604 -0.181 0.552∗ 0.332
(0.443) (0.459) (0.586) (0.821) (0.306) (0.528)

1 0.056 -0.297 -0.625 -2.170∗ 0.255 -0.915
(0.734) (0.704) (0.788) (1.259) (0.521) (0.757)

2 0.717 -0.349 -0.343 -1.761 1.011∗ -0.613
(0.772) (0.771) (0.750) (1.193) (0.586) (0.673)

3 0.484 -1.321 -1.096 -3.350∗∗ 0.205 -1.509∗∗
(0.752) (0.877) (0.818) (1.344) (0.656) (0.735)

4 0.405 -3.043∗∗ -1.820∗∗ -4.424∗∗∗ -0.087 -2.303∗∗∗
(0.932) (1.184) (0.910) (1.488) (0.794) (0.839)

5 0.280 -3.640∗∗∗ -2.609∗∗ -5.982∗∗∗ -0.512 -3.081∗∗∗
(1.133) (1.348) (1.204) (1.966) (1.029) (1.166)

6 0.125 -3.011∗∗ -3.426∗∗∗ -6.433∗∗∗ -0.935 -3.765∗∗∗
(1.210) (1.374) (1.157) (1.909) (1.040) (1.120)

7 -0.267 -3.256∗∗ -4.292∗∗∗ -7.153∗∗∗ -1.475 -4.513∗∗∗
(1.531) (1.467) (1.312) (1.960) (1.170) (1.273)

8 -0.229 -3.569∗∗ -4.437∗∗∗ -6.894∗∗∗ -1.700 -4.713∗∗∗
(1.627) (1.619) (1.222) (1.783) (1.177) (1.170)

9 0.166 -3.413∗ -3.634∗∗ -5.937∗∗∗ -0.966 -3.751∗∗
(1.852) (1.929) (1.490) (2.297) (1.303) (1.458)

10 0.081 -2.977 -3.814∗∗ -5.772∗∗ -0.905 -3.897∗∗
(1.902) (2.205) (1.620) (2.562) (1.412) (1.576)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 5,598,000 1,219,000 11,420,000 3,290,000 3,765,000 17,760,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and
state-by-year are shown in parentheses. Standard errors for the cumulative coefficients are calculated based on the
variance-covariance matrix. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.9: Fossil Fuel Labor Demand Shocks and Earnings Impact by Pre-Separation Job
Tenure and Earnings

Pre-Separation Job Tenure Pre-Separation Earnings
High Medium Low

(>7yr) (3−7yr) (<3yr) Q1 Q2 Q3 Q4
lag (k) (1) (2) (3) (4) (5) (6) (7)

-4 -0.143 -0.359 -0.179 -0.560 -0.263 -0.061 -0.154
(0.589) (0.641) (0.636) (0.817) (0.509) (0.392) (0.434)

-3 -0.376 -0.117 -0.480 0.087 -0.056 -0.265 -0.117
(0.333) (0.544) (0.486) (0.635) (0.452) (0.236) (0.351)

-2 -0.323 0.169 -0.304 -0.515 0.217 -0.052 0.234
(0.445) (0.599) (0.586) (0.716) (0.438) (0.352) (0.370)

-1 0.050 -0.284 -0.677 -0.117 0.044 0.194 -0.131
(0.542) (0.662) (0.540) (0.743) (0.474) (0.320) (0.395)

0 0.757 0.068 -0.152 0.191 0.213 0.170 -0.013
(0.572) (0.628) (0.580) (0.852) (0.591) (0.362) (0.368)

1 -0.164 -1.178 -1.574∗ -1.697 -0.986 -0.830∗ -0.556
(0.805) (0.899) (0.834) (1.071) (0.749) (0.470) (0.554)

2 0.501 -0.946 -1.505∗∗ -1.734∗ -1.115 -0.848∗ -0.581
(0.760) (0.819) (0.722) (1.018) (0.733) (0.479) (0.519)

3 -0.092 -2.056∗∗ -2.789∗∗∗ -3.380∗∗∗ -2.039∗∗ -1.748∗∗∗ -1.254∗∗
(0.832) (0.916) (0.768) (1.161) (0.826) (0.570) (0.555)

4 -0.590 -3.324∗∗∗ -3.433∗∗∗ -4.351∗∗∗ -2.936∗∗∗ -2.488∗∗∗ -1.990∗∗∗
(0.909) (1.072) (1.021) (1.385) (1.023) (0.693) (0.758)

5 -1.215 -4.318∗∗∗ -4.478∗∗∗ -5.854∗∗∗ -3.993∗∗∗ -3.396∗∗∗ -2.608∗∗∗
(1.181) (1.496) (1.367) (1.740) (1.422) (0.968) (0.980)

6 -1.736 -5.180∗∗∗ -5.611∗∗∗ -6.438∗∗∗ -4.514∗∗∗ -4.002∗∗∗ -3.017∗∗∗
(1.188) (1.273) (1.317) (1.736) (1.292) (1.062) (0.948)

7 -2.621∗ -5.833∗∗∗ -6.753∗∗∗ -7.321∗∗∗ -4.627∗∗∗ -4.321∗∗∗ -3.452∗∗∗
(1.339) (1.385) (1.482) (1.745) (1.283) (1.124) (1.236)

8 -3.067∗∗ -6.019∗∗∗ -7.031∗∗∗ -7.078∗∗∗ -4.006∗∗∗ -4.002∗∗∗ -3.409∗∗∗
(1.229) (1.184) (1.422) (1.784) (1.285) (1.166) (1.287)

9 -2.441∗ -4.871∗∗∗ -6.267∗∗∗ -6.256∗∗∗ -2.893∗ -3.296∗∗ -2.630∗
(1.476) (1.507) (1.728) (2.164) (1.538) (1.319) (1.460)

10 -2.562 -4.815∗∗∗ -6.756∗∗∗ -6.737∗∗∗ -3.101∗ -3.510∗∗∗ -2.699∗
(1.584) (1.665) (1.841) (2.419) (1.694) (1.331) (1.396)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 10,340,000 6,878,000 4,307,000 4,684,000 5,214,000 5,585,000 6,041,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and state-by-year are shown
in parentheses. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix. Signif. Codes:
***: 0.01, **: 0.05, *: 0.1.
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Table A.10: Fossil Fuel Labor Demand Shocks and Earnings Impact by Age
Nonmover Mover

Young Middle Old Young Middle Old
(< 35) (35−50) (> 50) (< 35) (35−50) (> 50)

lag (k) (1) (2) (3) (4) (5) (6)

-4 -0.116 -0.062 -0.172 -0.633 -0.658 -0.418
(0.788) (0.650) (0.623) (0.472) (0.497) (0.694)

-3 -0.276 -0.225 0.200 -0.238 -0.258 0.154
(0.562) (0.438) (0.387) (0.354) (0.393) (0.451)

-2 -0.300 -0.016 0.462 -0.635 -0.130 -0.118
(0.606) (0.430) (0.472) (0.470) (0.450) (0.605)

-1 0.301 0.142 0.257 -0.503 -0.899∗ -0.384
(0.697) (0.599) (0.444) (0.431) (0.522) (0.574)

0 0.761 0.681 0.079 -0.628 -0.188 0.126
(0.724) (0.573) (0.390) (0.481) (0.587) (0.649)

1 -0.379 -0.392 -1.041 -1.922∗∗∗ -1.691∗∗ -0.401
(0.950) (0.808) (0.700) (0.635) (0.771) (0.916)

2 0.351 0.031 -1.139 -2.048∗∗∗ -1.536∗∗ -0.496
(0.947) (0.826) (0.694) (0.614) (0.752) (0.879)

3 -0.579 -0.547 -2.324∗∗∗ -3.095∗∗∗ -2.301∗∗∗ -1.435
(1.048) (0.910) (0.735) (0.688) (0.788) (0.941)

4 -1.773 -1.394 -3.496∗∗∗ -3.748∗∗∗ -3.026∗∗∗ -2.107∗
(1.205) (1.014) (0.856) (0.824) (1.006) (1.144)

5 -2.434 -2.051 -4.499∗∗∗ -5.116∗∗∗ -4.072∗∗∗ -2.704∗∗
(1.680) (1.313) (1.082) (1.130) (1.267) (1.186)

6 -3.057∗ -2.566∗∗ -5.215∗∗∗ -5.600∗∗∗ -4.939∗∗∗ -2.963∗∗
(1.647) (1.265) (1.042) (1.172) (1.251) (1.180)

7 -4.008∗∗ -3.165∗∗ -5.607∗∗∗ -6.416∗∗∗ -5.589∗∗∗ -3.504∗∗∗
(1.778) (1.482) (1.212) (1.223) (1.324) (1.320)

8 -4.108∗∗ -3.143∗∗ -5.567∗∗∗ -6.590∗∗∗ -5.433∗∗∗ -3.459∗∗
(1.656) (1.368) (1.274) (1.252) (1.373) (1.398)

9 -2.958 -1.934 -4.437∗∗∗ -6.458∗∗∗ -4.841∗∗∗ -2.412
(1.922) (1.649) (1.527) (1.442) (1.680) (1.776)

10 -2.792 -1.728 -4.165∗∗∗ -7.082∗∗∗ -5.455∗∗∗ -1.954
(2.120) (1.876) (1.550) (1.512) (1.771) (2.003)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 4,835,000 4,553,000 3,648,000 4,361,000 2,816,000 1,310,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and
state-by-year are shown in parentheses. Standard errors for the cumulative coefficients are calculated based on the
variance-covariance matrix. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.11: Fossil Fuel Labor Demand Shocks and Earnings Impact by Employer Concen-
tration in Destination Markets (FF-Specific HHI)

Nonswitcher- Switcher- Nonswitcher- Switcher-
Nonmover Nonmover Mover Mover

High Low High Low High Low High Low
lag (k) (1) (2) (3) (4) (5) (6) (7) (8)

-4 -0.355 0.148 0.032 -0.038 -0.130 -0.103 -0.514 -0.198
(1.219) (0.951) (0.576) (0.701) (0.662) (0.900) (0.452) (0.531)

-3 -0.862 0.154 -0.305 0.020 -0.700 0.086 -0.034 -0.348
(1.143) (0.647) (0.538) (0.462) (0.611) (0.605) (0.317) (0.402)

-2 0.405 0.225 0.757 0.188 -0.477 -0.450 -0.342 -0.014
(1.087) (0.767) (0.651) (0.524) (0.776) (0.664) (0.451) (0.536)

-1 -0.452 0.154 0.086 0.306 -0.079 -0.767 -0.537 -0.275
(1.021) (0.893) (0.646) (0.634) (0.737) (0.754) (0.433) (0.543)

0 0.550 1.329 1.063∗ 0.562 -0.517 -0.474 0.313 0.029
(0.948) (0.821) (0.588) (0.602) (0.832) (0.834) (0.426) (0.510)

1 -0.122 -0.267 0.991 -0.806 -1.692 -1.571 -1.019∗ -1.080
(1.392) (1.102) (0.843) (0.901) (1.125) (1.040) (0.579) (0.765)

2 1.029 -0.455 2.466∗∗∗ 0.204 -1.064 -1.845∗ -0.676 -1.073
(1.441) (1.213) (0.920) (0.919) (1.172) (0.985) (0.603) (0.674)

3 1.187 -1.853 2.253∗∗ -0.112 -2.515∗∗ -3.025∗∗∗ -1.335∗∗ -1.610∗∗
(1.514) (1.425) (1.025) (1.014) (1.238) (1.082) (0.649) (0.733)

4 0.243 -2.979∗ 1.854 -0.676 -2.116 -4.053∗∗∗ -1.707∗∗ -2.249∗∗
(1.686) (1.580) (1.219) (1.250) (1.461) (1.416) (0.793) (0.983)

5 -0.676 -3.492∗ 1.865 -0.891 -3.264∗ -5.006∗∗∗ -2.908∗∗∗ -3.183∗∗
(2.198) (1.917) (1.476) (1.699) (1.763) (1.695) (0.935) (1.259)

6 -3.413 -3.084 1.352 -0.911 -4.148∗∗ -5.596∗∗∗ -3.603∗∗∗ -3.698∗∗∗
(2.571) (2.046) (1.579) (1.740) (1.783) (1.577) (0.973) (1.300)

7 -4.000 -3.572 0.659 -1.141 -5.468∗∗∗ -5.846∗∗∗ -4.423∗∗∗ -4.141∗∗∗
(2.461) (2.266) (1.615) (1.879) (1.934) (1.705) (1.040) (1.406)

8 -5.447∗∗ -2.727 0.007 -0.983 -6.724∗∗∗ -5.269∗∗∗ -4.890∗∗∗ -4.181∗∗∗
(2.505) (2.117) (1.547) (1.974) (1.889) (1.777) (0.935) (1.557)

9 -5.412 -0.052 1.011 0.106 -5.965∗∗∗ -4.538∗∗ -4.618∗∗∗ -3.691∗∗
(3.313) (2.352) (1.687) (2.186) (2.266) (2.230) (1.105) (1.817)

10 -6.632∗ 1.054 1.323 0.065 -7.049∗∗∗ -4.719∗ -5.149∗∗∗ -4.120∗∗
(3.888) (2.427) (1.986) (2.293) (2.439) (2.521) (1.206) (1.906)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 2,129K 4,208K 2,524K 4,175K 1,409K 2,181K 2,105K 2,792K

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and state-by-year are shown in
parentheses. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix. Signif. Codes: ***: 0.01, **:
0.05, *: 0.1.
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Table A.12: Fossil Fuel Labor Demand Shocks and Earnings Impact by Employer Concen-
tration in Destination Markets (All-Sector HHI)

Nonswitcher- Switcher- Nonswitcher- Switcher-
Nonmover Nonmover Mover Mover

High Low High Low High Low High Low
lag (k) (1) (2) (3) (4) (5) (6) (7) (8)

-4 -0.294 0.144 -0.553∗ 0.320 -0.272 -0.029 -0.649 0.546
(0.682) (1.423) (0.330) (0.969) (0.925) (0.720) (0.420) (0.629)

-3 0.437 0.004 0.721∗ -0.713 -0.723 0.150 -0.018 -0.510
(0.555) (0.692) (0.380) (0.436) (0.692) (0.428) (0.323) (0.445)

-2 -0.321 0.138 -0.581∗ 0.402 -0.193 0.325 -0.346 0.372
(0.579) (0.862) (0.347) (0.706) (0.836) (0.637) (0.370) (0.482)

-1 -0.173 0.202 0.356 0.333 -0.041 -0.627 -0.658 -0.143
(0.499) (1.015) (0.360) (0.756) (0.764) (0.544) (0.414) (0.529)

0 0.162 0.444 -0.134 1.052 -0.870 0.013 -0.195 0.782
(0.722) (1.034) (0.393) (0.644) (0.967) (0.711) (0.451) (0.630)

1 -0.481 0.065 -0.314 0.386 -2.320∗∗ -0.021 -1.407∗∗ -0.190
(0.837) (1.563) (0.584) (0.976) (1.135) (1.117) (0.575) (0.881)

2 -1.280 1.448 -0.404 3.003∗∗∗ -2.728∗∗∗ 0.988 -1.673∗∗∗ 0.592
(0.791) (1.691) (0.572) (1.121) (1.056) (1.158) (0.549) (0.871)

3 -2.830∗∗∗ 1.490 -1.257∗∗ 3.791∗∗∗ -4.227∗∗∗ 0.246 -2.494∗∗∗ 0.677
(0.951) (2.066) (0.628) (1.411) (1.064) (1.372) (0.600) (1.014)

4 -3.471∗∗∗ 1.772 -1.868∗∗ 4.080∗∗ -4.653∗∗∗ 0.652 -3.091∗∗∗ 0.503
(1.070) (2.172) (0.764) (1.645) (1.348) (1.621) (0.718) (1.279)

5 -4.888∗∗∗ 3.106 -2.724∗∗∗ 4.872∗∗∗ -6.767∗∗∗ 1.941 -4.388∗∗∗ 0.052
(1.300) (2.272) (1.009) (1.882) (1.616) (2.026) (0.911) (1.555)

6 -5.294∗∗∗ 3.906 -2.528∗∗ 5.241∗∗ -7.704∗∗∗ 2.858 -5.126∗∗∗ -0.330
(1.386) (2.552) (1.133) (2.251) (1.650) (2.153) (0.939) (1.710)

7 -6.092∗∗∗ 4.838 -3.095∗∗ 4.930∗ -8.752∗∗∗ 3.107 -5.621∗∗∗ -0.970
(1.403) (3.083) (1.220) (2.706) (1.755) (2.258) (0.989) (1.903)

8 -5.453∗∗∗ 5.870∗∗ -2.691∗∗ 4.388 -8.678∗∗∗ 3.349 -5.714∗∗∗ -1.432
(1.428) (2.983) (1.350) (2.872) (1.844) (2.369) (0.986) (2.032)

9 -4.951∗∗∗ 9.342∗∗∗ -3.363∗∗ 5.779∗ -8.371∗∗∗ 5.073∗ -5.763∗∗∗ -0.357
(1.897) (3.369) (1.587) (3.171) (2.473) (2.617) (1.308) (2.253)

10 -5.201∗∗∗ 10.775∗∗∗ -2.806 5.574 -9.231∗∗∗ 5.477∗∗ -6.188∗∗∗ -0.899
(1.972) (3.792) (1.716) (3.500) (2.785) (2.713) (1.426) (2.474)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 3,314K 3,023K 3,461K 3,238K 2,305K 1,285K 3,259K 1,638K

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and state-by-year are shown in
parentheses. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix. Signif. Codes: ***: 0.01, **:
0.05, *: 0.1.
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Table A.13: Fossil Fuel Labor Demand Shocks and Earnings Impact by Employer Concen-
tration in Origin Markets

Nonswitcher-Mover Switcher-Mover
FF-Specific HHI All-Sector HHI FF-Specific HHI All-Sector HHI

High Low High Low High Low High Low
lag (k) (1) (2) (3) (4) (5) (6) (7) (8)

-4 -0.036 -0.135 -0.372 -0.016 -0.702 -0.069 -0.304 -0.179
(0.684) (0.794) (0.658) (0.690) (0.430) (0.456) (0.442) (0.480)

-3 -0.230 -0.471 -0.356 -0.290 -0.178 -0.270 -0.229 -0.128
(0.580) (0.564) (0.465) (0.501) (0.406) (0.356) (0.368) (0.330)

-2 -0.453 -0.597 -0.420 -0.471 -0.303 -0.054 -0.324 -0.069
(0.705) (0.696) (0.695) (0.655) (0.468) (0.413) (0.370) (0.398)

-1 -0.595 -0.125 -0.257 -0.589 -0.137 -0.188 -0.519 -0.369
(0.706) (0.707) (0.602) (0.665) (0.426) (0.483) (0.411) (0.459)

0 -0.542 -0.715 -0.705 -0.374 0.210 0.136 -0.315 0.628
(0.805) (0.863) (0.783) (0.845) (0.494) (0.450) (0.356) (0.430)

1 -1.244 -2.147∗∗ -1.961∗ -1.291 -1.059 -1.146∗ -1.652∗∗∗ -0.317
(1.123) (1.027) (1.009) (1.090) (0.670) (0.629) (0.533) (0.658)

2 -1.143 -2.139∗∗ -2.138∗∗ -1.065 -1.191∗ -0.960∗ -1.489∗∗∗ -0.548
(1.085) (0.951) (0.983) (1.102) (0.665) (0.580) (0.467) (0.693)

3 -2.358∗∗ -3.383∗∗∗ -3.385∗∗∗ -2.278∗∗ -1.771∗∗ -1.732∗∗∗ -2.256∗∗∗ -0.986
(1.201) (0.988) (1.115) (1.115) (0.708) (0.645) (0.522) (0.790)

4 -2.651∗ -3.981∗∗∗ -3.806∗∗∗ -2.524∗ -2.179∗∗ -2.384∗∗∗ -2.760∗∗∗ -1.355
(1.358) (1.327) (1.292) (1.410) (0.866) (0.814) (0.683) (0.925)

5 -3.607∗∗ -5.071∗∗∗ -4.383∗∗∗ -3.447∗ -3.283∗∗∗ -3.551∗∗∗ -3.716∗∗∗ -2.393∗∗
(1.633) (1.636) (1.450) (1.829) (1.030) (1.111) (0.880) (1.162)

6 -4.281∗∗ -5.736∗∗∗ -5.097∗∗∗ -3.643∗ -3.856∗∗∗ -4.358∗∗∗ -4.362∗∗∗ -3.032∗∗
(1.711) (1.538) (1.505) (1.859) (1.079) (1.086) (0.837) (1.348)

7 -5.520∗∗∗ -6.280∗∗∗ -5.322∗∗∗ -4.386∗∗ -4.665∗∗∗ -4.932∗∗∗ -4.915∗∗∗ -3.841∗∗
(1.697) (1.793) (1.541) (2.098) (1.178) (1.142) (0.875) (1.506)

8 -5.968∗∗∗ -6.336∗∗∗ -5.452∗∗∗ -4.456∗ -5.228∗∗∗ -4.976∗∗∗ -4.991∗∗∗ -4.071∗∗∗
(1.649) (1.897) (1.438) (2.323) (1.110) (1.213) (0.877) (1.563)

9 -5.315∗∗ -5.623∗∗ -4.298∗∗ -3.843 -4.864∗∗∗ -4.541∗∗∗ -4.849∗∗∗ -3.459∗∗
(2.087) (2.238) (1.782) (2.715) (1.355) (1.385) (1.118) (1.743)

10 -5.601∗∗ -6.188∗∗ -4.927∗∗∗ -4.037 -5.334∗∗∗ -5.033∗∗∗ -5.394∗∗∗ -3.820∗∗
(2.288) (2.406) (1.911) (2.842) (1.471) (1.475) (1.276) (1.823)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 1,106K 2,484K 1,838K 3,059K 1,757K 1,834K 2,610K 2,287K

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and state-by-year are shown in
parentheses. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix. Signif. Codes: ***: 0.01, **:
0.05, *: 0.1.
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Table A.14: Fossil Fuel Labor Demand Shocks and Earnings Impact: Baseline vs. Specifi-
cations with Age Controls

Full Sample Full Sample with Age Controls
lag (k) (1) (2) (3) (4)

-4 -0.149 -0.241
(0.583) (0.587)

-3 -0.196 -0.266
(0.339) (0.377)

-2 -0.026 -0.119
(0.458) (0.472)

-1 -0.092 -0.163
(0.518) (0.536)

0 0.400 0.400 0.287 0.287
(0.498) (0.498) (0.526) (0.526)

1 -1.105∗ -0.705 -1.161∗ -0.874
(0.567) (0.736) (0.600) (0.762)

2 0.454 -0.251 0.373 -0.501
(0.679) (0.658) (0.724) (0.673)

3 -0.907∗∗∗ -1.157 -0.953∗∗∗ -1.454∗∗
(0.294) (0.724) (0.317) (0.733)

4 -0.739∗∗ -1.896∗∗ -0.827∗∗ -2.282∗∗∗
(0.350) (0.830) (0.382) (0.858)

5 -0.704 -2.599∗∗ -0.790 -3.072∗∗∗
(0.585) (1.132) (0.635) (1.190)

6 -0.649 -3.248∗∗∗ -0.708 -3.780∗∗∗
(0.652) (1.080) (0.686) (1.098)

7 -0.761 -4.009∗∗∗ -0.813 -4.593∗∗∗
(0.691) (1.247) (0.706) (1.256)

8 -0.259 -4.268∗∗∗ -0.252 -4.845∗∗∗
(0.596) (1.148) (0.601) (1.137)

9 0.971∗ -3.297∗∗ 0.912∗ -3.933∗∗∗
(0.522) (1.404) (0.532) (1.402)

10 -0.031 -3.328∗∗ -0.060 -3.993∗∗∗
(0.521) (1.521) (0.549) (1.515)

Estimate Indiv. Cumul. Indiv. Cumul.
Obs. 21,520,000 21,520,000 21,520,000 21,520,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by
employer and state-by-year are shown in parentheses. Standard errors for the cumulative coefficients
are calculated based on the variance-covariance matrix. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.15: Fossil Fuel Labor Demand Shocks and Earnings Impact by Different Clustering
Choices

Employer State-Year CZ Employer and CZ Employer and State
lag (k) (1) (2) (3) (4) (5)

-4 -0.149 -0.149 -0.149 -0.149 -0.149
(0.130) (0.600) (0.222) (0.211) (0.219)

-3 -0.196 -0.196 -0.196 -0.196 -0.196
(0.123) (0.353) (0.150) (0.138) (0.124)

-2 -0.026 -0.026 -0.026 -0.026 -0.026
(0.150) (0.467) (0.162) (0.156) (0.199)

-1 -0.092 -0.092 -0.092 -0.092 -0.092
(0.141) (0.527) (0.287) (0.272) (0.148)

0 0.400∗∗∗ 0.400 0.400 0.400 0.400
(0.144) (0.508) (0.310) (0.301) (0.477)

1 -0.705∗∗∗ -0.705 -0.705∗ -0.705∗ -0.705∗∗
(0.197) (0.750) (0.372) (0.366) (0.357)

2 -0.251 -0.251 -0.251 -0.251 -0.251
(0.239) (0.663) (0.507) (0.489) (0.630)

3 -1.157∗∗∗ -1.157 -1.157∗ -1.157∗ -1.157
(0.270) (0.728) (0.642) (0.621) (0.937)

4 -1.896∗∗∗ -1.896∗∗ -1.896∗∗ -1.896∗∗ -1.896∗
(0.333) (0.832) (0.857) (0.831) (1.010)

5 -2.599∗∗∗ -2.599∗∗ -2.599∗∗ -2.599∗∗ -2.599∗∗
(0.402) (1.139) (1.196) (1.164) (1.263)

6 -3.248∗∗∗ -3.248∗∗∗ -3.248∗∗ -3.248∗∗ -3.248∗∗
(0.448) (1.072) (1.527) (1.493) (1.376)

7 -4.009∗∗∗ -4.009∗∗∗ -4.009∗∗ -4.009∗∗ -4.009∗∗∗
(0.495) (1.237) (1.813) (1.782) (1.545)

8 -4.268∗∗∗ -4.268∗∗∗ -4.268∗∗ -4.268∗∗ -4.268∗∗
(0.516) (1.125) (1.926) (1.896) (1.882)

9 -3.297∗∗∗ -3.297∗∗ -3.297∗ -3.297∗ -3.297
(0.562) (1.396) (1.890) (1.858) (2.316)

10 -3.328∗∗∗ -3.328∗∗ -3.328∗ -3.328∗ -3.328
(0.584) (1.520) (1.785) (1.748) (2.385)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 21,520,000 21,520,000 21,520,000 21,520,000 21,520,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors are shown in parentheses and are clustered at the
level indicated in the first row. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.16: Quadratic Terms of Fossil Fuel Labor Demand Shocks and Earnings Impact
FFShock2

lag (k) (1)

-4 -0.060
(0.817)

-3 0.087
(0.635)

-2 -0.115
(0.716)

-1 -0.117
(0.743)

0 0.191
(0.852)

1 -0.088
(0.764)

2 -0.038
(0.811)

3 -0.646
(0.507)

4 -0.371
(0.714)

5 -0.503
(1.156)

6 -0.584
(1.057)

7 -0.183
(0.930)

8 0.244
(0.706)

9 0.222
(0.723)

10 -0.480
(0.810)

Estimate Indiv.
Obs. 21,520,000

Notes: The numbers are rounded
in line with Census disclosure
rules. Standard errors clustered
by employer and state-by-year
are shown in parentheses. Signif.
Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.17: Fossil Fuel Labor Demand Shocks and Earnings Impact by Separation Year
Separation year: ≤ 2011 Separation year: ≥ 2012

lag (k) (1) (2) (3) (4)

-4 -0.300 -0.105
(0.538) (0.712)

-3 0.002 -0.015
(0.403) (0.351)

-2 0.156 -0.303
(0.467) (0.462)

-1 -0.270 0.396
(0.530) (0.549)

0 0.194 0.194 0.062 0.062
(0.419) (0.419) (0.676) (0.676)

1 -1.285∗∗ -1.091 -0.550 -0.489
(0.574) (0.702) (0.514) (0.877)

2 0.777 -0.314 0.194 -0.294
(0.776) (0.613) (0.403) (0.929)

3 -0.958∗∗∗ -1.272∗ -0.704∗∗∗ -0.999
(0.319) (0.689) (0.251) (1.026)

4 -0.763∗ -2.035∗∗∗ -0.622∗ -1.621
(0.391) (0.780) (0.324) (1.172)

5 -0.350 -2.385∗∗ -1.259∗∗ -2.880∗∗
(0.554) (1.044) (0.496) (1.438)

6 -0.354 -2.739∗∗∗ -0.922∗ -3.802∗∗∗
(0.658) (0.934) (0.530) (1.428)

7 -0.301 -3.040∗∗∗ -1.243∗ -5.045∗∗∗
(0.648) (1.054) (0.736) (1.628)

8 -0.117 -3.157∗∗∗ -0.263 -5.308∗∗∗
(0.572) (0.856) (0.664) (1.453)

9 1.171∗∗ -1.986∗ 0.983∗ -4.325∗∗
(0.552) (1.113) (0.526) (1.718)

10 0.187 -1.799 -0.141 -4.467∗∗
(0.603) (1.377) (0.382) (1.778)

Estimate Indiv. Cumul. Indiv. Cumul.
Obs. 12,420,000 12,420,000 9,107,000 9,107,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by
employer and state-by-year are shown in parentheses. Standard errors for the cumulative coefficients
are calculated based on the variance-covariance matrix. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.18: Fossil Fuel Labor Demand Shocks and Earnings Impact by Race
White Black Other Races

Earnings Nonemp. Earnings Nonemp. Earnings Nonemp.
lag (k) (1) (2) (3) (4) (5) (6)

-4 -0.168 -0.032 0.159 -0.025 0.675 -0.320
(0.573) (0.171) (1.067) (0.294) (0.780) (0.298)

-3 -0.154 -0.031 -0.427 0.016 0.135 0.020
(0.317) (0.103) (0.713) (0.307) (0.574) (0.251)

-2 -0.078 -0.096 0.601 -0.309 0.380 -0.158
(0.448) (0.130) (0.761) (0.204) (0.784) (0.272)

-1 -0.176 -0.113 0.181 -0.182 0.474 0.099
(0.492) (0.143) (1.030) (0.283) (0.801) (0.282)

0 0.344 -0.203 0.690 -0.221 0.737 -0.327
(0.488) (0.144) (0.916) (0.235) (0.601) (0.218)

1 -0.709 0.018 -1.898 0.335 -0.124 -0.272
(0.729) (0.211) (1.311) (0.323) (0.986) (0.343)

2 -0.280 -0.056 -1.114 0.442 0.360 -0.326
(0.653) (0.202) (1.435) (0.375) (1.114) (0.372)

3 -1.138 0.161 -2.048 0.646 -1.075 -0.044
(0.713) (0.215) (1.611) (0.432) (1.328) (0.434)

4 -1.794∗∗ 0.502∗∗ -3.901∗∗ 1.366∗∗ -1.834 0.362
(0.808) (0.246) (1.932) (0.578) (1.532) (0.545)

5 -2.413∗∗ 0.716∗∗ -5.270∗∗ 1.734∗∗ -2.118 0.159
(1.101) (0.327) (2.474) (0.746) (1.878) (0.664)

6 -3.020∗∗∗ 0.794∗∗ -6.441∗∗ 2.199∗∗∗ -2.222 0.388
(1.078) (0.330) (2.551) (0.711) (2.124) (0.695)

7 -3.752∗∗∗ 0.923∗∗∗ -7.724∗∗∗ 2.431∗∗∗ -2.878 0.793
(1.233) (0.355) (2.909) (0.812) (2.282) (0.692)

8 -4.035∗∗∗ 0.960∗∗∗ -8.459∗∗∗ 2.468∗∗∗ -2.882 0.739
(1.160) (0.358) (2.950) (0.863) (2.033) (0.644)

9 -3.104∗∗ 0.630 -7.226∗∗ 2.195∗∗ -1.489 0.343
(1.421) (0.402) (3.209) (0.856) (2.303) (0.726)

10 -3.160∗∗ 0.374 -7.212∗∗ 1.755∗∗ -0.733 0.013
(1.519) (0.461) (3.433) (0.891) (2.560) (0.864)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 18,960,000 18,960,000 1,184,000 1,184,000 1,384,000 1,384,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors clustered by employer and state-by-year
are shown in parentheses. Standard errors for the cumulative coefficients are calculated based on the variance-covariance matrix.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.19: Fossil Fuel Labor Demand Shocks and Earnings Impact by Firm Age and Size
Firm Age Firm Size

Young Old Small Large
(< 15) (≥ 15) (Emp < 1,000) (Emp ≥ 1,000)

lag (k) (1) (2) (3) (4)

-4 -0.019 -0.163 -0.162 -0.134
(0.565) (0.536) (0.460) (0.637)

-3 -0.139 -0.056 0.045 -0.314
(0.327) (0.342) (0.248) (0.420)

-2 -0.106 0.154 -0.164 0.252
(0.444) (0.470) (0.382) (0.514)

-1 0.024 -0.174 0.060 -0.135
(0.499) (0.474) (0.379) (0.577)

0 0.472 0.203 0.320 0.279
(0.522) (0.413) (0.397) (0.582)

1 -0.528 -0.938 -0.622 -0.914
(0.708) (0.667) (0.536) (0.884)

2 -0.288 -0.560 -0.600 -0.316
(0.664) (0.594) (0.506) (0.802)

3 -0.986 -1.847∗∗∗ -1.426∗∗ -1.489∗
(0.745) (0.649) (0.579) (0.886)

4 -1.556∗ -2.823∗∗∗ -1.881∗∗∗ -2.607∗∗
(0.815) (0.826) (0.642) (1.082)

5 -2.051∗ -3.647∗∗∗ -2.515∗∗∗ -3.477∗∗
(1.138) (1.109) (0.859) (1.439)

6 -2.444∗∗ -4.378∗∗∗ -2.896∗∗∗ -4.122∗∗∗
(1.077) (1.108) (0.869) (1.396)

7 -2.977∗∗∗ -5.075∗∗∗ -3.362∗∗∗ -4.899∗∗∗
(1.123) (1.301) (0.921) (1.604)

8 -2.832∗∗∗ -5.404∗∗∗ -3.081∗∗∗ -5.260∗∗∗
(1.092) (1.252) (0.936) (1.556)

9 -2.150 -4.123∗∗∗ -2.607∗∗ -3.704∗∗
(1.344) (1.503) (1.145) (1.785)

10 -2.287 -3.949∗∗ -2.800∗∗ -3.458∗
(1.470) (1.580) (1.221) (1.862)

Estimate: Individual until k = 0 and cumulative since k > 0
Obs. 10,060,000 11,470,000 11,050,000 10,480,000

Notes: The numbers are rounded in line with Census disclosure rules. Standard errors
clustered by employer and state-by-year are shown in parentheses. Standard errors
for the cumulative coefficients are calculated based on the variance-covariance matrix.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table A.20: Summary Statistics of Covariates Used in the CRF Estimation

Mean Median Std. Dev.
(1) (2) (3)

Job tenure (pre-sep.) 7.871 5.817
Earnings (pre-sep.) [$K] 41,500 26,500 66,500
Age (pre-sep.) 37.36 11.63

Unemployment rate (pre-sep.) [%] 4.73 4.199 1.984
Industry diversity index (pre-sep.) -0.8696 -0.88 0.4061
Median income (pre-sep.) [$K] 50.51 50.15 3.347
HHI (post-sep.) 0.2614 0.2507 0.1212
HHI (pre-sep.) 0.2631 0.2511 0.1221

Notes: The numbers are rounded in line with Census disclosure rules.
The median values are pseudo-percentiles in line with Census disclosure
rules. The pseudo-percentile values are computed as the mean of
a symmetric window of ordered observations centered on the target
quantile, with at least five observations on each side (a minimum of 11
observations in total). Data source: LEHD.

Table A.21: Causal Random Forest: Permutation Importance and Linear Projection

Permutation Linear
Group Variable Importance Projection

People-based factors Job tenure (pre-sep.) 2.451 -3.463
[-3.905, -3.019]

People-based factors Earnings (pre-sep.) 0.500 -0.356
[-0.721, 0.010]

People-based factors Age (pre-sep.) 0.498 -0.201
[-0.277, -0.124]

People-based factors Above HS degree (pre-sep.) 0.018 -0.065
[-0.190, 0.061]

People-based factors Female (pre-sep.) -0.011 0.132
[-0.047, 0.312]

Place-based factors Unemployment rate (pre-sep.) 1.612 1.763
[1.299, 2.230]

Place-based factors Industry diversity index (pre-sep.) 0.993 0.336
[0.046, 0.627]

Place-based factors Median income (pre-sep.) 0.720 -2.382
[-2.730, -2.034]

Place-based factors HHI (post-sep.) 0.519 0.885
[0.544, 1.227]

Place-based factors HHI (pre-sep.) 0.384 0.579
[0.418, 0.739]

Notes: The numbers are rounded in line with Census disclosure rules. Bracketed values denote 95%
confidence intervals, reported as [lower, upper]. Data source: LEHD.
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Appendix Figures

Figure A.1: Skill Transferability of Sector-Specific Occupations
Notes: This figure demonstrates the limited transferability of FF workers’ skills to other industries by analyzing
national occupation-sector employment data from 2010. The sectoral employment share of an occupation is calculated
as

Eoi,sj∑J
j=1 Eoi,sj

, where Eoi,sj represents the number of workers employed in occupation oi ∈ {o1, . . . , oI} within

sector sj ∈ {s1, . . . , sJ}. This measure reflects the proportion of a specific occupation’s total employment that is
concentrated in a single sector. A high sectoral employment share suggests that an occupation’s skills are primarily
utilized within one sector, indicating limited transferability to other industries. The within-sector employment share
of an occupation is defined as

Eoi,sj∑I
i=1 Eoi,sj

. This measure indicates how common a specific occupation is within a given

sector, providing insight into its prevalence relative to other occupations in that sector. Data source: Occupational
Employment and Wage Statistics (2010), U.S. BLS.
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Figure A.2: Annual Wage by Sector
Notes: Data source: Quarterly Census of Employment and Wages, U.S. BLS.
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Figure A.3: Interstate Mobility by Reason for Moving Across Sectors
Notes: ‘CON’, ‘MFG’, and ‘UT’ represent the construction, manufacturing, and utility sectors, respectively. Job-
related reasons include starting a new job, job transfer, job loss, or seeking employment, as well as an easier commute.
Family-related reasons include changes in marital status, establishing a new household, or other family-related factors.
Other reasons include housing-related factors (e.g., moving for a new, better, or more affordable home), climate change,
health concerns, natural disasters, or other unspecified reasons. Data source: The Annual Social and Economic (ASEC)
supplement to the Current Population Survey (CPS), provided by the Integrated Public Use Microdata Series (Flood
et al., 2024).

Figure A.4: Fossil Fuel Reserves and CZ-Level Fossil Fuel Employers
Notes: The figure illustrates the CZ-level average employment in the FF sector, 1999-2019. The shaded green area
denotes the fossil fuel reserves. Data source: Quarterly Census of Employment and Wages.
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Figure A.5: Capital Intensity by Sector

Notes: Data source: U.S. BLS.

Figure A.6: Distribution of Fossil Fuel Occupations
Notes: Data source: Occupational Employment and Wage Statistics, U.S. BLS.
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Figure A.7: Fossil Fuel Employment in LEHD-Approved States
Notes: The light blue shaded areas indicate localities where LEHD access is approved. Data source: Quarterly Census
of Employment and Wages, U.S. BLS.
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Figure A.8: Sectoral Employment Transitions Conditional on Geographic Reallocation
Notes: The top and bottom panels show the distribution of separated workers from the fossil fuel sector and other
comparison sectors, respectively, based on their post-separation sectoral transitions. Data source: LEHD.
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Figure A.9: Differences in Pre-Separation Earnings across Worker Groups
Notes: Each bar represents the difference in the average earnings before separation for each group. Data source:
LEHD.

Figure A.10: Sex, Race, and Education Level Composition Differences across Worker Groups
Notes: Each bar represents the percentage‐point difference in the share of workers within each sex, race, or education
category for each group. Data source: LEHD.

90



Figure A.11: Annual Change in National Fossil Fuel and Coal Employment
Notes: Data source: Quarterly Census of Employment and Wages.

Figure A.12: Lagged Coal Mining Employment Share (1990) and Depth of Fossil Fuel Re-
serves

Notes: Data source: Quarterly Census of Employment and Wages, U.S. BLS and U.S. Geological Survey.
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Figure A.13: Exogeneity of the FF Labor Demand Shock Variable: Sectoral Employment
Share (Top) and Level (Bottom)

Notes: Data source: Quarterly Census of Employment and Wages, U.S. BLS and U.S. Geological Survey.
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Figure A.14: Exogeneity of the FF Labor Demand Shock Variable: Socioeconomic Indicators

Notes: Data source: U.S. Census Bureau and U.S. BLS.
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Figure A.15: Fossil Fuel Labor Demand Shocks and Probability of Short-Term Employment
Notes: The outcome is an employment indicator equal to 1 if the worker has more than one quarter with positive
earnings in year t (0 otherwise). A detailed summary of all estimates can be found in Table A.3.
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Figure A.16: Fossil Fuel Labor Demand Shocks and Nonemployment Duration
Notes: A detailed summary of all estimates can be found in Table 1.

Figure A.17: Probability of Staying the FF Sector
Notes: Data source: Current Population Survey (U.S. Census Bureau).
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Figure A.18: Distribution of Fossil Fuel Occupations by Subsector
Notes: Data source: Occupational Employment and Wage Statistics, U.S. BLS.

Figure A.19: Distribution of Fossil Fuel Occupations by Sex
Notes: Data source: Decennial Census (2000) and American Community Survey (2006, 2011, and 2016), provided by
the Integrated Public Use Microdata Series (Ruggles et al., 2024).
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Figure A.20: CZ-Level Fossil Fuel Employer Concentration
Notes: I construct the Herfindahl–Hirschman Index (HHI) of labor market concentration using County Business
Patterns (CBP) data. For each commuting zone (CZ) and sector (Fossil Fuel or Non-Fossil Fuel), I approximate em-
ployment per establishment using midpoint values from CBP-reported size categories. The HHI is calculated as the
sum of squared firm employment shares (weighted by establishment counts) multiplied by 10,000, where higher HHI
values reflect greater local market concentration and lower competition. However, this measure has important caveats:
it relies on midpoint approximations rather than actual firm-level employment data, potentially understating or over-
stating true market concentration. Additionally, it assumes uniform firm sizes within each employment-size category,
ignoring within-category variations. Nevertheless, this measure remains a useful proxy for local monopsony power
because it provides a systematic and consistent method to capture geographic variation in employer concentration
across CZs using publicly available data.

Figure A.21: Fossil Fuel Labor Demand Shocks and Earnings Impact by Age
Notes: A detailed summary of all estimates can be found in Table A.10.
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Figure A.22: Fossil Fuel Labor Demand Shocks and Earnings Impact by Employer Concen-
tration in Origin Markets

Notes: A detailed summary of all estimates can be found in Table A.13.

Figure A.23: Fossil Fuel Labor Demand Shocks and Earnings Impact: Baseline vs. Specifi-
cations with Age Controls

Notes: A detailed summary of all estimates can be found in Table A.14.
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Figure A.24: Fossil Fuel Labor Demand Shocks and Earnings Impact by Different Clustering
Choices

Notes: A detailed summary of all estimates can be found in Table A.15.

Figure A.25: Coefficient Estimates of Quadratic Terms of Fossil Fuel Labor Demand Shocks
Notes: A detailed summary of all estimates can be found in Table A.16.
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Figure A.26: Fossil Fuel Labor Demand Shocks and Earnings Impact by Separation Year
Notes: A detailed summary of all estimates can be found in Table A.17.
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Figure A.27: Fossil Fuel Labor Demand Shocks and Earnings (Top) and Nonemployment
Duration (Bottom) Impact by Race

Notes: A detailed summary of all estimates can be found in Table A.18.
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Figure A.28: Fossil Fuel Labor Demand Shocks and Earnings Impact by Firm Age (Top)
and Size (Bottom)

Notes: A detailed summary of all estimates can be found in Table A.19.
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