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Abstract

Crop residue burning (CRB) is a leading cause of high air pollution in developing coun-
tries. We examine the effectiveness of India’s largest ban on CRB using a difference-in-
differences strategy that exploits its implementation in select states. We find that fire
counts declined by 30% relative to the pre-ban mean, though this effect diminished to
near zero within 2–3 years of the ban’s implementation. Using state-level data on fines,
we show that burning initially reduced in areas where the ban was relatively better
enforced, generating uncertainty for farmers. However, low levels of enforcement led
to a return to the old status quo.
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1 Introduction

In recent years crop residue burning (CRB) has drawn a large amount of public attention due

to its harmful effects on environmental and human health. Farmers across the world burn

copious amounts of the agricultural residue they generate—around 50% in the developing

world—leading to 3.5% of all greenhouse gas emissions (Ritchie, 2020). The practice also

destroys a considerable amount of the organic matter in soil, potentially leading to crop

productivity-related losses (Bhuvaneshwari et al., 2019). In India, CRB is infamous for the

haze it creates across the northern states of Delhi, Punjab, Haryana and Uttar Pradesh (Lan

et al., 2022). In fact, it is found to be the leading cause of air pollution in North India and

consequently, premature mortality in the country—accounting for approximately 17.8% of

all deaths as of 2019 (Pandey et al., 2021). As a result, it is of considerable importance to

policymakers and governments to better understand CRB and ways to disincentivize it. One

commonly utilized instrument for addressing CRB is the imposition of bans.

In this paper, we study the efficacy of India’s largest and most important ban on agricul-

tural residue burning. The ban was imposed by the National Green Tribunal, a specialized

judicial body under the Ministry of Environment, Forest and Climate Change, on 10th De-

cember 2015 (Ministry of Agriculture & Farmers Welfare, 2019; National Green Tribunal,

2015) and was applied in five states – Punjab, Haryana, Uttar Pradesh, Delhi and Rajasthan.

To measure the incidence of agricultural fires, we utilize data from NASA MODIS Active

Fires product which provides the location and date of every granular 1-km fire pixel the

satellite detected from 2011 to 2020 (Giglio et al., 2021). We group these fires into 10km2

grids on every date in our data to arrive at a granular measure of fires. Using a difference-in-

differences design, we find that the years following the ban saw a reduction in fires amounting

to approximately 30% of the pre-ban period mean. Event-study evidence indicates that much

of this reduction seems to have come from the second year following the ban. Immediately

afterward, the effect of the ban declines to near-zero, where it remains until the end of our

data. Testing for mechanisms through which this reduction could have taken place, we find
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that how much farmers reduce the incidence of crop residue or stubble burning in each state

in aggregate terms is in line with how much each state fines per (estimated) landholding

burnt—which is at most Rs. 37.91 (USD 0.5), across states and time. We also note that,

wherever imposed, these fines do not increase much with time. Consequently, we propose

one plausible explanation that explains these trends: farmers reduce burning in response to

uncertainty in the implementation of the ban. However, after two periods when they learn

that the implementation of the ban will not be strictly followed and the fines will remain

small, they resume their pre-ban crop residue burning behavior.

Overall, our results are both novel and surprising. Across states, the popular perception

of the ban—or most bans for that matter—is that they are largely ineffective (Jack et al.,

2025; Lan et al., 2022). Other solutions such as crop diversification and the utilization of

agricultural residue-related biomass in thermal power generation have thus come to occupy

mainstream discussions on the subject (Shyamsundar et al., 2019). Our results, however,

suggest that farmers did in fact respond cautiously to this ban. It rather seems to be the

case that without effective implementation and adequate fines, the small likelihood of being

fined proves to be a less compelling reason to stop burning in the long run. This is consistent

with Nian (2023), who shows that rural air pollution behaviours, such as CRB, are highly

sensitive to changes in perceived enforcement and the costs associated with penalties.

Our paper contributes to the growing literature on crop residue burning. The existing

literature in this area studies the environmental, health and economic impacts of pollution

arising from burning crop residue. Analyzing a representative panel of cities in China, Guo

(2021) finds that straw burning worsened air quality for up to 8 days, with the first day

seeing a 9.4% increase in the particulate matter. Studying pollution from straw burning in

China, He et al. (2020) finds that just a 10µg/m3 increase in PM2.5 in the air from CRB

increased monthly mortality by 3.5%. Similarly, using remote sensed and survey data from

China, Lai et al. (2022) finds that burning driven air pollution reduced short-term cognition

among older individuals. Graff Zivin et al. (2020) finds that test-takers of China’s national

3



college entrance exam are negatively affected due to pollution from agriculture fires in the

vicinity. In the context of India, Singh and Dey (2021) finds that extremely high biomass

burning in surrounding areas at birth reduced the height of children by about 1%. Garg

et al. (2024) finds a significant increase in infant mortality due to farm fires. In Brazil,

another country where farm fires are a widespread practice, Rangel and Vogl (2019) finds

that late-pregnancy exposure to smoke from agricultural fires reduced the birthweight and in

utero survival rates of newborns. Finally, using crime data in Pakistan, Ayesh (2023) reports

a significant increase in crime annually from pollution resulting from biomass burning in the

country—costing up to 900 million USD. Additionally, a related set of papers study other

forms of biomass burning such as forest fires and wild fires and find negative impacts on

a variety of (similar) outcomes like citizen health and incidence of disease (Sheldon and

Sankaran, 2017; Moeltner et al., 2013), persistence in the impact on health outcome decades

later (Rosales-Rueda and Triyana, 2019), labor supply (Kim et al., 2017), early life mortality

(Jayachandran, 2009) and economic growth (Meier et al., 2023).

However, few studies analyze policies that can help mitigate CRB. In the Indian context,

Jack et al. (2025) finds that offering conditional cash transfers help reduce the residue burning

significantly. A contemporaneous study closest in spirit to ours is Sekhri et al. (2023), which

examines the same ban we consider in this paper. The study finds little to no change

in satellite-detected burned area on account of the ban. However, imputing burned area

from remote-sensed parameters could potentially generate measurement error (Giglio et al.,

2022). Our choice of the outcome variable (active fires product) allows us to detect fire

events with higher temporal precision and reduced measurement error—a critical advantage

in contexts like India where rapid, high-frequency burning may escape post hoc detection.

Our findings of a short-run reduction in burning highlight the potential for measurement

error in burned area-based studies. In another study, Cao and Ma (2023) examines the

efficacy of two different policies instituted to reduce stubble burning in China: first, the

introduction of biomass power plants (BPPs) around the country, and second, bans on
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crop residue burning. The study shows that the introduction of a BPP reduced burning

in nearby areas by 14%, with farmers closer to the plants showing a larger reduction. The

bans, in comparison, enforced supposedly through fines ranging between 70-300 USD, per

incident are reported to be considerably less effective. They seem to help reduce burning

only during the night – when monitoring was easier. It is important to note two crucial

differences between the ban in China and the NGT ban we study in the Indian context.

First, the ban in China was not considered the primary way to combat straw burning by

the Chinese government – as indicated by its choice to focus on providing farmers with

alternative ways to utilize leftover straw. Second, the enforcement of the bans in China is

not well known. The degree to which farmers were to be regulated and fined was highly

decentralized, making it different from our context where directives to regulate crop residue

burning were uniform across states, though implementation varied. While Cao and Ma (2023)

compare bans with biomass plant deployment in China, our study complements theirs by

isolating the effect of a ban in a democratic setting with decentralized enforcement. Unlike

their context, enforcement in India is fragmented and politicized – offering insight into the

institutional conditions under which bans may (temporarily) succeed. Our estimate of a 30%

reduction in fires over the pre-ban mean is in line with other interventions studied in the

literature. For instance, Cao and Ma (2023) find a 14% reduction near biomass power plants

in China, while Ahmad et al. (2022) document significant though highly variable behavioral

responses to air quality forecasts. While these studies evaluate alternative strategies, our

results suggest that even poorly enforced bans can yield comparable short-term reductions,

albeit with limited durability.

The remainder of the paper is organized as follows. Section 2 provides background on

the practice of CRB and the history of bans against it in India with a description of our data

in Section 3. Sections 4 and 5 detail our empirical strategy and results respectively. Section

6 concludes.
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2 Background

2.1 Crop Burning in India

Indian farmers burn about 100 million metric tons of surplus crop residue every year, about

a fifth of the residue generated from crop production (Lan et al., 2022). Paddy or rice

(particularly hybrid rice) is the crop whose residue is burnt the most. The Indian Agricultural

Research Institute (IARI) reports that greater than 60% of all rice stubble generated in India

is set ablaze – with Punjab and Haryana being the key contributors (Abdurrahman et al.,

2020). Around 80 per cent of all crop residue burning is concentrated in the months of

October-December i.e., after the Kharif (post-monsoon) harvest (Down to Earth).

The northern states of India have a long history of crop residue burning, however, this

practice has now extended to other states over the last decade, particularly in well irrigated

areas, where cropping patterns are intense and farming has become more mechanised. Esti-

mations using satellite data show a 60% increase in the number of agricultural fires between

2002 and 2016 (Lan et al., 2022), with a further 15% increase from 2016 to 2021 (Xu and

You, 2023). The reasons for the practice vary across states. Farmers in Punjab and Haryana

burn the residue due to a short period between harvesting of rice and planting of wheat,

necessitated by the 2009 Groundwater Act (Jain, 2023) coupled with the scarcity of labor

and limited farm mechanisation. In other states, the explanations vary from clearing of the

residue being expensive to the poor acceptability of paddy straw as fodder to the burning

process helping to eliminate pests.

2.2 Bans on Crop Burning

Crop residue burning has been illegal in India for over four decades as per The Air Pollution

Control Act of 1981. Nonetheless, the practice continued, leading to large bouts of haze in

Delhi and the National Capital Region, which brought the gravity of the problem into public

consciousness in the early and mid-2010s (Raman and Mukerjee, 2019). These conditions led
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to the most prominent ban on crop residue burning in North India – the one imposed on 10th

December 2015 by the National Green Tribunal (NGT), a statutory body that deals with

environmental disputes (National Green Tribunal, 2015).1 In particular, the NGT banned all

forms of agricultural residue burning in five states: Delhi, Punjab, Haryana, Uttar Pradesh

and Rajasthan.

Governments – led primarily by the Central government – have also tried to implement

other policies to curb the practice. The notable ones include the Agricultural Mechaniza-

tion for In-Situ Management of Crop Residue Scheme (2018) (Press Information Bureau,

Government of India, 2021a) which subsidizes the use of agricultural machinery assisting

in crop residue management, the Sub-mission On Agriculture Mechanization (2014) (Press

Information Bureau, Government of India, 2021b) which subsidizes agricultural machinery

purchases (including machines like happy seeders which help in better crop residue man-

agement), mandating biomass/biomass pellet co-firing for power generation within thermal

plants (Ministry of Power, 2023) and the National Clean Air Program (2019) (Ministry of

Environment, Forest and Climate Change, 2023). However, unlike the 2015 ban, none of

them tackle the problem directly.

While multiple bans were issued during the study period—including state-level ordinances

and a 2019 Supreme Court directive — we focus on the December 2015 NGT ban, which was

the first and most widely enforced centralized order. Our results primarily reflect this initial

ban’s effect, as the timing of observed fire reductions aligns with the immediate post-2015

years. Later bans appear to have had limited additional impact, as evidenced by the return

to pre-ban fire levels.

3 Data

In this section, we describe the datasets we use in our analyses – satellite data on crop fires

and administrative data on the penalties levied by states for CRB under the ban.
1Henceforth, we refer to this policy as ’the NGT ban’ or simply, ’the ban’.
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3.1 Fires

We use data on crop fires from 12 states between 2011 and 2020 2, five of which implemented

the ban on crop fires in 2015 (treated states) and seven additional states that did not impose

bans but that share a border with the states where bans were imposed. These control

states include Uttarakhand, Himachal, Madhya Pradesh, Gujarat, Bihar, Jharkhand and

Chhattisgarh.

We use data on fires (or fire events) from NASA’s Moderate Resolution Imaging Spectro-

radiometer (MODIS) Active Fires Product (MODIS C6/C6.1). The product is published as

a part of NASA’s Fire Information for Resource Management System (FIRMS). The data

provide the location of the centroid of every 500 m2 pixel where a fire has been detected

along with its date of detection.3 The data also provides a ‘confidence’ value for each fire –

loosely interpreted as the probability of that pixel actually being a fire. We group these fires

into grids of 10 x 10 km. Grids on state borders are cut to be contained within the relevant

state. Drawing from previous papers studying crop fires in India using this data (Singh and

Dey, 2021), we utilize the confidence-weighted sum of fires in every grid on a given date as

our main outcome. Table 1 provides a summary of our main outcome variable across states

for the period preceding the ban. Appendix Figure A.1 plots the district-level mean of the

confidence-weighted fires per grid from 1st January 2011 to 10th December 2015. Punjab

and Haryana record the largest number of daily fires per grid as expected. However, we note

a significant degree of fires in our control states as well – particularly in Madhya Pradesh

and Chhattisgarh. The southern states also show a large number of fires, but only in a few

pockets.

Satellite data are more accurate at identifying fires, especially agricultural residue fires.

2The choice of time period is intentional. Although raw observations from the same instrument (in
a satellite) remain of similar quality over time, observations in downstream NASA products usually do
not. This is because products like the Active Fires Product use other ancillary measurements to calibrate
their results (Giglio et al. (2021))—which, of course, improve over time because they are not confined to
measurements from the relevant instrument. Given the necessary for accuracy in detecting fires, we elect to
work with newer data.

3Note that by fire, we also mean fire pixel.
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Table 1: Daily Means of Confidence Fires per Grid by State: Pre-Ban

State Mean Std. dev.
Bihar .0009 .0358
Chhattisgarh .0030 .0678
Delhi .0004 .0216
Gujarat .0008 .0292
Haryana .0077 .1140
Himachal Pradesh .0008 .0345
Jharkhand .0024 .0576
Madhya Pradesh .0027 .0695
Punjab .0375 .2981
Rajasthan .0004 .0243
Uttar Pradesh .0016 .0446
Uttarakhand .0026 .0609
Total .0032 .0782

Notes: The summarized variable is the confidence-weighted sum (count) of fires in a grid. The sample considered includes grids
in states in which the ban was implemented and our control states for the period between 1st January 2011 and 31st December
2015 (observed daily).
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).

It also avoids problems related to self-reporting biases that arise when trying to identify them

through surveys. It is simply never in the interest of any farmer to self-report CRB, especially

given that fines or other punitive action could potentially be imposed. Moreover, satellite

data provide granular and high frequency information which is useful for tracking changes

over time. One concern is that an identified fire may not necessarily be an agricultural

residue fire. However, despite this caveat, the utilization of satellite data stands to be the

best choice for our analysis and continues to be used as a proxy for CRB in the literature

(Walker et al., 2022; Walker, 2024).

Notably, we measure fires using the active fires product. Another alternative is to use

the burned area product. We choose the former for two reasons. First, NASA recommends

that active fire pixels not be used to estimate burned area due to sizeable “spatial and

temporal sampling issues” (Giglio et al., 2021). The Burned Area Product does precisely

this, although marginally improves the analysis by utilizing surface reflectance parameters,
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i.e. measures of the quantum of light the Earth’s surface in a given area reflects.Second, it

is widely acknowledged that the Burned Area Product’s calculations must be considered low

confidence due to the complexities in accurately measuring agricultural burning (Hall et al.,

2016; Giglio et al., 2022).4

3.2 Fines

Following the ban, the NGT also announced that farmers who burnt stubble would be fined

between Rs. 2500 to Rs. 15,000 (USD 36 - USD 215) based on the size of the landholding

burnt (National Green Tribunal, 2015). To contextualize the magnitude of fines, INR 2,500—

the minimum fine—represents about one to two days of hired labor cost or the equivalent

of renting residue management equipment for a single acre. While not negligible, it is not

prohibitive either, which may explain why compliance was sensitive to perceived risk of

enforcement rather than fine size alone. Our data on these agricultural fines is derived from

two sources. The first is a press release by the Government of India regarding the fines

collected under the ban (Ministry of Agriculture & Farmers Welfare, 2019). Second, we filed

requests under the Right to Information (RTI) Act in early 2024 requesting state level data

on environmental compensation collected from non-compliant farmers. However, these data

must be interpreted with caution as they are reported by state governments and we cannot

verify them using independent sources. Our analyses only compare states with different

levels of stringency in the enforcement of fines, and so the exact values of the fines do not

matter.

Table 2, Panel A, shows the amount of fines annually collected by each state after the

ban. To gauge whether the ban had a sufficient deterrence effect, Panel B shows the estimate

for the amount fined per burnt landholding. To calculate this estimate, we first obtain

the proportion of farming households which burn crop residue across states from existing

4Note that this critique is not as relevant for identification of fires because the complexity in moving
from identification of fires to area for agricultural fires arises from the other parameters the burned area
product uses.
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Table 2: Environmental Compensation Collected by Treated States

State 2015-16 2016-17 2017-18 2018-19
Panel A: Total Value (INR lakhs)

Punjab 0 73.22 133.94 167.58
Haryana 0 19.38 52.78 61.72
Uttar Pradesh 0 0 0 28.60
Delhi 0 0 0 0
Rajasthan 0 0 0 0

Panel B: Fine per burnt landholding (INR)
Punjab 0 12.64 23.12 28.93
Haryana 0 11.90 32.41 37.91
Uttar Pradesh 0 0 0 0.12
Delhi 0 0 0 0
Rajasthan 0 0 0 0

Notes: Panel A shows the total value of fines levied, in INR lakhs. Panel B shows the estimates for fine (in INR) per burnt
landholding, obtained by dividing the total value of fines by estimated count of landholdings that engage in CRB—calculated
based on figures from the Agricultural Census of 2015-16 and an estimate of percentage landholdings burnt using studies in the
literature.
Source: Ministry of Agriculture & Farmers Welfare (2019), RTIs we filed Giglio et al. (2021), Liu et al. (2020) and the
Agricultural Census of 2015-16.
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studies (Liu et al., 2020; Lopes et al., 2020; Kemanth et al., 2024; Kaushal and Prashar,

2021; Kumar et al., 2015; Jack et al., 2025). The average rates across states noted by these

studies vary – Punjab (50-90%), Haryana (10-50%), Uttar Pradesh (≥ 10%). We combine

the smallest estimated figures for the percentage of farmers who burn stubble across these

studies (Liu et al., 2020) with the total number of agricultural landholdings in each state from

the Agricultural Census of 2015, and find the average size of the fine collected to be low. The

highest average fine per ‘burnt’ landholding between 2015-19 was Rs. 37 in Haryana during

2018-19. Additionally, if we assume that every burnt farm landholding was fined the lowest

amount possible (Rs. 2,500), the maximum proportion of landholdings that could have been

fined on average in a given year is approximately 4.2% in Haryana, 0.42% in Punjab and

0.05% in Uttar Pradesh. These low shares indicate weak enforcement of the ban, which

was supposed to levy a fine on non-compliant farmers. Nonetheless, a key takeaway is that

Haryana levied the most fines per burnt landholding followed by Punjab. There was almost

no collection of fines in Delhi and Rajasthan.

4 Empirical Strategy

We use a difference-in-differences (DiD) strategy to estimate the effect of the ban. The five

states where the ban was imposed form the treated states, while the seven states that border

them constitute the control group. We estimate the following model specification:

Firesist = βBans × Postt +Xitπ + µi + γt + ϵist (1)

Firesisty is the confidence-weighted count of fires in grid i in state s on date t. Bans is a

binary indicator that takes a value of one for grids located in the treated states and zero

otherwise. Postt is a binary indicator that takes on a value of one starting December 11,

2015 (dates following the ban) and zero for dates before it. Here, β shows the effect of the

ban on the fire counts.
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The duration of the window between rice harvest and wheat planting is likely to be

affected by (i) the local timing of monsoon onset, which can determine when farmers decide

to plant the monsoon rice crop and, therefore, when the field is ready to harvest; (ii) weather

conditions during growing and harvest season (for instance, farmers might have to delay

harvest by a few days if the conditions are too wet) and (iii) state-specific policies such as

the 2009 Groundwater Act in Punjab, state government initiatives to incentivize alternatives

to burning, additional bonuses/levies by state governments in addition to the minimum

support price announced by the Central government (Dash, 2024), which could change both

planting dates and choice of crops. To account for the fact that meteorological factors could

affect both fire detection and the timing of agricultural operations, we control for daily

average surface temperatures, precipitation, relative humidity, and wind speed at the grid

level (Xist). We also include grid (µi) and date (γt) fixed effects to capture local cropping

calendar variation, including monsoon onset shifts. We cluster the standard errors at the

grid and state level. We also aggregate the grid-date level data to the district-month-year

level, which allows us to construct bootstrap (wild) p-values that are more appropriate for

a small number of clusters.5

There may be a concern that the selection of states for the imposition of the ban is not

exogenous, and that our treatment and control states have different trends in the outcome

variable. To check for differential pre-trends we supplement the DiD estimates with event

study plots that allow us to examine pre-trends in outcomes directly and evaluate whether

the assumption of parallel trends in the absence of the ban is likely to hold. We estimate

the following event study specification:

Firesist =
∑

y∈S
βyBans × 1[Y ear = y] + µi + γt + ϵist (2)

where y refers to the year corresponding to the date t. We use year 2015 as the base year
5We are unable to provide bootstrap p-values for the grid level specifications due to the large number

of fixed effects which make the process extremely memory-inefficient even on a high-powered computing
system.
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relative to which all estimates are calculated. This is because the ban was implemented only

in December 2015 – towards the end of the year. Set S thus includes every year from 2011

to 2020 except 2015. Here, βy show the year-wise effects on the fire counts, with 2015 as the

base year. If there are no differences in pre-trends across treated and control states, then we

expect β2011-β2014 to be insignificant and close to zero.

5 Results

Table 3 reports the results from our main specification (1). Columns (1) and (3) include

month-year fixed effects, whereas (2) and (4) use more stringent date fixed effects. Columns

(1)-(2) cluster the standard errors at the grid level while (3)-(4) cluster them at the state

level. Across these specifications, we find that the ban reduces the number of fires per

grid by 0.0011, approximately 31% of the pre-period mean number of fires in our data.6 The

difference-in-differences coefficient is significant at all conventional levels of significance when

clustering the standard errors at the grid level and at the 90% level when clustering them at

the state level.

Panel (a), Figure 1 shows our main event study plot. The estimates show that the ban

reduces fire counts in 2017 and 2018 (two and three years after the ban respectively), even

though the ban was introduced in 2015. This result is not surprising given that fines were

not levied from April 2015-March 2016 since the ban was only introduced in December 2015

(Table 2). Given their past experience with bans, the farmers may not have anticipated

implementation of fines and continued to burn in 2016. Fines were indeed levied from April

2016-March 2017 even though the proportion of offenders caught were very small. This may

have led farmers to be cautious in the 2017 cropping cycle. Even though the fines collected

were small, there was uncertainty that the implementation might improve over time. While

the implementation improved in 2017 and 2018, the improvement was small and perhaps

6We use ’number of fires’ interchangeably with the ’confidence weighted number of fires’ because in no
instance do we use the absolute number of fires in our data for our analyses.
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Figure 1: Impact of Ban on Fires: Event Study Estimates

(a) Grid-level

(b) District-level

Notes: The plots show the βy estimates from equation 2 with grid level data in Panel (a) and district level
data in Panel (b). The dependent variable is the confidence-weighted sum of fires in a given grid—observed
daily between 1st January 2011 and 31st December 2020 in Panel (a). This specification includes grid and
date fixed effects and errors clustered by state in which the observed grid is placed in. The dependent
variable is the confidence-weighted sum of fires in a given district-month-year in Panel (b). This specification
includes district and month-year fixed effects and errors clustered by state in which the observed district
is placed in. The dotted line represents 2015, i.e. year zero for the implementation for the ban and 95%
confidence intervals are plotted.
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Table 3: Impact of Ban on Fires

Probability Weighted Fire Count
(1) (2) (3) (4)

Ban*Post -0.0011∗∗∗ -0.0011∗∗∗ -0.0011∗ -0.0011∗
(0.0001) (0.0001) (0.0005) (0.0005)

Observations 79533116 79533116 79533116 79533116
Adjusted R2 0.029 0.033 0.029 0.033
Outcome Mean 0.0035 0.0035 0.0035 0.0035
Time F.E Month-Year Date Month-Year Date
Grid F.E Yes Yes Yes Yes
Clusters Grid Grid State State

Notes: The dependent variable is the confidence-weighted sum (count) of fires in a grid. The sample includes grids in states
in which the ban was implemented and our control states for a 10 year period starting from 1st January 2011 (observed every
day) and the specification controls for average daily surface temperature, precipitation, relative humidity and wind speed in
the relevant grid. Ban equals 1 only for the states in which the ban was implemented and post equals 1 starting 11th December
2015. Each column reports the effective number of observations after incorporating the included fixed effects. Robust standard
errors clustered at the level mentioned in the row named ‘Clusters’ in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).

resulted in farmers realizing that the government would not implement the fines effectively

going forward. The negative effect, thus, lasted only for two years and thereafter we observe

no differential change in fire counts in treated relative to control states. It seems that the

impact of the ban is near-linearly decreasing with time i.e., after the third year of the ban,

the burning seems to gradually return as we see a similar change across treated and control

states. Importantly, we do not find any differential trends in fires across treated and control

states before the ban was introduced, which allays any concern that the observed fall in fires

in 2017-18 was due to an underlying decreasing trend in fires across them.

To summarize, the event study estimates shed light on the possible mechanisms at play

even though the actual imposition of fines was low. One possible explanation is that farmers,

initially, did not expect any fines to be implemented but were taken aback when some farmers

were penalized in 2016. Thus, due to the uncertainty involved in the magnitude of punitive

action from the state in response to burning, they burnt less residue in the next cropping

cycle. However, over a period of time, they realized that implementation is unlikely to
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improve much and reverted to crop residue burning resulting in no difference across treated

and control states in the long run.

5.1 Heterogeneity

If the above mechanism of uncertainty holds, then we should find that either the states

which collected more fines in 2016-17 or states where the probability of being caught was

higher (like Rajasthan and Delhi where CRB only occurs in certain limited areas) see a larger

reduction in crop burning as there is likely to be more ambiguity for farmers residing in these

states. Table 4 reports the heterogeneous estimates across the treated states. Columns (1)

and (3) include month-year fixed effects, whereas (2) and (4) control for date fixed effects.

Again, columns (1)-(2) cluster the standard errors at the grid level while (3)-(4) cluster them

at the state level. We find that relative to control states, there is a reduction in fire counts in

Punjab by 9.6% of the state’s pre-period grid mean. Haryana, on the other hand witnesses

a 27% fall in the fire counts over the state’s pre-period mean. The only state for which there

seems to be no significant effect arising from the ban is Uttar Pradesh when we cluster the

standard errors at the state level (columns 3-4).

These results are consistent with how much each state collected in fines per estimated

burning landholder in 2016-17 (Table 2, Panel B). Farmers in the top two fine-levying states,

Punjab and Haryana, responded more intensively to the ban relative to the other states.

We also find that there is a large reduction in Delhi and Rajasthan, even though no fines

were collected in these states in 2016. Delhi was in the middle of a political storm due to

deteriorating air quality in 2016 in the capital city. Several newspapers reported the ‘The

Great Smog of Delhi’ in 2016 (TOI). Crop burning, in general, was discussed extensively

(Figure A.2) in newspapers, press releases, etc. This created a frenzy among the general

public leading to an uproar against the practice of crop residue burning in the state. Given

the large fines levied in the neighbouring state of Haryana, farmers in Delhi may have an-

ticipated implementation of penalties in Delhi in the next cropping cycle. Since agricultural
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Table 4: Impact of Ban on Fires: Heterogeneity by State

Probability Weighted Fire Count
(1) (2) (3) (4)

Post * Punjab -0.0036*** -0.0036*** -0.0036*** -0.0036***
(0.0005) (0.0005) (0.0004) (0.0004)

Post * Haryana -0.0022*** -0.0021*** -0.0022*** -0.0021***
(0.0002) (0.0002) (0.0004) (0.0004)

Post * Uttar Pradesh -0.0003*** -0.0003*** -0.0003 -0.0003
(0.0001) (0.0001) (0.0003) (0.0003)

Post * Delhi -0.0008*** -0.0008*** -0.0008** -0.0008**
(0.0001) (0.0001) (0.0003) (0.0003)

Post * Rajasthan -0.0010*** -0.0010*** -0.0010** -0.0010**
(0.0000) (0.0000) (0.0004) (0.0004)

Observations 79533116 79533116 79533116 79533116
Adjusted R2 0.029 0.033 0.029 0.033
Outcome Mean 0.0035 0.0035 0.0035 0.0035
Time F.E Month-Year Date Month-Year Date
Grid F.E Yes Yes Yes Yes
Clusters Grid Grid State State

Notes: The dependent variable is the confidence-weighted sum (count) of fires in a grid. The sample includes grids in states in
which the ban was implemented and our control states for a 10 year period starting from 1st January 2011 (observed every day).
Post equals 1 starting 11th December 2015 and Punjab, Haryana, UP, Delhi and Rajasthan represent binaries for if a grid in
the data belongs to one of those states. The specifications control for daily average surface temperature, precipitation, relative
humidity and wind speed in the relevant grid. Each column reports the effective number of observations after incorporating the
included fixed effects. Robust standard errors clustered at the level mentioned in the row named ‘Clusters’ in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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activity occurs only in small pockets of Delhi (its primarily an urban metropolitan region),

catching the erring farmers would not be difficult for the authorities. Again, Rajasthan only

has a few districts where rice is cultivated. Therefore, the probability of being caught is

higher for farmers in that state.

To further explore whether these reductions were driven by attention to Delhi’s air quality,

we examine heterogeneity by distance to Delhi (Appendix Table A.1). The results suggest

that the effect of the ban indeed weakens with increasing distance from Delhi, consistent

with a salience-based explanation leading to possible expectation that the ban and fines

may be enforced. The estimates show that beyond 500 km from Delhi the effect almost

halves in magnitude and dissipates beyond 750 km. This finding supports the idea that

public pressure and media coverage in and around Delhi may have influenced enforcement

behavior, particularly in states like Haryana and neighbouring districts of Rajasthan.7

5.2 Robustness

One concern that often accompanies the use of satellite data is that it may have higher

measurement error at a granular level. To ameliorate this concern, we present our main

results aggregated at the district-month-year level as opposed to grid-date level. Our outcome

is now defined as the probability-weighted sum of fires per square kilometre in a district,

month and year. Panel A of Appendix Table A.3 reports the results for this aggregation,

with district fixed effects. Columns (1)-(3) include year fixed effects while columns (2)-

(4) include month-year fixed effects as controls for time. Further, columns (1)-(2) report

estimates clustered at district level and columns (3)-(4) at state level. The wild clustered

p-values for the estimates are reported in the last row. We find that our results using grid-

level data continue to hold in the district-level aggregated specifications as well. We find a

27% (=0.0006/0.0022) reduction in fires over the pre-period district level mean of fire counts

after the ban was implemented. The state level clustered standard errors are larger though
7Appendix Table A.2 examines similar heterogeneity using distance to district headquarters as a proxy

for state capacity. However, we find no consistent evidence of differential effects based on this measure.
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and significant at 15% level. We also estimate the event study coefficients using the data

at the district level and plot the estimates in Panel B of Figure 1. Again, we find that the

pattern observed using the grid level data continues to hold at the district level. There is

a fall in the fire counts in the treated states vs. control states, which occurs 2-3 years after

the ban, but the effect dissipates thereafter.

Importantly, we test if the state-level heterogeneous effects continue to hold in the above

alternative specification. Appendix Table A.4 reports the results for state-level heterogeneity

when data is aggregated at district-month-year level. We continue to find strongest declines

in fires in response to the ban in Punjab and Haryana. The decline is statistically significant

even when standard errors are clustered at state level (columns 3 and 4).

Next, we consider whether our results remain robust to including only the neighboring

districts across the treated and control states. This specification can help gauge whether

differential implementation of the ban across the state borders drives our results. Panel B

of Appendix Table A.3 shows a 16.6% reduction in fire counts in the neighboring treated

districts relative to control districts over the pre-period district level mean of fire counts after

the ban. While the estimates clustered at state-level are only significant at approximately the

10% level (wild clustered p-values), the magnitude is large. The state-level heterogeneous

effects of the ban reported in Appendix Table A.5 also show that Punjab witnessed the

strongest decline in fires after the ban followed by Rajasthan. Notably, in this specification

Delhi gets dropped from our analyses since it does not have any neighboring district as a

control.8

Third, to check whether state-level heterogeneous results are not driven by secular trends

in geographically similar contiguous areas, we control for linear trends in outcomes within

districts lying in the same Agro-Ecological Zones (AEZ). These zones are defined in terms of

similarity in climate, soil and physiographic characteristics (Ahmad et al., 2017)—features

extremely relevant for agricultural productivity. Concordantly, previous studies have found

8The effects for Haryana could be muted in this specification due to low power. Only one state which is
in the control group, namely Himachal Pradesh, and two districts therein, border Haryana.
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them to be economically significant as well (Palmer-Jones, 2003; Sen, 2024). The results

reported in Appendix Table A.6 show that declines in fires in Punjab and Haryana after the

ban are sustained after controlling for any time varying trends in outcomes in areas lying in

a similar AEZ.

Finally, we also show the robustness of our results to an extended time period. In

Appendix Table A.8, we present our main results using data from 2002 to 2021 (all the

years for which satellite data is available). Columns (1) and (3) include month-year fixed

effects, whereas (2) and (4) control for date fixed effects. Again, columns (1)-(2) cluster

the standard errors at the grid level while (3)-(4) cluster them at the state level. Broadly,

our findings remain the same – almost a 30% reduction in fire counts. The effect of the

ban continues to be significant and similar in magnitude to our main analyses utilizing grid

clusters—although only significant at the 15% level when using state clusters.

6 Conclusion

Overall, our results show that however poorly perceived, India’s largest ban on crop residue

burning seems to have significantly reduced the practice across the states in which it was

relatively better implemented. However, the negative effect of the ban was concentrated

in the second and third years following its introduction, after which the impact diminished.

Our results in conjunction with the data on fines suggest that bans when accompanied by

imposition of penalties as a mechanism for enforcement can be effective. In fact, the effect

in early years seems to arise from uncertainty in the extent of ban enforcement since the

state governments penalized at least some offenders. Over time the farmers are likely to

have learnt that the implementation was weak and unlikely to improve. Thereafter, when

the uncertainty in how the government would implement the ban diminished, the residue

burning returned to its pre-ban levels. This result is consistent with experimental evidence

from the tax compliance literature which shows that uncertainty in enforcement increases
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compliance when individuals perceive that they do not receive a public good in exchange for

their taxes (Alm et al., 1992; Beck and Jung, 1989). We find that bans are not ineffective as

long as there is state commitment to implement them with adequate monetary fines. These

findings resonate with (Nian, 2023), which demonstrates that CRB decisions are sensitive

to cost considerations. In our case, perceived enforcement risk—though short-lived, likely

raised the expected cost of burning, prompting temporary reductions. In the absence of

state commitment to enforcing bans, other policies that directly reduce the cost of proper

disposal of residue are likely to be more effective and feasible.
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A Appendix: Figures and Tables

Figure A.1: Average Fires per day (2011-2015)

Notes: The plot shows the district-level mean of the confidence-weighted fires per grid over the period between 1st January

2011 to 31st December 2015—after winsorization of the top and bottom 15% of observations to present the true extent of

variation. While these are vegetation related fires, hilly regions could also witness wild forest fires.

Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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Figure A.2: Mentions of Crop Burning in Indian Media (2011-20)

Notes: The plot shows the number of documents which mention ‘Crop burning’ in Indian English-Language Sources between

2011-2020 as per Dow Jones Factiva (DJF). DJF is a business information and news database that collects content from a

variety of sources inclusive of newspapers (articles), press releases, magazines and journals, etc.—which in turn comprise the

aforementioned set of documents.

Source: Dow Jones (2025)
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Table A.1: Impact of Ban on Fires: Heterogeneity by Distance to Delhi

Probability Weighted Fire Count
(1) (2)

Ban*Post -0.0019** -0.0035***
(0.0008) (0.0011)

Ban*Post*DtoD100 0.0002*
(0.0001)

Ban*Post*Log DtoD 0.0004**
(0.0002)

Observations 79533116 79533116
Adjusted R2 0.033 0.033
Outcome Mean 0.00349 0.00349
Time F.E Date Date
Grid F.E Yes Yes
Clusters State State

Notes: The dependent variable is the confidence-weighted sum (count) of fires in a grid. The sample includes grids in states in
which the ban was implemented and our control states for a 10 year period starting from 1st January 2011 (observed every day).
Post equals 1 starting 11th December 2015, DtoD100 represents ‘Distance to Delhi (100km)’ and DtoD represents ‘Distance
to Delhi (km)’. Additionally, the specification controls for daily average surface temperature, precipitation, relative humidity
and wind speed in the relevant grid. Each column reports the effective number of observations after incorporating the included
fixed effects. Robust standard errors clustered at the level mentioned in the row named ‘Clusters’ in parentheses. *** p<0.01,
** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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Table A.2: Impact of Ban on Fires: Heterogeneity by Distance to District Headquarters

Probability Weighted Fire Count
(1) (2)

Ban*Post -0.0011* -0.0016
(0.0005) (0.0020)

Ban*Post*DtoHQ 0.0000
(0.0000)

Ban*Post*Log DtoHQ 0.0001
(0.0005)

Observations 79390649 79390649
Adjusted R2 0.033 0.033
Outcome Mean 0.00349 0.00349
Time F.E Date Date
Grid F.E Yes Yes
Clusters State State

Notes: The dependent variable is the confidence-weighted sum (count) of fires in a grid. The sample includes grids in states
in which the ban was implemented and our control states for a 10 year period starting from 1st January 2011 (observed every
day). Post equals 1 starting 11th December 2015, DtoHQ represents ’Distance to District Headquarters (km)’. Additionally,
the specification controls for daily average surface temperature, precipitation, relative humidity and wind speed in the relevant
grid. Each column reports the effective number of observations after incorporating the included fixed effects. Robust standard
errors clustered at the level mentioned in the row named ‘Clusters’ in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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Table A.3: Impact of Ban on Fires: Robustness

Probability Weighted Fire Count Per Sqkm (District)
(1) (2) (3) (4)

Panel A: District Aggregation
Ban*Post -0.0006∗∗∗ -0.0006∗∗∗ -0.0006 -0.0006

(0.0001) (0.0002) (0.0004) (0.0004)
Observations 40200 40200 40200 40200
Adjusted R2 0.170 0.209 0.170 0.209
Outcome Mean 0.0022 0.0022 0.0022 0.0022
WCB DiD p-value 0.0000 0.0000 0.1429 0.1798

Panel B: District Aggregation (Bordering Districts)
Ban*Post -0.0002∗∗ -0.0002∗∗ -0.0002 -0.0002

(0.0001) (0.0001) (0.0001) (0.0002)
Observations 11400 11400 11400 11400
Adjusted R2 0.185 0.238 0.185 0.238
Outcome Mean 0.0012 0.0012 0.0012 0.0012
WCB DiD p-value 0.0559 0.0490 0.0859 0.1199
Time F.E Year Month-Year Year Month-Year
District F.E Yes Yes Yes Yes
Clusters District District State State

Notes: The dependent variable is the district-month level sum of the confidence-weighted sum (count) of fires in a grid divided
by the area of the district (in km2). The sample includes districts in states in which the ban was implemented and our control
states for a 10 year period starting from January 2011 (observed every month). Ban equals 1 only for the states in which the
ban was implemented and post equals 1 starting 2016. The specifications control for district-month averages of daily surface
temperature, precipitation, relative humidity and wind speed. Each column reports the effective number of observations after
incorporating the included fixed effects. Robust standard errors clustered at the level mentioned in the row named ‘Clusters’
in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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Table A.4: Impact of Ban on Fires: Heterogeneity by State (District Aggregation)

Probability Weighted Fire Count Per Sqkm (District)
(1) (2) (3) (4)

Post * Punjab -0.0023∗∗∗ -0.0027∗∗∗ -0.0023∗∗∗ -0.0027∗∗∗
(0.0009) (0.0009) (0.0001) (0.0004)

Post * Haryana -0.0010∗∗∗ -0.0011∗∗∗ -0.0010∗∗∗ -0.0011∗∗∗
(0.0003) (0.0003) (0.0001) (0.0002)

Post * Uttar Pradesh -0.0001 0.0000 -0.0001 0.0000
(0.0001) (0.0001) (0.0001) (0.0002)

Post * Delhi -0.0003∗∗∗ -0.0001 -0.0003∗∗ -0.0001
(0.0001) (0.0001) (0.0001) (0.0002)

Post * Rajasthan -0.0005∗∗∗ -0.0004∗∗∗ -0.0005∗∗∗ -0.0004∗∗
(0.0001) (0.0001) (0.0001) (0.0002)

Observations 40200 40200 40200 40200
Adjusted R2 0.171 0.210 0.171 0.210
Outcome Mean 0.0022 0.0022 0.0022 0.0022
Time F.E Year Month-Year Year Month-Year
District F.E Yes Yes Yes Yes
Clusters District District State State

Notes: The dependent variable is the district-month level sum of the confidence-weighted sum (count) of fires in a grid divided
by the area of the district (in km2). The sample includes districts in states in which the ban was implemented and our control
states for a 10 year period starting from January 2011 (observed every month). Post equals 1 starting December 2015 and
Punjab, Haryana, UP, Delhi and Rajasthan represent binaries for if a grid in the data belongs to one of those states. The
specifications control for district-month averages of daily surface temperature, precipitation, relative humidity and wind speed.
Each column reports the effective number of observations after incorporating the included fixed effects. Robust standard errors
clustered at the level mentioned in the row named ‘Clusters’ in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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Table A.5: Impact of Ban on Fires: Heterogeneity by State (District Aggregation, Bordering
Districts)

Probability Weighted Fire Count Per Sqkm (District)
(1) (2) (3) (4)

Post * Punjab -0.0009∗ -0.0011∗∗ -0.0009∗∗∗ -0.0011∗∗∗
(0.0005) (0.0005) (0.0001) (0.0002)

Post * Haryana -0.0002 -0.0002 -0.0002 -0.0002
(0.0002) (0.0002) (0.0001) (0.0001)

Post * Uttar Pradesh -0.0001 -0.0001 -0.0001 -0.0001
(0.0001) (0.0001) (0.0001) (0.0001)

Post * Rajasthan -0.0003∗∗∗ -0.0003∗∗∗ -0.0003∗∗∗ -0.0003∗∗
(0.0001) (0.0001) (0.0001) (0.0001)

Observations 11400 11400 11400 11400
Adjusted R2 0.185 0.239 0.185 0.239
Outcome Mean 0.0012 0.0012 0.0012 0.0012
Time F.E Year Month-Year Year Month-Year
District F.E Yes Yes Yes Yes
Clusters District District State State

Notes: The dependent variable is the district-month level sum of the confidence-weighted sum (count) of fires in a grid divided
by the area of the district (in km2). The sample includes bordering districts between our control and treated states in which
the ban was implemented for a 10 year period starting from January 2011. Post equals 1 starting December 2015 and Punjab,
Haryana, UP, Delhi and Rajasthan represent binaries for if a grid in the data belongs to one of those states. The specifications
control for district-month averages of daily surface temperature, precipitation, relative humidity and wind speed. Each column
reports the effective number of observations after incorporating the included fixed effects. Robust standard errors clustered at
the level indicated in the row named ‘Clusters’ are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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Table A.6: Impact of Ban on Fires: Heterogeneity by State (with AEZ Treneds)

Probability Weighted Fire Count
(1) (2) (3) (4)

Post * Punjab -0.0031*** -0.0031*** -0.0031*** -0.0031***
(0.0005) (0.0005) (0.0004) (0.0004)

Post * Haryana -0.0018*** -0.0018*** -0.0018*** -0.0018***
(0.0002) (0.0002) (0.0005) (0.0005)

Post * Uttar Pradesh 0.0002** 0.0002** 0.0002 0.0002
(0.0001) (0.0001) (0.0006) (0.0006)

Post * Delhi -0.0003** -0.0003** -0.0003 -0.0003
(0.0001) (0.0001) (0.0007) (0.0007)

Post * Rajasthan -0.0008*** -0.0008*** -0.0008 -0.0008
(0.0001) (0.0001) (0.0005) (0.0005)

Observations 79533116 79533116 79533116 79533116
Adjusted R2 0.029 0.033 0.029 0.033
Outcome Mean 0.0035 0.0035 0.0035 0.0035
Time F.E Month-Year Date Month-Year Date
Grid F.E Yes Yes Yes Yes
Clusters Grid Grid State State
Trends AEZ AEZ AEZ AEZ

Notes: The dependent variable is the confidence-weighted sum (count) of fires in a grid. The sample includes grids in states in
which the ban was implemented and our control states for a 10 year period starting from 1st January 2011 (observed every day).
Post equals 1 starting 11th December 2015 and Punjab, Haryana, UP, Delhi and Rajasthan represent binaries for if a grid in
the data belongs to one of those states. The specifications control for daily average surface temperature, precipitation, relative
humidity, wind speed in the relevant grid and agro-ecological zone (AEZ) trends. There were 11 AEZs within the sample set
of sets—each of which were mapped out as per data from the government of India (released under the National Data Sharing
and Accessibility Policy (NDSAP)). Each column reports the effective number of observations after incorporating the included
fixed effects. Robust standard errors clustered at the level mentioned in the row named ‘Clusters’ in parentheses. *** p<0.01,
** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C) and Department of Water
Resources, River Development & Ganga Rejuvenation (2022) (a shapefile for India’s agro-ecological zones).
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Table A.7: Impact of Ban on Fires: Robustness to Longer Time Period (2002-21)

Probability Weighted Fire Count
(1) (2) (3) (4)

Ban*Post -0.0009∗∗∗ -0.0009∗∗∗ -0.0009 -0.0009
(0.0001) (0.0001) (0.0005) (0.0005)

Observations 151097680 151097680 151097680 151097680
Adjusted R2 0.027 0.030 0.027 0.030
Outcome Mean 0.0031 0.0031 0.0031 0.0031
Time F.E Month-Year Date Month-Year Date
Grid F.E Yes Yes Yes Yes
Clusters Grid Grid State State

Notes: The dependent variable is the confidence-weighted sum (count) of fires in a grid. The sample includes grids in states
in which the ban was implemented and our control states for a 20 year period starting from 1st January 2002 (observed every
day). Ban equals 1 only for the states in which the ban was implemented and post equals 1 starting 11th December 2015. The
specifications control for daily average surface temperature, precipitation, relative humidity and wind speed in the relevant grid.
Each column reports the effective number of observations after incorporating the included fixed effects. Robust standard errors
clustered at the level mentioned in the row named ‘Clusters’ in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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Table A.8: Impact of Ban on Fires: Robustness to Longer Time Period (2002-21)

Probability Weighted Fire Count
(1) (2) (3) (4)

Post * Punjab -0.0010∗ -0.0010∗ -0.0010∗ -0.0010∗
(0.0005) (0.0005) (0.0005) (0.0005)

Post * Haryana -0.0013∗∗∗ -0.0013∗∗∗ -0.0013∗∗ -0.0013∗∗
(0.0002) (0.0002) (0.0005) (0.0005)

Post * Uttar Pradesh -0.0007∗∗∗ -0.0007∗∗∗ -0.0007 -0.0007
(0.0001) (0.0001) (0.0005) (0.0005)

Post * Delhi -0.0009∗∗∗ -0.0010∗∗∗ -0.0009∗ -0.0010∗
(0.0001) (0.0001) (0.0005) (0.0005)

Post * Rajasthan -0.0010∗∗∗ -0.0010∗∗∗ -0.0010∗ -0.0010∗
(0.0001) (0.0001) (0.0005) (0.0005)

Observations 151097680 151097680 151097680 151097680
Adjusted R2 0.027 0.030 0.027 0.030
Outcome Mean 0.0031 0.0031 0.0031 0.0031
Time F.E Month-Year Date Month-Year Date
Grid F.E Yes Yes Yes Yes
Clusters Grid Grid State State

Notes: The dependent variable is the confidence-weighted sum (count) of fires in a grid. The sample includes grids in states in
which the ban was implemented and our control states for a 20 year period starting from 1st January 2002 (observed every day).
Post equals 1 starting 11th December 2015 and Punjab, Haryana, UP, Delhi and Rajasthan represent binaries for if a grid in
the data belongs to one of those states. The specifications control for daily average surface temperature, precipitation, relative
humidity and wind speed in the relevant grid. Each column reports the effective number of observations after incorporating the
included fixed effects. Robust standard errors clustered at the level mentioned in the row named ‘Clusters’ in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
Source: Giglio et al. (2021) (MODIS Collection 6 Active Fire Product User’s Guide Revision C).
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