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Abstract

We analyse the large and diverse literature on technical change in integrated assessment
models (IAMs) of climate change, with a view to understanding how different representa-
tions of technical change affect optimal climate policy. We first solve an analytical IAM
that features several models of technical change from the literature, including exogenous
technical change in abatement technologies, exogenous decarbonisation of the economy, en-
dogenous technical change via learning-by-doing, and endogenous technical change via R&D
(in particular, directed technical change). We show how these models of technical change
impact optimal carbon prices, emissions and temperatures in often quite different ways. We
then survey how technical change is currently represented in the main quantitative IAMs
used to inform policy, demonstrating that a range of approaches are used. Exogenous tech-
nical change in abatement technologies and learning-by-doing are most popular, although
the latter mechanism is only partially endogenous in some models. We go on to quantify
technical change in these policy models using structural estimation, and simulate our analyt-
ical IAM numerically assessing the effect of technical change on optimal climate policy. We
find large quantitative effects of technical change and large quantitative differences between
different representations of technical change, both under cost-benefit and cost-effectiveness
objectives.
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1 Introduction

Integrated assessment models (IAMs) have played a central role in developing our understanding
of economically efficient climate policies and continue to provide important inputs to decision-
makers (e.g. IPCC, 2018, 2022). Technical change (hereafter TC) is one of the key assumptions
in any IAM that estimates emissions abatement costs.

TC is a nebulous concept covering many mechanisms. Some are exogenous to abatement
policy decisions. For example, there may be technological spillovers from non-climate R&D, such
as general-purpose membrane technologies developed in the chemicals industry, which can also
reduce the costs of clean hydrogen production. Some mechanisms are endogenous because they
depend on climate R&D specifically. For example, in the current early stage of development
of nuclear fusion, cost reductions depend primarily on R&D investment. Some mechanisms are
endogenous to abatement policy because technology costs depend directly on deployment. For
example, photovoltaic cells would still be expensive today if they had not been deployed at large
scale. Usually, exogenous and endogenous TC will co-exist. For example, the development of
Lithium-ion batteries for smartphones can reduce the future cost of electric-vehicle batteries
(exogenous TC). However, the specific requirements of car batteries (e.g., large capacity and
peak power) will be met more quickly if electric vehicles are produced at scale (endogenous TC).

IAMs need to make sense of the complex and diverse mechanisms of TC, simplify them
and build appropriate model abstractions. Previous reviews have shown that modellers have
taken many different approaches to TC (Löschel, 2002; Grubb et al., 2002; Sue Wing, 2006;
Gillingham et al., 2008). At the same time, it is well known from other reviews that there is wide
variation between IAMs in their estimated abatement costs of meeting pre-determined climate
goals (Clarke et al., 2014; van Vuuren et al., 2020; Riahi et al., 2022), or their prescriptions of
optimal warming (Gillingham et al., 2018). The missing piece of the puzzle is knowing what role
TC plays in this variation. It is difficult to know because IAMs are rich and complicated, with
many relevant differences. Therefore, it is not obvious how to construct a controlled comparison
that leads to an understanding of the effect of different representations of TC on optimal climate
policy. This is our aim in this paper.

We begin in Section 2 with a theoretical analysis of different TC models. Our fundamen-
tal aim is to sign the effect of TC on optimal climate policy, where we mostly use marginal
abatement costs (MACs), carbon taxes, emissions and temperatures as sufficient statistics for
climate policy (where relevant, we also discuss innovation subsidies of different kinds). We con-
sider two kinds of climate policy, minimising the discounted sum of abatement costs and climate
damages (cost-benefit analysis), and meeting a pre-determined climate constraint at minimum
discounted abatement cost (cost-effectiveness analysis). Building on the foundation of a common
set of equations for welfare, utility, warming and damages, we compare three different classes of
TC model. The first is models of exogenous TC. We consider both exogenous TC in abatement
technologies, which reduces abatement costs, and exogenous TC that reduces the emissions in-
tensity of economic growth (so-called Autonomous Energy Efficiency Improvements or AEEI).
The second class is models of endogenous TC based on learning-by-doing. In these models, the
cost of abatement is a decreasing function of past cumulative abatement. The third class is
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models of endogenous TC based on R&D investment into abatement/clean technologies. We
particularly focus on recent models of Directed Technical Change (DTC), which embed R&D in
a model in which TC can improve either dirty or clean technologies.

The analysis delivers a rich set of results that we summarise in five Remarks, with derivations
contained in the Appendices.

1. Exogenous TC that makes future abatement cheaper creates an incentive to abate less
in the short run but more in the long run. Optimal carbon taxes are always lower, but
emissions/temperatures are higher in the short run before ending up lower in the long run.
Under cost-effectiveness, the long-run temperature is unaffected (it is constrained) but it
is reached quicker.

2. Exogenous TC through AEEI has different effects. Its short-run effects are ambiguous,
but plausibly it leads to lower optimal carbon taxes, emissions and temperatures. In the
long run, however, it unambiguously leads to higher optimal carbon taxes, emissions and
temperatures (again, under cost-effectiveness the long-run temperature is unaffected but it
is reached quicker). This is because AEEI has two countervailing effects. On the one hand,
it reduces business-as-usual (BAU) emissions, which makes lower emissions less costly to
attain. On the other hand, by decarbonising the economy, it makes further emissions
reductions more difficult. The balance of these effects is different at different stages of the
low-carbon transition.

3. Endogenous TC based on learning-by-doing also has two countervailing effects. On the
one hand, it makes future abatement cheaper, creating an incentive to wait, just like
exogenous TC in abatement technologies. On the other hand, early abatement is what
reduces future abatement costs, creating the opposite incentive to abate early. Optimal
carbon taxes are lower, but an abatement subsidy is required to internalise the learning
externality. The sum of these – the firm’s MAC – can be higher or lower than without
TC initially, so the effect on short-run emissions and temperatures is also ambiguous. In
the long run, emissions and temperatures are lower, so emissions and temperatures under
endogenous, learning-based TC can be lower all along the path. Under cost-effectiveness
analysis, we show that the effect of endogenous, learning-based TC is qualitatively the
same as exogenous TC in abatement technologies, but not as strong. The carbon budget
is still used up more quickly and abatement is backloaded, but the endogenous future
learning gain tempers the incentive to do so.

4. Models of endogenous TC based on R&D also create an incentive for early action, but not in
the form of abatement. Instead, firms invest in R&D, incentivised by R&D subsidies, and
delay abatement until R&D has reduced abatement costs. This means the optimal carbon
tax, emissions and temperature trajectories look more like exogenous TC in abatement
technologies than they do endogenous, learning-based TC. In fact, we show formally that
they are the same as exogenous TC in abatement technologies, provided R&D investment
costs are small relative to output.

5. We comment on clean technology dynamics in endogenous TC models. By design, learning-
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based models are designed to replicate negative exponential experience curves that have
been demonstrated empirically for a wide range of technologies (e.g., Way et al., 2022).
To do this, they conform to the process of “fishing out”, meaning that it becomes harder
to find new ideas, the larger is the existing knowledge stock. By contrast, most DTC
models conform to the opposite process of “standing on the shoulders of giants”, meaning
that existing knowledge makes new knowledge easier to develop. This logically means such
models cannot reproduce experience curves.

Arguably a drawback of much of the literature is that endogenous, learning-based TC is repre-
sented at the exclusion of R&D, and vice versa. We finish Section 2 by proposing a model of
endogenous R&D based on both.

Starting with Section 3, we shift our focus to quantitative models. This section contains
a systematic survey of how TC is represented in the current crop of major quantitative IAMs,
based on 22 families of models. We establish that a diversity of TC modelling approaches exists,
as previous reviews also found. We find that TC is exogenous in the majority of models. Where
it is endogenous, it is mostly based on learning-by-doing rather than R&D, a finding that is
not obvious unless one-off models are excluded. Where models represent learning-by-doing, the
incentive to abate early is often ignored in setting optimal policy, however. This leads us to
identify a class of models where TC is ‘semi-endogenous’.

Section 4 quantifies the effect of TC on climate policy. We develop a method of structural
estimation, which enables us to calibrate the abatement cost and TC parameters of our model
on the current crop of IAMs reviewed in the previous section. We use ‘observed’ variation in
the timing of abatement and associated abatement costs across more than 700 IAM scenarios
collected in two major databases (the Intergovernmental Panel on Climate Change or IPCC and
the Network of Central Banks and Supervisors for Greening the Financial System or NGFS). This
gives us an estimate of how much TC drives down abatement costs in current IAMs, supposing
the process is either exogenous or endogenous. We then take this calibration of abatement
costs/TC and apply it to a simple, quantitative IAM, whose structure builds on the theoretical
analysis of Section 2. We numerically solve for optimal MACs, carbon prices and technology
subsidies, as well as emissions and temperatures. We find that TC has a quantitatively large
effect on the optimal paths under cost-benefit analysis, e.g., warming in 2100 is at least 0.5◦C
lower due to TC. We also find large differences between the two forms of TC considered, e.g., the
difference in the initial MAC is $73/tCO2, attributable almost entirely to an optimal deployment
subsidy to internalise the learning externality. Under cost-effectiveness analysis and an ambitious
temperature constraint of 1.75◦C, emissions and temperature paths are closer together due to
the small available carbon budget, but the difference in MACs caused by TC is even larger.

Section 5 provides a discussion, focusing primarily on TC uncertainty.

Related literature

We connect to three main strands of literature. The first is papers investigating the effects of
TC in IAMs of different varieties. This literature is large, diverse and diffuse across fields. One
of our primary purposes in this paper is to survey it, so we provide citations throughout the
following sections as our survey progresses.
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Second, the model we build for theoretical and quantitative analysis draws on the recent
literature on analytical IAMs (Golosov et al., 2014; Rezai and Van der Ploeg, 2016; van den
Bijgaart et al., 2016; Dietz and Venmans, 2019; Traeger, 2023). As the moniker suggests, these
models are intended to give analytical insights into the role of different parameters and assump-
tions, shining a light into the black box of richer quantitative IAMs. Our model has a similar
level of complexity, uses specific representations from this literature, and delivers analytical as
well as quantitative results.

Third, we contribute to the literature reviewing and synthesising quantitative IAMs, specif-
ically those with a focus on emissions abatement (sometimes called energy models or energy
system models). Many of the scenario runs of these models are summarised in IPCC reports
(IPCC, 2022). Weyant (2017) and Nikas et al. (2019) provide recent, general overviews. Löschel
(2002), Grubb et al. (2002), Sue Wing (2006) and Gillingham et al. (2008) are examples of ear-
lier overviews of TC in these models, and van Vuuren et al. (2020) analyze the large differences
in abatement costs between models. Relative to this literature, we make several contributions:
we provide an up-to-date review; unlike previous reviews, we solve different TC representations
analytically, which delivers a set of formal, precise comparisons; and we provide a method of
isolating the quantitative effects of TC in these models on optimal paths, controlling for other
factors.

2 Theoretical analysis

Throughout this section, we assume the economy is populated by a fixed number of households,
which obtain utility from consumption of an aggregate good. The representative household’s
welfare is

W =

∫ ∞

0
e−δtu (c(t)) dt, (1)

where δ is the utility discount rate and u (c(t)) = c(t)1−η/(1 − η), with η standing for the
elasticity of marginal utility of consumption. In all the models we consider, households supply
labour L inelastically and own capital K that is rented to firms.

Climate change is also modelled in the same way throughout. Global mean temperature T is
linearly proportional to cumulative carbon dioxide emissions (Dietz and Venmans, 2019; Dietz
et al., 2021):

T (t) = ζS(t). (2)

Cumulative emissions S(t) =
∫
P (t)dt, where P stands for emissions. The slope of the relation-

ship between temperature and cumulative emissions is governed by ζ, the so-called Transient
Climate Response to cumulative carbon Emissions or TCRE (Collins et al., 2013).

Increasing temperatures cause climate damages, which only affect production of the aggregate
good. Damages Ω are given by

Ω(t) = exp
(
−γ
2
T (t)2

)
, (3)

where γ is the damage function coefficient.
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2.1 Models with an aggregate abatement cost function

The first models we look at link emissions directly with production of the aggregate consumer
good:

P (t) = σ(t) [1− µ(t)]Y (t), (4)

where σ is the carbon intensity of production Y and µ is emissions abatement expressed as a
control rate. The total cost of abatement Λ is given by

Λ(t) = exp

(
−φ(t)

2
µ(t)2

)
, (5)

where φ is the slope of the MAC function.
The aggregate good is produced in a competitive market using capital and labour supplied

by households. Production net of abatement costs and climate damages is

Y (t) = K(t)α [AL(t)L(t)]
1−α Λ(t)Ω(t), (6)

where AL is labour productivity and α is the capital share.1 Since climate damages and abate-
ment costs enter the production function multiplicatively, they are both proportional to produc-
tion. The number of firms is sufficiently large that climate damages are fully externalised.

Normalising the price of the aggregate good to one, the representative firm chooses capital
and labour inputs to maximise profits:

max
K(t),L(t)

π(t) = K(t)α [AL(t)L(t)]
1−α Λ(t)Ω(t)− r(t)K(t)− w(t)L(t)− τ(t)P (t), (7)

where r is the rental price of capital, w is the wage, and τ is a carbon tax that the firm may face.
Any carbon tax revenue raised is returned to households lump-sum, so the household budget
constraint implies that in competitive equilibrium

K̇(t) = r(t)K(t) + w(t)L(t) + Υ (t)− c(t)− δKK(t), (8)

where Υ represents the lump-sum transfers and δK is capital depreciation.

Exogenous TC

In many models, especially quantitative models but also analytical models focusing on aspects
of the problem other than TC per se, TC is exogenous. Exogenous TC can be introduced to our
model in two ways that are representative of the literature:

1. The slope of the MAC function φ decreases over time due to reductions in the cost of
abatement technologies.

2. The carbon intensity coefficient σ decreases over time (as in, e.g., Nordhaus’ DICE model).
This decouples emissions growth from economic growth – economy-wide TC is emissions-

1The assumption here of Cobb-Douglas production reflects much of the literature and aids comparability with
models below that explicitly represent energy inputs, but the same results can be obtained from a more general
production function, as in the Appendices.
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saving. It is often referred to as AEEI, although ‘autonomous carbon efficiency improve-
ment’ would be more accurate.

If TC is exogenous, socially optimal emissions abatement is implemented using one policy
instrument, a Pigouvian tax equal to the marginal damage cost of carbon emissions, a.k.a. the
social cost of carbon (SCC).2 In response, firms reduce emissions until their MAC is equal to
the tax. Appendix A derives this well-known result from a more general model. For the model
here, the optimality condition is:∫ ∞

u=t
e−r(u−t)Y (u)γζS(u)du︸ ︷︷ ︸

SCC

= τ(t) =
φ(t)µ(t)

σ(t)︸ ︷︷ ︸
MAC

, (9)

where r = δ + ηċ(t)/c(t) is the Ramsey rule for the consumption discount rate. The SCC
is proportional to output, the damage function coefficient, the TCRE and cumulative future
emissions, and it is decreasing in the discount rate.

The MAC is proportional to the MAC slope parameter φ. Hence, as TC decreases φ, it also
decreases the MAC. The effect of this on optimal climate policy can be summarised as follows:

Remark 1 (Effects of exogenous TC in abatement technologies) Compared to a model
without TC, exogenous TC that decreases the slope of the MAC generates lower optimal
MACs/carbon taxes, higher short-run emissions/temperatures but lower long-run emissions. Cu-
mulatively, emissions are lower in the long run, as is warming.

Appendix A provides the formal analysis in support of this. The basic intuition is that TC
makes future abatement cheaper than today, and if TC is exogenous then all the social planner
must do is wait for this to happen. This makes it optimal to abate emissions less in the short
run but more in the long run. The net effect is not immediately obvious but in fact it must be
lower cumulative emissions and warming in the long run. This is because TC makes the MAC at
peak warming lower. Optimality then requires marginal damages to be lower accordingly. Since
marginal damages are increasing in cumulative emissions and temperature, peak temperature
must be lower.

This describes what happens if the social planner’s objective is to maximise discounted net
benefits. The planner’s objective may instead be to minimise the discounted abatement costs
of achieving a pre-determined cumulative emissions/temperature constraint. In that case, two
things change. First, with a fixed emissions budget, the optimal carbon tax is not equal to
the SCC but rather results from applying the Hotelling rule – it must increase at the interest
rate, with an initial value equal to the present value of the MAC at zero emissions when the
constraint binds. Second, if the constraint binds then evidently long-run temperatures are unaf-
fected by TC. Exogenous TC that decreases abatement costs generates lower carbon taxes and
higher short-run emissions as before, which now results in faster convergence to the constrained
peak temperature. The social planner does not care about damages under cost-effectiveness
and prefers to use up more of the cumulative emissions budget early on, anticipating cheaper
abatement later.

2Or equivalently a cap on the quantity of emissions with an implied price equal to the social cost of carbon.
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The effects of AEEI on optimal climate policy are different to falling abatement costs. AEEI
exerts two contrasting forces on the optimal path. First, it reduces BAU emissions, which makes
lower emissions less costly to attain. Second, by decarbonising the economy, it makes further
emissions reductions more difficult. In an energy-efficient economy, a given relative reduction
in emissions leads to lower absolute abatement (dµ(t) = −σ(t)Y (t)dP (t)). These forces are
illustrated by inspecting the effect of a change in σ on the MAC. Using (4) to substitute the
emissions control rate out of the expression for the MAC, and differentiating with respect to σ,

∂

∂σ(t)

(
φ(t)

σ(t)
− φ(t)P (t)

σ(t)2Y (t)

)
=

φ(t)

σ(t)2

(
2P (t)

σ(t)Y (t)
− 1

)
.

A decrease in the carbon intensity of the economy decreases the MAC provided 2P (t) > σ(t)Y (t).
σ(t)Y (t) is simply BAU emissions. Therefore, this condition means that AEEI decreases the
MAC when emissions are more than half of BAU, which if it is met3 will be early in the transition,
and increases the MAC when emissions are less than half of BAU, i.e., late in the transition.
Early in the transition, the main effect of AEEI is to reduce BAU emissions, making lower
absolute emissions easier to achieve. Late in the transition, the main effect of AEEI is to make
further emissions reductions harder.

Appendix B derives optimal emissions, which by extension give optimal temperatures, under
AEEI. We summarise the effects of AEEI on optimal climate policy as follows:

Remark 2 (Effects of exogenous TC: AEEI) Compared to a model without TC, AEEI gen-
erates higher optimal MACs/carbon taxes, cumulative emissions and temperatures in the long
run. The short-run effects of AEEI are ambiguous, but, assuming initial emissions are more
than half of BAU, AEEI generates lower MACs/carbon taxes, emissions and temperatures.

Since AEEI increases the MAC when emissions are less than half of BAU, AEEI increases
the MAC at peak warming (zero emissions). Optimality then requires the SCC to be higher too.
Since the SCC is an increasing function of temperature, peak temperature must be higher. This
is the opposite of the effect of exogenous TC that decreases the slope of the MAC. In the short
run, the effects of AEEI are ambiguous. As the effect on the MAC illustrates, the important
condition is whether emissions are more or less than half of BAU. We might consider the former
case more realistic in the short run, as large jumps in emissions are difficult. When emissions
are more than half of BAU, AEEI reduces the MAC/carbon tax as shown above, and it reduces
emissions and therefore temperatures.

If the planner’s objective is cost-effectiveness and the temperature constraint binds, then
AEEI does not affect peak warming. In principle, the effect of AEEI on the emissions path
that uses up the cumulative emissions budget is ambiguous, but again if initial emissions are
more than half of BAU, then AEEI decreases emissions in the short run, compensated by higher
emissions in the long run and peak warming is reached later.

This summarises the effect of exogenous, economy-wide TC that is emissions-saving. Emission-
saving TC is consistent with the declining trend in global emissions/output since the early 20th

3Technically, the optimal value of initial emissions can be anywhere between BAU and zero unless further
constraints are applied. In our quantitative analysis, we introduce emissions inertia, which makes a big jump in
initial emissions very costly.
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century but it is not guaranteed. Indeed, the period before that was characterised by increas-
ing emissions/output, plus in major developing countries emissions/output have been increasing
until recently.4 Logically, the opposite of our results would apply if exogenous, economy-wide
TC were emissions-using. Di Maria and Smulders (2017) is one of few papers to explore similar
cases, albeit in their model TC is endogenous.

Endogenous TC based on learning-by-doing

In other models, TC is endogenous because the cost of clean technologies decreases the more
they are deployed (e.g., Goulder and Mathai, 2000; Van der Zwaan et al., 2002; Bramoullé and
Olson, 2005; Grubb et al., 2024, and various quantitative/policy models reviewed in Section 3).
This dynamic is often referred to as learning-by-doing. In the model here, it can be represented
by writing the MAC as a function of cumulative abatement:5

MAC(t) :=
φµ(t)

σ(t)

(
Sa(t)

Sa(0)

)−χ
, (10)

where Sa(t) =
∫ t
u=0 σ(u)µ(u)Y (u) du is cumulative abatement and χ is the learning elasticity.

Thus, for every percent increase in cumulative abatement, the MAC decreases by χ percent.
With a large number of firms, we assume for the sake of simplicity that the future learning

gain from present abatement is fully externalised – incremental knowledge fully “spills over”.
Then, with a negative climate externality and a positive learning externality, the social planner
generally needs two policy instruments, the carbon tax and an abatement subsidy s (e.g., a
feed-in-tariff).6 The firm’s profit function becomes

π(t) = Y (t)− r(t)K(t)− w(t)L(t)− τ(t)P (t) + s(t)σ(t)µ(t)Y (t). (11)

Lump-sum transfers in the household’s budget constraint are now tax revenues net of subsidy
payments.7

Socially optimal emissions abatement in this model is implemented by the following pricing
rule:∫ ∞

u=t
e−r(u−t)Y (u)γζS(u)du︸ ︷︷ ︸

SCC

+

∫ ∞

u=t
e−r(u−t)Y (u)

φχ

2Sa(0)

(
Sa(u)

Sa(0)

)−χ−1

[σ(u)µ(u)Y (u)]2 du︸ ︷︷ ︸
Marginal future learning gain

= τ(t) + s(t).

(12)

Therefore, the social optimum can be achieved by setting the carbon tax equal to the SCC and
the abatement subsidy equal to the marginal external gain in abatement knowledge, i.e., the

4Global Carbon Budget (2024), Bolt and van Zanden – Maddison Project Database 2023 – with major
processing by Our World in Data ( https://ourworldindata.org/grapher/co2-intensity).

5Appendix A develops a more general model of deployment-based endogenous TC.
6In the case where companies can appropriate part of the knowledge generated, the optimal subsidy will only

cover the non-appropriable part.
7If lump-sum transfers are negative then taxation is assumed to be non-distortionary.
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discounted marginal reduction in future abatement costs. However, a particular feature of this
model of learning-based TC, where TC depends on cumulative aggregate abatement, is that the
tax and subsidy are additive and the social optimum can in principle also be implemented by
a single policy instrument, call it a ‘learning-adjusted’ tax, which is equal to the MAC. The
intuition is that both climate damages and TC depend on cumulative abatement. However, we
encourage readers to think of this tax/subsidy additivity result as more of theoretical curiosity.
It does not hold in the model with clean and dirty energy discussed in the next section, or in
other circumstances, such as when different abatement technologies have different learning rates
(see Appendix A.3).

Remark 3 (Effect of learning-based TC) Compared to a model without TC, endogenous
TC based on learning-by-doing generates lower optimal carbon taxes when accompanied by abate-
ment subsidies equal to the marginal future learning gain, but it has an ambiguous effect on
emissions and temperatures in the short run. Emissions and temperatures are lower in the long
run. Thus, emissions and temperatures can be lower all along the path.

Appendix B provides the formal analysis in support of this. The basic intuition is that under
endogenous TC from learning-by-doing, two countervailing effects are at play. First, there is the
cost-reduction effect: TC makes future abatement cheaper than today, as with exogenous TC.
Second, however, there is the endogenous future gain effect: the reason abatement is cheaper in
the future is abatement today. This creates an incentive for early abatement and is optimally
incentivised by an abatement subsidy (ignoring the additivity result above). Thus, while the
optimal carbon tax is lower, the subsidy/marginal future learning gain can be large enough to
produce higher abatement and lower emissions in the short run than without TC. In the long
run, emissions and temperatures are lower, as they were in the previous case.

Under a cost-effectiveness objective, endogenous TC based on learning-by-doing has the
same effect as exogenous TC in abatement technologies – lower carbon taxes, higher short-run
emissions and consequently faster convergence to the constrained peak temperature – but the
positive effect on emissions and temperatures in the short run is not as strong as under exogenous
TC. Again, the difference is due to the endogenous future learning gain, which tempers the
incentive to backload abatement.

Price-induced TC

In a few models, technology is directly linked to prices (e.g., Jakeman et al., 2004; Wilkerson
et al., 2013). We can connect the analysis up to this point with such models.

The key driver of endogenous TC in the above model is a state variable (cumulative emissions
Sa), which can be interpreted as a knowledge stock. The knowledge stock’s equation of motion
depends on the quantity of abatement. In general, we can write Ṡa(t) = f(µ(t)). Suppose the
knowledge stock is a function of the carbon price rather than abatement quantity. This can
give the same dynamics, because any quantity of abatement has a corresponding carbon price:
µ(t) = g (τ(t)), where g(·) is the inverse MAC function. As a result, the same equation of
motion can now be written as a function of τ rather than µ: Ṡa(t) = f (g(τ(t))). Integrating
this equation gives current technology/knowledge, which will be a function of past carbon prices.
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Remark 3 thus applies to this kind of model. For models in which abatement affects other prices,
which in turn affect the build up of knowledge (via the function f(·)), abatement indirectly affects
the dynamics of the knowledge stock, and again we can say in general that there will be an extra
marginal learning gain term that drives a wedge between the SCC and the MAC as in (12).

Technology parameters may be a function of the current price rather than past prices (Jor-
genson and Wilcoxen, 1993), and technology is not modelled as a stock variable but rather as
an instantaneous variable. As a result, TC is not path-dependent (there is no knowledge stock)
and it makes more sense to consider it as a model of exogenous TC (Gillingham et al., 2008).

2.2 Models with clean and dirty energy substitution

Endogenous TC based on learning-by-doing

Instead of modelling emissions as a function of aggregate output and emissions abatement via
an aggregate abatement cost function, many models explicitly link emissions with the use of
dirty/fossil energy (e.g., Golosov et al., 2014; Fried, 2018; Hart, 2019; Hassler et al., 2021, and
various quantitative/policy models reviewed in Section 3). Taking the model of endogenous TC
based on learning-by-doing, here we introduce clean and dirty energy intermediates in produc-
tion. Final-good production is now

Y (t) = K(t)αE(t)ν [AL(t)L(t)]
1−α−ν Ω(t), (13)

where E is an energy composite and ν is the energy expenditure share. As the final-good
production function is Cobb-Douglas, this is close to the model in Golosov et al. (2014). Other
models use a constant elasticity of substitution (CES) function for final-good production (e.g.,
Hassler et al., 2021).

The composite, intermediate energy good is produced by combining clean and dirty energy,
assuming a constant elasticity of substitution (CES):

E(t) = [Ec(t)
ϵ + Ed(t)

ϵ]1/ϵ (14)

where ϵ determines the elasticity of substitution between clean and dirty energy (indexed c and
d respectively). How clean and dirty energy are produced varies between models, with some
using labour (e.g., Fried, 2018; Golosov et al., 2014) and others using final goods as the input
(Hart, 2019). This choice is not consequential for our purposes. We follow the latter approach,
so Ei(t) = Ai(t)Xi(t), i ∈ {c, d}, where Ai is clean/dirty energy productivity and Xi is the
quantity of final goods used in clean/dirty energy production.8 Fossil fuels are assumed to be
abundant (i.e., specifically coal is abundant). Expressing dirty energy use in tonnes of carbon
dioxide, emissions are identified with dirty energy use, P = Ed. A caveat is that with CES
between clean and dirty energy, the MAC is implicitly infinite at zero emissions. Therefore, in

8Technically Xd is the quantity of final goods used in dirty energy production adjusted for the productivity of
fossil-fuel extraction, as explained by Hart (2019). Dirty energy production Ed(t) = Ad(t)Dd(t), where Dd stands
for fossil inputs, and Dd(t) = AdxXd(t) is fossil-fuel extraction with extraction productivity Adx. The price of
the final good is one and productivity is also constant since the final good is unchanging, so unit extraction costs
are constant and equal to 1/Adx.
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numerical applications this structure would need to be augmented, for example, with a backstop
technology if the SCC is large enough to make zero or negative emissions desirable.

In general, learning-by-doing applies to both clean and dirty energy. The experience-curve
dynamic can be produced by writing clean/dirty energy productivity as a function of a stock of
knowledge:

Ai(t) = Ai(0)

(
Hi(t)

Hi(0)

)χ
, (15)

whereH is cumulative aggregate knowledge, which accumulates in proportion to deployment/use
of the respective energy sources:

Ḣi(t) = Ei(t). (16)

This formulation abstracts from knowledge depreciation, which should be slow. Knowledge is
assumed to be technology-specific and there are no spillovers from one technology to the other.
On the contrary, using green technology will slow down the knowledge built up in the dirty
sector and vice versa, which is a form of crowding out.

We remain in a competitive market and we assume the planner can use two policy instru-
ments, a carbon tax and a clean-energy subsidy. The profit function of the firm in this case
is

π(t) = Y (t)− r(t)K(t)− w(t)L(t)− [pc(t)− s(t)]Ec(t)− [pd(t) + τ(t)]Ed(t). (17)

Socially optimal emissions abatement in this model can be implemented by setting the carbon
tax equal to the SCC minus the marginal future learning gain from dirty energy use, and the
clean-energy subsidy equal to the marginal future learning gain from clean energy use:∫ ∞

u=t
e−r(u−t)Y (u)γζS(u)du︸ ︷︷ ︸

SCC

−
∫ ∞

u=t
e−r(u−t)Y (u) [Ed(u)/E(u)]ϵ

χ

Hd(u)
du︸ ︷︷ ︸

Marginal learning gain: dirty

= τ(t), (18)

∫ ∞

u=t
e−r(u−t)Y (u) [Ec(u)/E(u)]ϵ

χ

Hc(u)
du︸ ︷︷ ︸

Marginal learning gain: clean

= s(t). (19)

The firm will use dirty energy up to the point where its marginal product equals the price of
dirty energy plus the tax,

∂Y (t)

∂Ed(t)
= [pc(t)− s(t)]

(
Ad(t)

Ac(t)

)ϵ(Ed(t)
Ec(t)

)ϵ−1

= pd(t) + τ(t). (20)

Similarly, it will use clean energy up to the point where its marginal product equals the price of
clean energy minus the subsidy.

The effect of TC in this model can be seen by decomposing the productivity term in (20):(
Ad(t)

Ac(t)

)ϵ
=

(
Ad(0)

Ac(0)

)ϵ(Hc(t)

Hc(0)

)ϵχ(Hd(t)

Hd(0)

)−ϵχ
. (21)

This decreases in cumulative clean energy use with an elasticity of −ϵχ and increases in cumu-
lative dirty energy use with an elasticity of ϵχ.

As mentioned above, the carbon tax and the innovation subsidy are not perfect substitutes in
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this model. A carbon tax will lead to both less energy use and energy substitution from dirty to
clean. Although a clean-energy subsidy will also incentivise substitution from dirty to clean, by
itself it will lead to more energy use, not less. Yet, defining the MAC as the difference between
the marginal products of dirty and clean energy, MAC := dY (t)/dEd(t)−pd(t)−dY (t)/dEc(t)+

pc(t) = τ(t) + s(t). So, although the tax and the subsidy are not perfect substitutes, the MAC
is equal to their sum.

With 0 < χ < 1, there are decreasing marginal returns to the energy knowledge stocks,
reflecting the empirical observation that learning-by-doing is slower in mature technologies.
Therefore, with so much historical use of dirty energy, marginal learning gains from further
dirty energy use will be small, and so will the adjustment to the optimal carbon tax. In fact,
the vigilant reader will notice that in principle the planner could use three policy instruments:
the carbon tax and the clean-energy subsidy, plus a dirty-energy subsidy equal to the marginal
future learning gain from dirty energy use. However, the dirty-energy subsidy is additive to the
carbon tax and it makes little sense to implement it separately, especially given its likely small
size.

These additional features aside, Remark 3 and its extension to cost-effectiveness also apply
to the effects of TC on optimal climate policy in this case.

Endogenous TC based on R&D: directed technical change

So far, TC has either been exogenous or it has been endogenous because of learning-by-doing.
The third important class of model makes TC endogenous because future abatement costs depend
on current R&D investments. Early models of this type included Goulder and Mathai (2000);
Smulders and De Nooij (2003); Buonanno et al. (2003); Popp (2004), with diverse mechanisms
through which R&D reduces abatement costs. Within the last decade, R&D-based TC has
been popularised by applying models of directed technical change (DTC: e.g., Acemoglu et al.,
2012, 2016; Bretschger et al., 2011; Fried, 2018; Hart, 2019; Hassler et al., 2021). Distinguishing
between clean and dirty energy is the most obvious (and popular) way to introduce a direction
to TC.

We start with a general functional form for R&D-based TC:

Ȧi(t) = ψ (zi(t), Ai( t)), (22)

where zi stands for R&D investments. For ∂ψ/∂Ai > 0, we have so-called “standing on the
shoulders of giants”, meaning that existing knowledge makes new knowledge easier to develop.
The opposite case, ∂ψ/∂Ai < 0, is called “fishing out”, meaning that it becomes harder to find
new ideas, the larger is the existing knowledge stock. We will return to this important issue
below.

A feature of R&D models is usually imperfect competition – the prospect of a monopoly
achieved by patenting a new invention incentivises costly R&D. This complicates the model
dynamics, so DTC models, which are written in discrete time, typically assume the patent lasts
just one period (e.g., Acemoglu et al., 2012). We follow this assumption in our continuous-time
model, noting the assumption is less realistic when the time step is infinitesimal. Practically, the
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implication is that R&D needs to be subsidised in order for it to happen, because the monopoly
vanishes instantaneously as an approximation for vanishing in a few years as it does in discrete-
time models. If we made the model more complex by introducing an explicit time dependence
of monopoly profits, the main addition would be that some R&D happens without subsidies.
Appendix D discusses such a model with a private knowledge stock that gradually becomes
public. The rest of the model is the same as the previous section. We assume that R&D costs
are homogeneous of degree one.

The social planner has three tools: a carbon tax, and subsidies for clean- and dirty-energy
R&D. The carbon tax and the dirty-energy R&D subsidy are not additive in this case. That is
because TC no longer depends on cumulative abatement. The firm’s profit function becomes

π(t) = Y (t)− r(t)K(t)− w(t)L(t)− pcEc − [pd(t) + τ(t)]Ed(t)

−c(zc(t) + zd(t)) + sc(t)zc(t) + sd(t)zd(t),
(23)

where c(·) is an R&D cost function. This is where crowding out happens. Most models assume
costs are linear in zc+zd, where z is often described as the number of scientists in a given sector.9

If the number of scientists is assumed fixed (e.g., Acemoglu et al., 2012), crowding out of dirty
innovation by clean is strong because additional scientists cannot be recruited from outside the
R&D sector. In Popp (2004), which is an R&D model but not a DTC model per se,10 crowding
out is also strong because the opportunity cost of innovation is set at three times the investment
in R&D.

Socially optimal emissions abatement in this model is implemented by setting the carbon tax
equal to the SCC and the clean- and dirty-energy subsidies equal to the marginal productivity
benefits of R&D in the respective sectors:∫ ∞

u=t
e−r(u−t)Y (u)γζS(u)du︸ ︷︷ ︸

SCC

= τ(t), (24)

∫ ∞

v=t

[
exp

[
−
∫ v

u=t
[r(u) + ∂ψ/∂Ac(u)] du

]
∂Y (v)/∂Ac(v)dv

]
∂ψ/∂zc(t)︸ ︷︷ ︸

Marginal benefit of clean R&D

= sc(t), (25)

∫ ∞

v=t

[
exp

[
−
∫ v

u=t
[r(u) + ∂ψ/∂Ad(u)] du

]
∂Y (v)/∂Ad(v)dv

]
∂ψ/∂zd(t)︸ ︷︷ ︸

Marginal benefit of dirty R&D

= sd(t). (26)

Firms will respond by reducing emissions until their MAC equals the tax and by investing in
R&D until marginal investment costs in each sector equal the subsidies.

In this model, TC is endogenous in the sense that it is affected by the future trajectory of
the carbon price. This can be seen from (25) and (26), because the marginal benefit of energy
R&D is a function of the marginal product of energy knowledge, and this in turn depends on
energy use, which is affected by the carbon price. However, this does not change the fact that
in R&D/DTC models, the MAC equals the SCC (or the MAC follows the Hotelling rule under

9Often the innovation sector is represented as a separate sector, which receives a patent when a successful
innovation is realised. We have assumed innovation is realised in-house, but the dynamics are the same.

10Although Popp has a clean and dirty sector, TC in the dirty sector is exogenous.
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cost-effectiveness analysis). Furthermore, at the optimum a model of exogenous TC via falling
abatement costs will have the same dynamics as this model of R&D-based TC:

Remark 4 (Effect of R&D-based TC) Replace a model of endogenous TC based on R&D
with a model of exogenous TC, ensuring abatement costs follow an identical time path. The
models will have the same optimal carbon taxes, emissions and temperatures provided R&D
investment costs are small relative to output.

Appendix E.3 shows this result formally. The basic intuition is that early action is optimal
in R&D models, but unlike learning-based models the early action comes in the form of clean
energy R&D investment, rather than abatement. The planner optimally invests in R&D before
deploying clean technology, with effects on optimal carbon taxes, emissions and temperatures
that with suitable calibration are identical to when the planner waits for technology costs to
fall exogenously. This result depends on the assumption that R&D investment costs are small
relative to output/consumption growth, because these costs reduce consumption and therefore
have the potential to alter marginal climate damages and the discount rate, i.e., to alter the
SCC. It is highly likely that R&D investment costs are relatively small (IPCC, 2022). It is also
important to stress that although Remark 4 holds at the optimum, the exogenous TC model so
calibrated will not give the same climate-policy dynamics away from the optimum. Therefore,
the result does not imply exogenous TC will always capture the dynamics of endogenous, R&D-
based TC. It is merely intended to sharpen our intuitions about how optimal policies differ
qualitatively.

Technology cost dynamics in learning- versus R&D-based models

We now return to standing on the shoulders of giants versus fishing out, and the dynamics of
TC in learning- versus R&D-based models. Besides having different implications for optimal
abatement, these two classes of endogenous TC model tend to predict different technology-
cost trajectories, which in turn can lead to very different optimal carbon taxes. For example,
Acemoglu et al. (2012) famously found that optimal carbon taxes could be very low because a
temporary clean R&D subsidy was so effective in reducing future abatement costs.

First, note that we can rewrite the learning-based model using energy productivity Ai instead
of knowledge Hi as the state variable. Taking the time derivative of (15) gives us the new
equation of motion:

Ȧi(t) =
Ai(0)

1
χ

Hi(0)
Ai(t)

1− 1
χEi(t). (27)

In this equation, instantaneous productivity on the right-hand side is raised to the power 1−1/χ.
Assuming 0 < χ < 1, this power is negative, consistent with ∂ψ/∂Ai < 0 and giving us fishing
out.

This is in contrast to most DTC models. Take Acemoglu et al. (2012), in which the equation
of motion of clean/dirty energy productivity, written in continuous time, is

Ȧi(t) = ξizi(t)Ai(t), (28)
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where ξi is the expected growth rate of productivity. Because productivity growth is proportional
to the current level of productivity, it is clear that in this model there is a strong standing on
the shoulders of giants effect.

Later DTC models such as Fried (2018) introduce additional features that weaken the size
of the standing on the shoulders of giants effect, but it still holds. In Fried (2018),

Ȧi(t) = ξizi(t)
ιAi(t)

[
Ai(t)

Ai(t) +Aj(t)

]−ς
= ξizi(t)

ιAi(t)
1−ς [Ai(t) +Aj(t)]

ς , (29)

where ι ∈ (0, 1) implies diminishing returns to R&D within a period (the “stepping on toes

effect”), creating an incentive to smooth out R&D effort over time, and the factor
[

Ai(t)
Ai(t)+Aj(t)

]−ς
introduces cross-sectoral technology spillovers between sectors. Fried assumes ς ∈ (0, 1). Thus,
cross-sectoral spillovers reduce the elasticity of productivity growth with respect to current
productivity, but still ∂ψ/∂Ai > 0 – there is standing on the shoulders of giants. It is perhaps
worth emphasising that despite the superficial similarity of language, standing on the shoulders
of giants and stepping on toes are mutually compatible dynamics. The former amounts to
∂ψ/∂Ai < 0, the latter to ∂2ψ/∂zi2 < 0.

An exception is the DTC model of Hart (2019). In Hart’s model, the equation of motion of
the knowledge stock is

Ḣi(t) = −δHHi(t) +AL(t)
ς1 (Hi(t) + ς2Hj(t))

1−ς1 ξzi(t)
1−ι. (30)

The first term is knowledge depreciation and the second term is knowledge accumulation. Within
the second term, Hi + ς2Hj ensures there is standing on the shoulders of giants overall in this
equation, albeit with diminishing returns given Hart’s assumption that ς1 ∈ (0, 1) and further
attenuation from positive cross-sectoral spillovers (ς2 ∈ (0, 1)). Again, ι ∈ (0, 1] produces the
stepping on toes effect in relation to instantaneous R&D effort.

However, Hart’s model separates productivity from knowledge, which is unusual in endoge-
nous TC models. The justification Hart gives is that energy productivity has a physical max-
imum. This function is concave, so the marginal gains from accumulating knowledge are de-
creasing, which is important. Concretely, energy productivity evolves according to

Ai(t) = Āi
Hi(t)

H∗ +Hi(t)
, (31)

where Āi is the theoretical maximum productivity as knowledge Hi goes to infinity and H∗ is
the knowledge stock at which productivity is Āi/2.

Combining Equations (30) and (31), we get

Ȧi(t) =

[
Āi −Ai(t)

]2
ĀiH∗

[
−δH

Ai(t)H
∗

Āi −Ai(t)
+AL(t)

ς1

[
Ai(t)H

∗

Āi −Ai(t)
+ ς2Hj(t)

]1−ς1
ξzi(t)

1−ι

]
. (32)

It can be shown that the sign of the derivative of this with respect to Ai is positive for small Ai,
but for large Ai the knowledge decay term comes to dominate and the derivative is negative.
Thus, Hart’s model has standing on the shoulders of giants at low productivity levels, but fishing
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out at high productivity levels.

Remark 5 (Comparative dynamics of endogenous TC) Learning-based models of TC ex-
hibit fishing out whereas most DTC models exhibit standing on the shoulders of giants. Breaking
the link between knowledge and productivity allows DTC models to exhibit fishing out when tech-
nologies are mature.

The importance of this remark lies in the fact that learning-based models are designed to
fit the empirical regularity of Wright’s law and negative exponential experience curves. To
reproduce such an experience curve, there must be diminishing marginal returns to R&D as the
knowledge stock increases, but early DTC models have increasing returns. The standing on the
shoulders of giants effect is motivated by trends in patent counts. But both effects can co-exist
if the marginal productivity of patents is decreasing. One way to capture both of these effects is
to introduce diminishing marginal energy productivity gains with respect to knowledge, which
is what happens in Hart’s model at high levels of knowledge.

Endogenous TC based on learning and R&D

The idea that knowledge only accumulates through learning-by-doing or R&D is unrealistic,
compared with the idea that it responds to both (Grubb et al., 2021). Unfortunately, it is a
feature of the literature that models tend to use one representation at the expense of the other.
But they can be combined. Represent the interdependency between deployment and R&D by
an equation of motion of the general form

Ȧi(t) = ψ (zi(t), Ei(t), Ai(t)) . (33)

The optimal policy now requires a deployment subsidy for clean energy∫ ∞

v=t

[
exp

[
−
∫ v

u=t
[r(u) + ∂ψ/∂Ac(u)] du

]
∂Y (v)/∂Ac(v)dv

]
∂ψ/∂Ec(t)︸ ︷︷ ︸

Marginal innovation benefit of clean deployment

= sdeployc (t), (34)

on top of the R&D subsidy for clean energy from Eq. (25). Technically, the same goes for dirty
energy.

Note that the integral in the formula corresponds to the forward-looking value of an extra
unit of Ac(t) and is also an element of the R&D subsidy. This leads to the useful result that
the ratio of the deployment subsidy and the R&D subsidy should be equal to the ratio of their
marginal productivities:

sdeployc

sR&D
c

=
∂ψ/∂Ec(t)

∂ψ/∂zc(t)
. (35)

The right-hand side may be amenable to empirical estimation. If so, this may provide a guide
to the elusive question of how much to subsidise R&D versus deployment ?.

The MAC defined as the difference in net productivity between dirty and clean energy is
higher than the SCC due to the effect of deployment on innovation:

MAC = SCC − sdeployd + sdeployc . (36)
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Thus, this model will have optimal paths qualitatively similar to endogenous, learning-based
TC. Typically, the clean-energy deployment subsidy will dominate the dirty-energy deployment
subsidy due to the larger innovation potential of clean energy. Note that this increase in the
MAC is still present in a model where there is no innovation without R&D effort, for example,
in a model with the following equation of motion: Ȧi(t) = zi(t) + ρzi(t)Ei(t).

3 Survey of quantitative IAMs

We now move from theory models to quantitative IAMs intended to inform policy. This section
describes our systematic review of how TC is represented in these models currently.

We first compiled a list of candidate IAMs, populating the list using a set of international
databases/web resources and previous reviews on the topic.11 The resulting long list comprised
87 models. We then screened this long list of IAMs based on the following criteria for inclusion.
First, the model must be global. Second, the model must be in current/recent use, which we
defined as having yielded a publication within the three years prior to undertaking our review.
Third, the model must have been designed to estimate mitigation costs from the energy system
(this excluded models primarily intended to estimate the SCC, and it also excluded specialist
land-use models). Fourth, the model must have been used in multiple papers or projects (we
excluded ‘one-off’ models). Lastly, we consolidated versions of the same model into a single
family. After screening and combining, we were left with 22 model families for analysis of their
representation of TC. These are listed in Table 1.

The table describes the type of model and then classifies the models’ representation of TC.
We divide the models into exogenous, endogenous and what we call ‘semi-endogenous’ TC,
and for endogenous TC models we further specify whether the process is based on learning or
R&D. We use semi-endogenous to describe models in which current deployment of an abatement
technology makes the technology cheaper in the future, but where this learning mechanism does
not affect the optimal price/subsidy trajectory. In other words, models with semi-endogenous
TC include larger future deployment as technologies become cheaper (learning-by-doing), but
omit the incentive for early abatement anticipating the endogenous future gain effect.12

The results of our systematic review are as follows. First, the diversity of modelling ap-
proaches to TC identified in earlier reviews endures today. Second, we find that TC is exoge-
nous in the majority of models. Four models include endogenous TC, and five other models
have semi-endogenous TC. TC is exogenous in the remaining 13 models. A pre-requisite for
fully endogenous TC is the ability to optimise the model intertemporally; only eight models do

11In particular, we used the IPCC AR6 Scenario Explorer and Database hosted by IIASA
(https://data.ece.iiasa.ac.at/ar6/#/workspaces); the web resources of the Integrated Assessment
Modeling Consortium or IAMC (https://www.iamconsortium.org/resources/models-documentation/),
the United Nations Framework Convention on Climate Change or UNFCCC response mea-
sures modelling tools (https://unfccc.int/topics/mitigation/workstreams/response-measures/
modelling-tools-to-assess-the-impact-of-the-implementation-of-response-measures), the Stan-
ford University Energy Modeling Forum (Böhringer et al., 2021), and previous review articles by Gillingham
et al. (2008) and Nikas et al. (2019).

12To ensure our classification of models as semi-endogenous was reasonable, we contacted the relevant modelling
teams to explain our concept of semi-endogenous TC and check our characterisation of their model. We contacted
eight modelling teams (IMAGE, GTEM, POLES, E3ME, GEM-E3, EPPA, IMACLIM-R, IGEM) and received
answers from seven of them.
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this, as column 3 shows. Lastly, of the models with semi-endogenous or endogenous TC, the
majority represent learning-by-doing, with R&D investments explicitly represented in only two
models. In their sample, Gillingham et al. (2008) identified a larger share of models with R&D,
but most of these models were one-off developments: R&D is less prevalent as a TC mechanism
in the most commonly used core versions of IAMs that feed into inter-comparison exercises like
the IPCC scenario database.

4 Quantitative analysis

The purpose of this section is to estimate the effects of TC in the quantitative/policy IAMs on
optimal climate policy. This is not easy. Previous literature asking similar questions has relied
on regression of IAM outputs on model features (e.g. Kuik et al., 2009), sensitivity analysis
using a single model (e.g. Manne and Richels, 2004), and harmonised runs of multiple IAMs
(e.g. Gillingham et al., 2018). Each approach has its pros and cons. Standard, regression-based
meta-analysis provides a convenient way to explore a wide range of model features, but it is
typically limited to qualitative results on the effects of TC (since model features are represented
as dummy variables). Given the nature of the data, regression also faces identification problems
such as low statistical power and multi-collinearity. Sensitivity analysis with individual IAMs
permits a tightly controlled experiment into the effects of TC but is limited to an individual
model structure. By contrast, harmonised runs of multiple IAMs allow model uncertainty to
be explored, but it is practically difficult to evaluate many models this way, let alone multiple
parameterisations of each model.

Our approach consists of two steps. The first step is structural estimation of how much
TC reduces abatement costs in the current crop of IAMs. The second step is to build a simple
IAM, based on the theory models of Section 2, and use it to simulate optimal climate policy
based on the TC parameter estimates from the first step. Thus, our approach is most similar to
running sensitivity analysis with an individual IAM, but by ensuring through the first step that
the model replicates TC in more complex IAMs, and by using a simple model structure broadly
in the tradition of analytical IAMs, the model is set up to perform more of a meta-analytical
function.

We implement both exogenous TC in abatement technologies and endogenous, learning-based
TC, as these are the two principal types of TC that feature in the quantitative/policy IAMs.
R&D-based TC is not included in this analysis, because it rarely features in quantitative/policy
IAMs and when it does so it is alongside learning-based TC – we cannot differentiate their effects
in the data. However, we know from Section 2 that R&D-based TC will give approximately the
same optimal climate policy paths as exogenous TC when the metrics of interest are carbon
taxes, emissions and temperatures, as long as R&D costs are not large enough to shift the
consumption growth rate. We run our simple IAM under cost-benefit and cost-effectiveness
objectives.

19



M
od

el
T

yp
e

In
te

rt
em

po
ra

l
E

xg
en

ou
s

or
Lb

D
/R

&
D

R
ef

er
en

ce
s

op
ti

m
is

at
io

n
en

do
ge

no
us

T
C

A
IM

/C
G

E
C

G
E

N
o

ex
og

en
ou

s
Fu

jim
or

ie
t

al
.(

20
17

a,
b)

D
IC

E
O

pt
im

al
gr

ow
th

Y
es

ex
og

en
ou

s
N

or
dh

au
s

(2
01

7)
D

N
E

21
+

E
ne

rg
y

Sy
st

em
Y

es
ex

og
en

ou
s*

Sa
no

et
al

.(
20

06
);

W
ad

a
et

al
.(

20
12

)
E

3M
E

M
ac

ro
ec

on
om

et
ri

c
N

o
se

m
i-e

nd
og

en
ou

s
Lb

D
/R

&
D

M
er

cu
re

et
al

.(
20

18
)

C
am

br
id

ge
E

co
no

m
et

ri
cs

(2
01

9)
E

N
V

-L
in

ka
ge

s
C

G
E

N
o

ex
og

en
ou

s
C

hâ
te

au
et

al
.(

20
14

)
E

P
PA

C
G

E
N

o
ex

og
en

ou
s

C
he

n
et

al
.(

20
15

);
Ja

co
by

et
al

.(
20

06
)

O
ct

av
ia

no
et

al
.(

20
16

)
G

C
A

M
O

th
er

IA
M

s
N

o
ex

og
en

ou
s

B
on

d-
La

m
be

rt
y

et
al

.(
20

22
);

C
al

vi
n

et
al

.(
20

17
)

G
E

M
-E

3
C

G
E

N
o

se
m

i-e
nd

og
en

ou
s

Lb
D

C
ap

ro
s

et
al

.(
20

13
)

G
T
A

P
-E

C
G

E
N

o
ex

og
en

ou
s

B
ur

ni
au

x
an

d
T
ru

on
g

(2
00

2)
;C

or
on

g
et

al
.(

20
17

)
G

T
E

M
C

G
E

N
o

se
m

i-e
nd

og
en

ou
s

Lb
D

Ja
ke

m
an

et
al

.(
20

04
);

P
an

t
(2

00
7)

IC
E

S
C

G
E

N
o

ex
og

en
ou

s*
E

bo
li

et
al

.(
20

10
);

P
ar

ra
do

an
d

D
e

C
ia

n
(2

01
4)

IG
E

M
C

G
E

Y
es

ex
og

en
ou

s
G

oe
tt

le
et

al
.(

20
07

)
IM

A
C

LI
M

-R
C

G
E

N
o

se
m

i-e
nd

og
en

ou
s

Lb
D

B
ib

as
et

al
.(

20
22

)
IM

A
G

E
O

th
er

IA
M

s
Y

es
en

do
ge

no
us

Lb
D

St
eh

fe
st

et
al

.(
20

14
)

M
A

R
K

A
L/

E
ne

rg
y

Sy
st

em
Y

es
en

do
ge

no
us

**
Lb

D
Lo

ul
ou

et
al

.(
20

16
)

T
IM

E
S

M
E

SS
A

G
E

ix
-

O
th

er
IA

M
s

Y
es

ex
og

en
ou

s*
Fr

ic
ko

et
al

.(
20

17
);

K
re

y
et

al
.(

20
20

)
G

LO
B

IO
M

M
es

sn
er

(1
99

7)
PA

C
E

C
G

E
Y

es
**

*
ex

og
en

ou
s

B
öh

ri
ng

er
et

al
.(

20
09

a)
;G

av
ar

d
et

al
.(

20
22

)
P

ho
en

ix
C

G
E

N
o

ex
og

en
ou

s
Su

e
W

in
g

et
al

.(
20

11
);

Lu
ce

na
et

al
.(

20
18

)
P

O
LE

S
E

ne
rg

y
Sy

st
em

N
o

se
m

i-e
nd

og
en

ou
s

Lb
D

K
er

am
id

as
et

al
.(

20
17

)
R

E
M

IN
D

O
pt

im
al

gr
ow

th
Y

es
en

do
ge

no
us

Lb
D

Lu
de

re
r

et
al

.(
20

15
)

W
E

M
E

ne
rg

y
Sy

st
em

N
o

ex
og

en
ou

s
IE

A
(2

02
1)

W
IT

C
H

O
pt

im
al

gr
ow

th
Y

es
en

do
ge

no
us

Lb
D

/R
&

D
E

m
m

er
lin

g
et

al
.(

20
16

)

*
A

st
ud

y
ad

di
ng

en
do

ge
no

us
ch

an
ge

ex
is

ts
,

bu
t

th
is

is
no

t
in

co
rp

or
at

ed
in

th
e

m
ai

n
m

od
el

(e
.g

.,
M

es
sn

er
(1

99
7)

fo
r

M
E

SS
A

G
E

;
P
ar

ra
do

an
d

D
e

C
ia

n
(2

01
4)

fo
r

IC
E

S;
Sa

no
et

al
.(

20
06

)
fo

r
D

N
E

21
).

**
M

os
t

ap
pl

ic
at

io
ns

do
no

t
us

e
th

e
en

do
ge

no
us

T
C

fe
at

ur
e

of
th

e
m

od
el

.
**

*
T

he
re

is
an

ex
te

ns
io

n
al

lo
w

in
g

in
te

rt
em

po
ra

lo
pt

im
is

at
io

n
of

th
e

m
od

el
(B

öh
ri

ng
er

et
al

.(
20

09
b)

).

T
ab

le
1:

R
ep

re
se

nt
at

io
n

of
te

ch
ni

ca
l

ch
an

ge
in

22
IA

M
s.

In
m

od
el

s
w

it
h

le
ar

ni
ng

-b
y-

do
in

g
(L

bD
),

th
e

co
st

of
a

te
ch

no
lo

gy
de

pe
nd

s
on

pa
st

(c
um

ul
at

iv
e)

de
pl

oy
m

en
t.

In
m

od
el

s
w

it
h

R
&

D
,t

he
co

st
of

a
te

ch
no

lo
gy

de
pe

nd
s

on
pa

st
in

ve
st

m
en

ts
in

R
&

D
.T

he
“O

th
er

IA
M

s”
ca

te
go

ry
co

nt
ai

ns
E

ne
rg

y
Sy

st
em

m
od

el
s

co
up

le
d

w
it

h
ot

he
r

m
od

ul
es

su
ch

as
la

nd
us

e.

20



4.1 Structural estimation of TC

Our structural estimation uses ‘observed’ variation in the timing of abatement and associated
abatement costs across a large number of IAM scenarios collected in two major databases (the
IPCC and the NGFS).13 This gives us an estimate of how much TC drives down abatement
costs in current IAMs, supposing the process is either exogenous or endogenous, learning-based.

The abatement cost/TC parameters are calibrated on 739 scenarios from 13 leading IAM
families,14 obtained by pooling results from the IPCC and NGFS databases. We exploit variation
between IAM scenarios in total abatement costs, MACs and emissions. If the underlying IAMs
were static, a given quantity of abatement would cost the same whenever it happens. But with
TC, a given quantity of abatement is more costly the earlier it happens. This is our identifying
variation. A model of exogenous TC can be estimated by assuming that observed cost reductions
in the dataset are driven by time. Alternatively, a model of endogenous, learning-based TC can
be estimated by assuming that observed cost reductions are a function of cumulative abatement.
We cannot estimate a mixed exogenous/endogenous model – the underlying models are either
exogenous or endogenous, and there is high collinearity between time and cumulative abatement.
However, the parameter estimates recovered from the pure exogenous and pure endogenous,
learning-based TC models could still be used in a mixed TC model, where the MAC function is
a weighted average of the two.

Parameter estimation is made using the Generalised Method of Moments, estimating total
and marginal abatement cost functions simultaneously. This allows us to obtain more robust
results: although the MAC function is more economically meaningful as it determines the FOCs
of the optimum, the MAC functions of the underlying IAMs could be non-linear. We give equal
weight to the errors of both the total and marginal abatement cost functions and assume they
are independent and normally distributed. For both exogenous and endogenous TC, we report
four specifications. First, we fit the exogenous or endogenous TC parameters on all the IAMs
in the databases. This utilises all the available variation between models, but treats IAMs
with endogenous, learning-based TC as if they had exogenous TC, and vice versa. The second
specification fits the exogenous TC parameters only on the subset of IAMs with exogenous TC,
and similarly for endogenous, learning-based TC. Third, we include a fixed-effects specification,
where we allow each model to have its own initial MAC slope.15 Fourth, we include a fixed-
effects specification where each model has its own initial MAC slope and its own TC rate. The
fixed effects control for unobserved, model-specific factors, which could confound the effects of
TC. The fourth specification is the most flexible and is the one we use. Table 2 summarises the
resulting parameter estimates (Appendix F gives the full, model-specific estimates).

For our preferred specification with model-specific initial MAC slopes and rates of TC, exoge-
nous TC reduces the MAC slope by around 3% per year to a long-run value that is around 85%
lower than its initial value. The slope halves every 25 years or so. For endogenous TC, the learn-
ing elasticity χ = 0.21 in our preferred specification. This gives a learning rate 1− 2−χ = 14%,

13The IPCC AR6 database is available at https://data.ene.iiasa.ac.at/ar6/ and the NGFS Phase 5 tran-
sition database is available at https://data.ene.iiasa.ac.at/ngfs/#/workspaces.

14Alternatively, 45 different IAMs counting multiple members of the same family, e.g., different model versions,
or energy models with and without coupling to land-use models.

15We group some of the 18 model families together to form 11 groups, to avoid non-convergence.
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i.e., the percentage reduction in the MAC slope each time cumulative abatement doubles. Larger
historical learning rates have been recorded for some technologies, such as photovoltaics (32%),
wind power (19%) and battery technologies (42%), while lower learning rates have been recorded
for other technologies, such as hydroelectricity and nuclear (both 0%) (Way et al., 2022).16 No-
tice that for both types of TC, the fit on all models and the fit only on IAMs with TC of the same
type give similar outcomes. For endogenous TC, the learning rate is faster but this is partially
offset by lower cumulative emissions at time zero, A0. Therefore, we find little evidence of a
systematic relationship between the speed and the representation of TC.

4.2 Simple IAM

We calibrate and simulate a simple numerical IAM building on the theory models of Section 2,
in particular the model with an aggregate abatement cost function. Welfare/utility is as in (1),
however, to make the model more realistic we introduce population growth n at a decreasing
rate, gn. Warming is as in (2) and damages are as in (3). Emissions are as in (4), but redefined as
greenhouse gas rather than just CO2 emissions.17 In addition, supported by the fact that BAU
emissions scenarios in the IPCC/NGFS databases are roughly constant over this century, we
assume that σ decreases at the same rate as output increases – AEEI cancels out the scale effect
on emissions. Production is implicitly given by (6), but we assume the economy is approximately
on a balanced growth path, so the economy grows at the rate of exogenous labour productivity.
In the case of exogenous TC that reduces the slope of the MAC, the parameter φ falls according
to φ(t) = φ(∞) + [φ(0)− φ(∞)] e−gφt, i.e., the slope of the MAC function starts at φ(0) and
gradually approaches φ(∞) in the long run.

To avoid unrealistic jumps in initial emissions, we also add a penalty on the speed of abate-
ment. This is a simple way to factor in the effect of adjustment costs and capital inertia,
without explicitly modelling them. Rapid abatement may require costly repurposing/stranding
of fossil-fuel-based capital, and green capital accumulation may also face bottlenecks. We as-
sume a quadratic total speed penalty on final consumption, i.e., a linear marginal speed penalty,
∂c(t)/∂v(t) = θvc(t), where abatement speed is v and the abatement speed parameter θ is re-
covered from the structural estimation above (because quantitative/policy IAMs usually contain
such constraints). Appendix C derives the effect of inertia on the model’s optimality conditions.

The optimisation problem (for cost-benefit analysis) corresponds to:

maxµ(t)
∫ ∞

0
e−(δ−n(t))t c(t)

1−η

1− η
dt, (37)

s.t. c(t) = c(0) exp

[
gt− φ(t)

2
a(t)2

(
Sa(t)

Sa(0)

)−χ
− θ

2
v(t)2 − γ

2
ζ2S(t)2

]
, (38)

16Our aggregate learning rate is not easy to compare with technology-specific learning rates, because not only
learning rates χi but also initial levels of knowledge Ai are heterogenous. Our aggregate initial level of cumulative
abatement A0 assumes endogenous TC is slower in later decades (that is, green technology as a ‘family’ matures).
Yet, there will be new fast-learning technologies in the future merely because they start with a low initial stock
of knowledge A0,i. Comparing the dynamics of an aggregate learning mechanism with disaggregated technologies
as in Appendix B is a fruitful area of future research.

17We make a corresponding adjustment to the TCRE coefficient ζ.

22



N
o

T
C

E
xo

ge
no

us
T

C
E

nd
og

en
ou

s,
le

ar
ni

ng
-b

as
ed

T
C

A
ll

m
od

el
s

A
ll

m
od

el
s

E
xo

g
m

od
el

s
F
E

s:
in

it
ia

l
F
E

s:
in

it
ia

l
A

ll
m

od
el

s
E

nd
og

m
od

el
s

F
E

s:
in

it
ia

l
F
E

s:
in

it
ia

l
M

A
C

s
M

A
C

s
&

T
C

M
A

C
s

M
A

C
s

&
T

C
φ

0
2.

7e
-0

5*
**

1.
2e

-0
4*

**
1.

2e
-0

4*
**

1.
1e

-0
4*

**
1.

1e
-0

4*
**

1.
4e

-0
4*

**
1.

3e
-0

4*
**

9.
1e

-0
5*

**
1.

1e
-0

4*
**

g φ
.0

48
**

*
.0

49
**

*
.0

13
**

*
0.

02
7*

**
φ

∞
1.

9e
-0

5*
**

1.
5e

-0
5*

**
2.

2e
-0

7
1.

7e
-0

5*
**

χ
.3

62
**

*
.3

02
**

*
.3

15
**

*
0.

21
1*

**
A

0
16

.3
**

*
12

.7
**

*
92

.5
**

*
36

.6
**

*
θ

1.
5e

-0
3*

**
-1

.7
e-

05
-2

.9
e-

05
7.

7e
-0

4*
**

4.
7e

-0
4*

**
5.

1e
-0

5
9.

2e
-0

5
6.

6e
-0

4*
**

4.
5e

-0
4*

**
N

12
39

3
12

39
3

65
45

12
39

3
12

39
3

12
39

3
58

48
12

39
3

12
39

3
L
L

4.
9e

+
04

5e
+

04
2.

7e
+

04
5.

2e
+

04
5.

2e
+

04
5.

0e
+

04
2.

3e
+

04
5.

2e
+

04
5.

2e
+

04

T
ab

le
2:

P
ar

am
et

er
es

ti
m

at
es

fo
r

fit
ti

ng
bo

th
to

ta
l
an

d
m

ar
gi

na
l
ab

at
em

en
t

co
st

s
to

th
e

IP
C

C
an

d
N

G
F
S

da
ta

ba
se

s
of

IA
M

re
su

lt
s.

T
he

m
od

el
w

it
h

ex
og

en
ou

s
T

C
ha

s
th

e
fo

llo
w

in
g

fo
rm

ul
a

fo
r

th
e

sl
op

e
of

th
e

M
A

C
fu

nc
ti

on
φ
t
=
φ
∞

+
(φ

0
−
φ
∞
)
e−

g
φ
t .

In
th

e
fix

ed
-e

ffe
ct

s
(F

E
s)

co
lu

m
ns

,w
e

re
po

rt
m

ea
n

co
effi

ci
en

ts
an

d
st

an
da

rd
er

ro
rs

.
**

*
in

di
ca

te
s

si
gn

ifi
ca

nc
e

at
th

e
1%

le
ve

l.

23



Parameter Value Source
δ 0.008 Drupp et al. (2018), 20% trimmed mean of experts
η 1.3 As above

n, −gn 0.0105, 0.013 United Nations (2022)
g 0.02 By assumption
ζ 0.0006 IPCC AR6 WGI (IPCC, 2021)
γ 0.0154 Howard and Sterner (2017)

GDP2020 US$84.537 trn IMF (2021)
PBAU 60 GtCO2eq IPCC AR6 WGIII (IPCC, 2022)

Table 3: Exogenous parameter values for the numerical simulations.

where c is baseline consumption and a(t) = Y (t)σ(t)µ(t) denotes abatement. The model is
solved as a boundary value problem with MATLAB’s bvp5c function.18 Table 3 reports the
additional, exogenous parameter values that complement the TC parameter values recovered
from the structural estimation. The model is run out to 2500 in order to avoid terminal values
affecting the optimal paths during our period of interest.

4.3 Results

Cost-benefit analysis

Figure 1 plots optimal, cost-benefit climate policies for no TC (think of this as a straw-person
scenario), exogenous TC and endogenous, learning-based TC. TC has a quantitatively large effect
on optimal emissions, temperatures and MACs, and there is a substantial difference between the
two forms of TC. The incentive to wait for abatement costs to fall is clear under exogenous TC.
Emissions fall immediately, but they are higher than under no TC until 2036. Thereafter, they
continue to fall in a roughly linear fashion and by 2100 they are much lower than under either
of the other two scenarios.19 Under endogenous, learning-based TC, emissions fall very rapidly
in the first ten years (this despite the presence of capital inertia), illustrating the incentive to
abate early in order to reduce future abatement costs. Thus, the different incentives of exogenous
and endogenous, learning-based TC are evident in the comparison of their emissions profiles.
Either form of TC results in temperatures at the end of the century that are substantially
lower than under no TC – from 3.0◦C under no TC to 2.5◦C under exogenous TC and 2.4◦C
under endogenous, learning-based TC. Exogenous TC leads to a substantial reduction in the
MAC/optimal carbon price, starting 26% lower than under no TC and with a widening gap over
time. By contrast, under endogenous TC the optimal MAC starts 12% higher than under no
TC but then grows more slowly, ending up 30% lower in 2100. Below we decompose this effect
on the optimal MAC into the SCC (optimal carbon tax) and the marginal future learning gain
(optimal deployment subsidy). The difference between the initial MAC under exogenous and
endogenous, learning-based TC is $73/tCO2. Appendix G reports an equivalent set of results
when capital inertia is ignored. Results are similar but large initial differences in emissions are
optimal.

18For the cost-effectiveness analysis, we minimise total abatement costs choosing abatement every two years
until 2200 using MATLAB’s fmincon function

19Note that under exogenous TC, emissions are substantially negative in the very long run, beyond 2100.
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Figure 1: Optimal, cost-benefit climate policies without TC, with exogenous TC and with
endogenous TC. Emissions in the top-left panel, temperature above pre-industrial in the top
right, and the MAC/carbon price on the bottom.

Cost-effectiveness analysis

Figure 2 plots optimal, cost-effective climate policies, imposing a temperature constraint of
1.75◦C as representative of the UN Paris Agreement goal of “well below 2◦C”. This is a very de-
manding scenario in general, as evidenced by the rapidly falling emissions paths and high MACs.
As in the cost-benefit case, exogenous TC leads to backloading abatement effort. Emissions are
higher than under no TC until mid-century and lower thereafter. Consequently, temperatures
hit the 1.75◦C ceiling earlier. Compared to exogenous TC, endogenous, learning-based TC leads
to more abatement in the next few decades and less abatement thereafter. Effort is marginally
more frontloaded in order to realise endogenous future learning gains. However, unlike the cost-
benefit case, endogenous, learning-based TC does not lead to lower emissions in the short run
than under no TC, rather they are higher. This was identified as a possible outcome in the
theory section. In a very ambitious abatement scenario, the cost-reduction effect of endogenous,
learning-based TC outweighs the future learning effect. The difference in MACs due to TC is
very large in this 1.75◦C cost-effectiveness scenario. The MAC under exogenous TC is 26% lower
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Figure 2: Optimal, cost-effective climate policies without TC, with exogenous TC and with
endogenous TC. Emissions in the top-left panel, temperature above pre-industrial in the top
right, and the MAC/carbon price on the bottom.

in 2020 than under no TC, widening to 44% in 2050. This is interpretable as the difference in
the optimal carbon tax. The MAC under endogenous, learning-based TC is 33% lower in 2020
than under no TC and 46% lower in 2050. This contains both the optimal carbon tax and
deployment subsidy.20

Estimating the endogenous future gain effect

The above figures show different effects of exogenous and endogenous TC on optimal climate
policies. The main conceptual difference between the two TC processes is the endogenous future
gain effect, i.e., internalising the marginal external gain in abatement knowledge. However,
the above results do not isolate the endogenous future gain effect. So, Figure 3 decomposes the
optimal MAC under endogenous, learning-based TC into its two components, the SCC/Hotelling
price and the marginal future learning gain. An optimal policy would comprise a carbon tax

20Note that the MAC paths under the two forms of TC cross each other in 2060 (not shown in the figure),
with the MAC under exogenous TC subsequently being lower than under endogenous, learning-based TC.
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Figure 3: Decomposition of the optimal MAC into the SCC/Hotelling price and the endogenous
future gain effect (EFG), for the cost-benefit (left) and cost-effectiveness (right) problems.

equal to the former and a deployment subsidy equal to the latter.
Looking first at the cost-benefit problem, the SCC is $143/tCO2 in 2020, $185/tCO2 in

2030 and $303/tCO2 in 2050. The marginal future learning gain is $70/tCO2 in 2020, falling to
$48/tCO2 in 2030 and roughly flat thereafter. In the cost-effectiveness case, the Hotelling price
is similar to the SCC, at $144/tCO2 in 2020, $195/tCO2 in 2030 and $371/tCO2 in 2050. But
the marginal future learning gain is larger at $98/tCO2 in 2020 and $73/tCO2 in 2030. One
might wonder why the initial Hotelling price is not much larger than the SCC given cumula-
tive emissions are much lower. The answer is twofold: first, the Hotelling path increases at a
steeper rate. This in turn increases the forward-looking endogenous learning gains, which make
abatement cheaper.

But how does the dynamic incentive created by endogenous TC impact on optimal emissions,
temperatures and MACs? This requires a different kind of analysis, because this dynamic incen-
tive also affects the SCC. That is, take the endogenous future gain effect away and the SCC also
changes. Here we develop a method of isolating the dynamic incentive of endogenous, learning-
based TC. The method proceeds in two steps. The first step is to estimate a time-dependent
MAC function (i.e., exogenous TC), with a MAC that is identical to the endogenous TC model
at each point in time. This can be achieved using a sufficiently high-order polynomial. The sec-
ond step is to take the exogenous-TC MAC curve so estimated, and use it to recalculate optimal
model trajectories. Any difference between the optimal paths of the endogenous, learning-based
TC model and its exogenous replica must then be down to the dynamic incentive of endogenous
TC (see Appendix E.1).

Figure 4 plots the results. Emissions are 10% lower in 2050 and 5% lower in 2100 due to the
endogenous future gain effect, leading to 0.13◦C less warming at the end of the century. The
MAC starts 41% higher and is 9% higher in 2050. These results indicate that, insofar as TC is
endogenous and learning-based, models that do not include the incentive structure of a learning
externality produce too little abatement, optimal MACs that are too low, and temperatures
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Figure 4: Comparison of a model of endogenous TC with a model without TC, but where the
static MAC function is calibrated to give the same marginal cost and quantity of abatement at
each point in time as the endogenous TC model. The difference between the paths is exactly the
endogenous future gain effect. Emissions in the top-left panel, temperature above pre-industrial
in the top right, and the MAC/carbon price on the bottom.

that are too high. In our review of models, we showed that TC is exogenous in most IAMs, but
this observation also applies to models of semi-endogenous TC, as these also omit the dynamic
incentive. The estimates here provide an upper bound on the bias though, because they are
derived from comparing a model of pure exogenous TC and a model of pure endogenous TC.
Reality likely incorporates both.

Appendix E.2 further compares a model of exogenous TC with a static model with identical
MACs at each point in time. For example, if, say, the exogenous TC model projects zero
emissions in 2050 at a marginal cost of $250/tCO2, the static model would have the same
MAC at zero emissions. The static MAC function will be concave, since TC makes the linear
instantaneous MAC function fall over time. We show theoretically that the static approximation
of the exogenous TC model is exact under certain assumptions and quantitatively that it is
almost exact under more general assumptions. By contrast, a static model cannot imitate the
dynamics of a model with endogenous, learning-based TC.
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Sensitivity analysis

Here we analyse the sensitivity of the optimal, cost-benefit policy to variation in the abatement
cost/TC parameters, and the discount rate. For the former variation, we use the standard errors
from the GMM estimates in Table 2. For the latter, we use the range of responses from the
expert survey on discounting by Drupp et al. (2018). The results are summarised in Table 4,
with detailed results contained in Appendix G. There are four scenarios: low discount rate; high
discount rate; slow TC; fast TC.

Reducing the discount rate leads to lower emissions/temperatures and higher MACs, as
expected. Increasing the discount rate leads to the opposite effects. The effects of TC are
qualitatively the same under different discount rates, except that with a low discount rate,
endogenous, learning-based TC leads to a lower initial MAC than under no TC, not a higher
one. The explanation for this is the same as in the cost-effectiveness case above: when emissions
fall very fast, the cost reduction effect outweighs the endogenous learning effect.

If TC is slow, emissions/temperatures are higher, but so are MACs.21 The opposite is true
for fast TC. The comparative effects of exogenous and endogenous TC are qualitatively the same
whether TC is slow or fast.22

5 Discussion

Our aim in this paper has been to assess, both qualitatively and quantitatively, the effect of
different representations of TC in the IAM literature on optimal climate policy. In doing so,
we have surveyed a wide range of models distributed across several strands of literature, in-
cluding mostly theoretical contributions to environmental economics and applied, quantitative
contributions to policy. TC has been represented in multiple ways and has complex dynamic
effects on emissions, temperatures, costs, taxes and subsidies. We have tried to make sense of
the different approaches by setting up a common theoretical and quantitative framework, within
which different TC mechanisms can be analysed.

TC matters. Exogenous TC that makes future abatement cheaper creates an incentive to
abate less in the short run and more in the long run if temperature is optimally chosen. Emis-
sions are much lower in the long run according to our quantitative analysis, resulting in 0.5◦C
less warming in 2100. If temperature is constrained, exogenous TC that makes future abate-
ment cheaper creates a similar incentive to backload abatement and hit the temperature ceiling
faster. If exogenous TC happens instead through autonomous decarbonisation, it plausibly re-
duces emissions in the short run but increases them in the long run. Again, if temperature is
constrained, abatement is backloaded and the temperature ceiling is hit faster. Endogenous TC
based on learning-by-doing also makes future abatement cheaper, but there is the additional and
opposing learning effect, which incentivises early abatement. Our quantitative results suggests
that under cost-benefit analysis, the latter effect outweighs the former so that emissions and
temperatures are always lower than under no TC. The results also suggest that the optimal

21Under endogenous, learning-based TC, the MAC is lower under low TC for just the first two years.
22Care should be taken in comparing exogenous and endogenous, learning-based TC under low/high rates,

however – setting the parameters at plus/minus one standard deviation is not assured to produce comparable
rates of TC.
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Emissions (GtCO2) Temperatures (◦C) MACs ($/tCO2)
2030 2050 2100 2030 2050 2100 2020 2050

Main specification
No TC 39.10 38.60 35.33 1.45 1.91 3.03 190.62 421.05

Exogenous TC 40.93 32.31 6.91 1.46 1.90 2.49 140.32 285.47
Endogenous TC 30.48 25.74 17.81 1.41 1.75 2.40 213.26 345.54

Low discount rate
No TC 17.80 20.03 19.65 1.34 1.57 2.18 383.72 745.72

Exogenous TC 30.81 21.11 -3.79 1.42 1.73 1.97 224.63 394.30
Endogenous TC 9.89 6.59 4.34 1.32 1.41 1.58 343.94 472.22

High discount rate
No TC 50.00 48.90 45.57 1.50 2.09 3.51 86.22 221.19

Exogenous TC 48.88 42.26 19.64 1.50 2.05 2.96 76.62 184.71
Endogenous TC 45.37 41.41 32.56 1.48 2.00 3.11 107.23 216.68

Slow technical change
No TC 39.10 38.60 35.33 1.45 1.91 3.03 190.62 421.05

Exogenous TC 40.94 33.35 9.92 1.46 1.91 2.56 143.75 294.66
Endogenous TC 32.65 29.20 22.46 1.42 1.79 2.57 209.88 367.71

Fast technical change
No TC 39.10 38.60 35.33 1.45 1.91 3.03 190.62 421.05

Exogenous TC 40.88 31.21 4.29 1.46 1.90 2.42 137.29 277.34
Endogenous TC 28.27 22.03 12.96 1.41 1.70 2.22 215.44 321.47

Table 4: Sensitivity analysis on the discount rate and the rate of technical change. The low
discount rate corresponds to δ = 0 and the high discount rate to δ = 0.02. Further sensitivity
analysis on η can be found in Appendix G. Fast (slow) TC corresponds to plus (minus) one
standard deviation for gφ in the model of exogenous TC and for χ and A0 in the model of
endogenous, learning-based TC.
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paths under exogenous, MAC-reducing TC and endogenous, learning-based TC diverge a lot.
Under cost-benefit analysis, emissions, temperatures and MACs are substantially different. Un-
der cost-effectiveness analysis with a tight temperature constraint, emissions and temperatures
are necessarily more similar, but MACs are even more dissimilar. We decompose the difference
in the MAC into the difference in the SCC and the difference in the learning externality, with
implications for optimal Pigouvian taxes and learning subsidies respectively. Models of endoge-
nous, R&D-based TC create an incentive for early action through subsidising R&D, but optimal
emissions, temperature and MAC/carbon tax paths are plausibly isomorphic with exogenous
TC. The two forms of endogenous TC that we consider, based on learning-by-doing or R&D,
can imply different technology cost dynamics, an issue we feel deserves further analysis and
discussion in the future. We try to get this discussion started with an analytical comparison of
technology cost paths and an illustration of how learning and R&D can be combined within a
single model of relatively low complexity.

Sensitivity analysis reveals that our results are qualitatively robust to variation in the rate
of TC (and the discount rate). The sensitivity analysis on the rate of TC, carried out using the
standard errors of our statistical estimates, also provides an insight into the likely impacts of TC
on optimal trajectories, in case the IAM literature as a whole underestimates future technology
cost reductions. This is an implication of recent work by Way et al. (2022), who argue IAMs
underestimate deployment rates for renewable energy technologies and overestimate their costs.
Supposing this critique has some validity, we might then be more guided by our results for high-
end TC as calibrated on the IAM databases.23 Mechanically, fast TC, so defined and measured,
results in a larger quantitative effect on optimal emissions, temperatures and carbon prices.

Uncertainty about TC is an important feature of the problem. Although there exist many
papers with sensitivity analysis on technological parameters, like ours, to the best of our knowl-
edge the literature has not yet investigated optimal emissions under uncertainty in a dynamic
model where information on TC is gradually discovered. A fully dynamic stochastic model goes
beyond the scope of this paper, but from our analytical solutions we can speculate about the
effect of uncertainty.

Since total abatement costs are convex in abatement, Jensen’s inequality indicates that the
expected value of future abatement costs increases under uncertainty. This increases future
abatement costs relative to current, certain abatement costs, and is an argument for earlier
abatement with a higher initial MAC. The higher MAC can be understood as a risk premium
society is willing to pay to insure against the possible outcome of slower-than-expected TC.

But how much this matters depends as usual on whether TC is exogenous or endogenous,
and whether the objective is cost-benefit or cost-effectiveness. When TC is exogenous and
the objective is cost-effectiveness, the above effect is the only one at play and in principle the
risk premium on TC uncertainty could be quantitatively large. In the case of endogenous TC,
we would expect the risk premium to be lower, because we know from our analysis that the

23In our fast TC scenario, abatement costs are reduced by one third between 2020 and 2040. This corresponds to
the cost reduction for wind technologies in the fast transition scenario of Way et al. (2022). Their cost reductions
for batteries and electrolysers are even larger because these technologies start with a very low cumulative installed
capacity. By contrast, they argue that other technologies such as carbon capture and storage and nuclear have
seen almost no cost reductions over the last decades.
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endogenous future gain effect attenuates the effect of TC uncertainty on the initial MAC. In
other words, since endogenous TC has a smaller impact on the optimal MAC (compared to
exogenous TC), the societal cost of wrongly anticipating TC is lower. Similarly, in a cost-benefit
analysis, lower-than-expected TC leads to a higher optimal peak temperature, attenuating the
initial price/MAC adjustment. Again, since the effect of TC on the initial MAC is lower than
under cost-effectiveness, the social cost of wrongly anticipating TC and the corresponding risk
premium are lower. Combining both effects, i.e. in a cost-benefit analysis with endogenous TC,
the effect of TC on the initial MAC should be small.

Note that these are mere first-order effects of adding uncertainty on parameters χ and gφ.
There are other effects that go beyond this intuition, for example when the uncertainty regarding
the growth rate of the economy is correlated with uncertainty regarding TC. Also, uncertainty
affects investment incentives. In the case of long-term, irreversible investments with large uncer-
tainty over the profitability of the technology, uncertainty leads to an incentive to postpone the
investment and wait for new information, a.k.a. option value, the value of keeping options open.
For example, uncertainty about the availability of nuclear fusion in the future can create an
incentive to postpone the investment in a new nuclear fission plant today. Investigating optimal
emissions under technological uncertainty is therefore a fruitful avenue for future research.

32



References

Acemoglu, D., Aghion, P., Bursztyn, L., Hemous, D., 2012. The environment and directed
technical change. American Economic Review 102, 131–66.

Acemoglu, D., Akcigit, U., Hanley, D., Kerr, W., 2016. Transition to clean technology. Journal
of Political Economy 124, 52–104.

Bibas, R., Cassen, C., Crassous, R., Guivarch, C., Hamdi-Cherif, M., Hourcade, J.C., Leblanc,
F., Méjean, A., Broin, E.Ó., Rozenberg, J., et al., 2022. IMpact Assessment of CLIMate
policies with IMACLIM-R 1.1. Model documentation version 1.1.

van den Bijgaart, I., Gerlagh, R., Liski, M., 2016. A simple formula for the social cost of carbon.
Journal of Environmental Economics and Management 77, 75–94.

Böhringer, C., Löschel, A., Moslener, U., Rutherford, T.F., 2009a. EU climate policy up to
2020: an economic impact assessment. Energy Economics 31, S295–S305.

Böhringer, C., Löschel, A., Rutherford, T.F., 2009b. Policy analysis based on computable equi-
librium (PACE), in: Bosetti, V., Gerlagh, R., Schleicher, S.P. (Eds.), Modelling Sustainable
Development. Edward Elgar Publishing.

Böhringer, C., Peterson, S., Rutherford, T.F., Schneider, J., Winkler, M., 2021. Climate policies
after paris: Pledge, trade and recycle: Insights from the 36th energy modeling forum study
(emf36). Energy Economics 103, 105471.

Bond-Lamberty, B., Patel, P., Lurz, J., pkyle, kvcalvin, Smith, S., abigailsnyder, Dorheim, K.R.,
russellhz, mbins, Link, R., skim301, nealtg, Narayan, K., Turner, S.W.D., S., A., Feng, L.,
enlochner, cwroney, Lynch, C., jhoring, Khan, Z., siddarthd96, orourkepr, JonathanHuster,
Haewon, Ou, Y., Iyer, G., mwisepnnl, marideeweber, 2022. Jgcri/gcam-core: Gcam 6.0.
doi:10.5281/zenodo.6619287.

Bramoullé, Y., Olson, L.J., 2005. Allocation of pollution abatement under learning by doing.
Journal of Public Economics 89, 1935–1960.

Bretschger, L., Ramer, R., Schwark, F., 2011. Growth effects of carbon policies: applying a fully
dynamic cge model with heterogeneous capital. Resource and Energy Economics 33, 963–980.

Buonanno, P., Carraro, C., Galeotti, M., 2003. Endogenous induced technical change and the
costs of kyoto. Resource and Energy economics 25, 11–34.

Burniaux, J.M., Truong, T.P., 2002. GTAP-E: an energy-environmental version of the GTAP
model. Technical Report. GTAP Technical Papers.

Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle,
P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., Wise, M., 2017. The
SSP4: a world of deepening inequality. Global Environmental Change 42, 284–296.

Cambridge Econometrics, 2019. E3ME technical manual v6.1.

33

http://dx.doi.org/10.5281/zenodo.6619287


Capros, P., Van Regemorter, D., Paroussos, L., Karkatsoulis, P., Fragkiadakis, C., Tsani, S.,
Charalampidis, I., Revesz, T., Perry, M., Abrell, J., 2013. GEM-E3 model documentation.
JRC Scientific and Policy Reports 26034.

Château, J., Dellink, R., Lanzi, E., 2014. An overview of the OECD ENV-linkages model.
Technical Report. OECD.

Chen, Y.H., Paltsev, S., Reilly, J.M., Morris, J.F., Babiker, M.H., 2015. The MIT EPPA6 model:
economic growth, energy use, and food consumption. Technical Report. MIT Joint Program
on the Science and Policy of Global Change.

Clarke, L., Jiang, K., Akimoto, K., et al., 2014. Asessing transformation pathways, in: Eden-
hofer, O., Pichs-Madruga, R., Sokona, Y., et al. (Eds.), Climate Change 2014: Mitigation of
Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK
and New York, NY, USA.

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.L., Fichefet, T., Friedlingstein, P., Gao, X.,
Gutowski, W., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., A.J., W., Wehner, M.,
2013. Long-term climate change: projections, commitments and irreversibility, in: Stocker,
T., Qin, C., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex,
V., Midgeley, P. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.

Corong, E.L., Hertel, T.W., McDougall, R., Tsigas, M.E., Van Der Mensbrugghe, D., 2017. The
standard GTAP model, version 7. Journal of Global Economic Analysis 2, 1–119.

Di Maria, C., Smulders, S., 2017. A paler shade of green: Environmental policy under induced
technical change. European economic review 99, 151–169.

Dietz, S., van der Ploeg, F., Rezai, A., Venmans, F., 2021. Are economists getting climate
dynamics right and does it matter? Journal of the Association of Environmental and Resource
Economists 8, 895–921.

Dietz, S., Venmans, F., 2019. Cumulative carbon emissions and economic policy: in search of
general principles. Journal of Environmental Economics and Management 96, 108–129.

Drupp, M.A., Freeman, M.C., Groom, B., Nesje, F., 2018. Discounting disentangled. American
Economic Journal: Economic Policy 10, 109–34.

Eboli, F., Parrado, R., Roson, R., 2010. Climate-change feedback on economic growth: explo-
rations with a dynamic general equilibrium model. Environment and Development Economics
15, 515–533.

Emmerling, J., Drouet, L., Reis, L.A., Bevione, M., Berger, L., Bosetti, V., Carrara, S., De Cian,
E., D’Aertrycke, G.D.M., Longden, T., et al., 2016. The WITCH 2016 model-documentation
and implementation of the shared socioeconomic pathways. Technical Report.

34



Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger,
M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann,
G., Krey, V., McCollum, D.L., Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp,
W., Riahi, K., 2017. The marker quantification of the Shared Socioeconomic Pathway 2: a
middle-of-the-road scenario for the 21st century. Global Environmental Change 42, 251–267.

Fried, S., 2018. Climate policy and innovation: A quantitative macroeconomic analysis. Amer-
ican Economic Journal: Macroeconomics 10, 90–118.

Fujimori, S., Hasegawa, T., Masui, T., 2017a. Aim/cge v2.0: Basic feature of the model, in:
Fujimori, S., Kainuma, M., Masui, T. (Eds.), Post-2020 Climate Action: Global and Asian
Perspectives. Springer Singapore, Singapore, pp. 305–328.

Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D.S., Dai, H., Hijioka, Y.,
Kainuma, M., 2017b. SSP3: AIM implementation of Shared Socioeconomic Pathways. Global
Environmental Change 42, 268–283.

Gavard, C., Voigt, S., Genty, A., 2022. Using emissions trading schemes to reduce heterogeneous
distortionary taxes: the case of recycling carbon auction revenues to support renewable energy.
Energy Policy 168, 113–133.

Gerlagh, R., Kverndokk, S., Rosendahl, K.E., 2009. Optimal timing of climate change policy:
interaction between carbon taxes and innovation externalities. Environmental and Resource
Economics 43, 369–390.

Gillingham, K., Newell, R.G., Pizer, W.A., 2008. Modeling endogenous technological change for
climate policy analysis. Energy Economics 30, 2734–2753.

Gillingham, K., Nordhaus, W., Anthoff, D., Blanford, G., Bosetti, V., Christensen, P., McJeon,
H., Reilly, J., 2018. Modeling uncertainty in integrated assessment of climate change: a mul-
timodel comparison. Journal of the Association of Environmental and Resource Economists
5, 791–826.

Goettle, R.J., Ho, M.S., Jorgenson, D.W., Slesnick, D.T., Wilcoxen, P.J., EP-W, E.C., 2007.
IGEM, an inter-temporal general equilibrium model of the US economy with emphasis on
growth, energy and the environment. Technical Report Model documentation in support
of ongoing policy analysis for the US Environmental Protection Agency, EPA Contract No.
EP-W-05-035.

Golosov, M., Hassler, J., Krusell, P., Tsyvinski, A., 2014. Optimal taxes on fossil fuel in general
equilibrium. Econometrica 82, 41–88.

Goulder, L.H., Mathai, K., 2000. Optimal CO2 abatement in the presence of induced techno-
logical change. Journal of Environmental Economics and Management 39, 1–38.

Greaker, M., Pade, L.L., 2009. Optimal carbon dioxide abatement and technological change:
should emission taxes start high in order to spur R&D? Climatic Change 96, 335–355.

35



Grubb, M., Köhler, J., Anderson, D., 2002. Induced technical change in energy and environ-
mental modeling: analytic approaches and policy implications. Annual Review of Energy and
the Environment 27, 271–308.

Grubb, M., Lange, R.J., Cerkez, N., Sognnaes, I., Wieners, C., Salas, P., 2024. Dynamic
determinants of optimal global climate policy. Structural Change and Economic Dynamics
71, 490–508.

Grubb, M., Wieners, C., Yang, P., 2021. Modeling myths: on DICE and dynamic realism in
integrated assessment models of climate change mitigation. Wiley Interdisciplinary Reviews:
Climate Change 12, e698.

Hart, R., 2019. To everything there is a season: Carbon pricing, research subsidies, and the
transition to fossil-free energy. Journal of the Association of Environmental and Resource
Economists 6, 349–389.

Hassler, J., Krusell, P., Olovsson, C., 2021. Directed technical change as a response to natural
resource scarcity. Journal of Political Economy 129, 3039–3072.

Howard, P.H., Sterner, T., 2017. Few and not so far between: a meta-analysis of climate damage
estimates. Environmental and Resource Economics 68, 197–225.

IEA, 2021. World Energy Model Documentation.

IMF, 2021. World Economic Outlook Database.

IPCC, 2018. Global Warming of 1.5C: An IPCC Special Report on the Impacts of Global Warm-
ing of 1.5C above pre-industrial levels and related global greenhouse gas emission pathways, in
the context of strengthening the global response to the threat of climate change, sustainable
development, and efforts to eradicate poverty. Cambridge University Press, Cambridge, UK
and New York, NY, USA. URL: https://www.ipcc.ch/sr15/.

IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, UK and New York, NY, USA. URL: https:

//report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf, doi:10.1017/9781009157896.

IPCC, 2022. Climate Change 2022: Mitigation of Climate Change. Contribution of
Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press, Cambridge, UK and New York, NY,
USA. URL: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_
FullReport.pdf, doi:10.1017/9781009157926.

Jacoby, H.D., Reilly, J.M., McFarland, J.R., Paltsev, S., 2006. Technology and technical change
in the MIT EPPA model. Energy Economics 28, 610–631.

Jakeman, G., Hanslow, K., Hinchy, M., Fisher, B.S., Woffenden, K., 2004. Induced innovations
and climate change policy. Energy Economics 26, 937–960.

36

https://www.ipcc.ch/sr15/
https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf
https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf
http://dx.doi.org/10.1017/9781009157896
https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf
https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf
http://dx.doi.org/10.1017/9781009157926


Jorgenson, D.W., Wilcoxen, P.J., 1993. Reducing us carbon emissions: an econometric general
equilibrium assessment. Resource and Energy Economics 15, 7–25.

Keramidas, K., Kitous, A., Després, J., Schmitz, A., Diaz Vazquez, A., Mima, S., et al., 2017.
POLES-JRC model documentation. Publications Office of the European Union 10, 225347.

Krey, V., Havlik, P., Kishimoto, P., Fricko, O., Zilliacus, J., Gidden, M., Strubegger,
M., Kartasasmita, G., Ermolieva, T., Forsell, N., et al., 2020. MESSAGEix-GLOBIOM
Documentation-2020 release. Technical Report. IIASA.

Kuik, O., Brander, L., Tol, R.S., 2009. Marginal abatement costs of greenhouse gas emissions:
a meta-analysis. Energy Policy 37, 1395–1403.

Löschel, A., 2002. Technological change in economic models of environmental policy: a survey.
Ecological Economics 43, 105–126.

Loulou, R., Goldstein, G., Kanudia, A., Lehtila, A., Remne, U., 2016. Documentation for the
TIMES model-Part 1 2016. Technical Report.

Lucena, A.F., Hejazi, M., Vasquez-Arroyo, E., Turner, S., Köberle, A.C., Daenzer, K., Rochedo,
P.R., Kober, T., Cai, Y., Beach, R.H., et al., 2018. Interactions between climate change
mitigation and adaptation: the case of hydropower in Brazil. Energy 164, 1161–1177.

Luderer, G., Leimbach, M., Bauer, N., Kriegler, E., Baumstark, L., Bertram, C., Giannousakis,
A., Hilaire, J., Klein, D., Levesque, A., et al., 2015. Description of the REMIND model
(Version 1.6). Technical Report.

Manne, A., Richels, R., 2004. The impact of learning-by-doing on the timing and costs of CO2
abatement. Energy Economics 26, 603–619.

Mercure, J.F., Pollitt, H., Edwards, N.R., Holden, P.B., Chewpreecha, U., Salas, P., Lam, A.,
Knobloch, F., Vinuales, J.E., 2018. Environmental impact assessment for climate change
policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy
Strategy Reviews 20, 195–208.

Messner, S., 1997. Endogenized technological learning in an energy systems model. Journal of
Evolutionary Economics 7, 291–313.

Nikas, A., Doukas, H., Papandreou, A., 2019. A detailed overview and consistent classification
of climate-economy models, in: Doukas, H., Flamos, A., Lieu, J. (Eds.), Understanding Risks
and Uncertainties in Energy and Climate Policy: Multidisciplinary Methods and Tools for a
Low Carbon Society. Springer.

Nordhaus, W.D., 2017. Revisiting the social cost of carbon. Proceedings of the National Academy
of Sciences 114, 1518–1523.

Octaviano, C., Paltsev, S., Gurgel, A.C., 2016. Climate change policy in Brazil and Mexico:
Results from the MIT EPPA model. Energy Economics 56, 600–614.

37



Pant, H., 2007. Global Trade and Environment Model (GTEM). Technical Report. Australian
Bureau of Agricultural and Resource Economics and Sciences Canberra, Australia.

Parrado, R., De Cian, E., 2014. Technology spillovers embodied in international trade: In-
tertemporal, regional and sectoral effects in a global CGE framework. Energy Economics 41,
76–89.

Popp, D., 2004. ENTICE: endogenous technological change in the DICE model of global warm-
ing. Journal of Environmental Economics and Management 48, 742–768.

Rezai, A., Van der Ploeg, F., 2016. Intergenerational inequality aversion, growth, and the role of
damages: Occam’s rule for the global carbon tax. Journal of the Association of Environmental
and Resource Economists 3, 493–522.

Riahi, K., Schaeffer, R., Arango, J., Calvin, K., Guivarch, C., Hasegawa, T., Jiang, K., Kriegler,
E., Matthews, R., Peters, G., Rao, A., Robertson, S., Sebbit, A., Steinberger, J., Tavoni, M.,
Van Vuuren, D., 2022. Mitigation pathways compatible with long-term goals, in: Shukla,
P., Skea, J., Slade, R., Khourdajie, A.A., van Diemen, R., McCollum, D., Pathak, M.,
Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., Malley,
J. (Eds.), Climate Change 2022: Mitigation of Climate Change. Contribution of Work-
ing Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. book sec-
tion 3. URL: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_
Chapter03.pdf, doi:10.1017/9781009157926.005.

Sano, F., Akimoto, K., Homma, T., Tomoda, T., 2006. Analysis of technological portfolios for
co2 stabilizations and effects of technological changes. The Energy Journal 27, 141–162.

Smulders, S., De Nooij, M., 2003. The impact of energy conservation on technology and economic
growth. Resource and Energy Economics 25, 59–79.

Stehfest, E., van Vuuren, D., Bouwman, L., Kram, T., et al., 2014. Integrated assessment of
global environmental change with IMAGE 3.0: model description and policy applications.
Technical Report. Netherlands Environmental Assessment Agency (PBL).

Sue Wing, I., 2006. Representing induced technological change in models for climate policy
analysis. Energy Economics 28, 539–562.

Sue Wing, I., Daenzer, K., Fisher-Vanden, K., Calvin, K., 2011. Phoenix model documenta-
tion. Technical Report. Maryland: Joint Global Change Research Institute, Pacific Northwest
National Laboratory.

Traeger, C.P., 2023. Ace – analytic climate economy. American Economic Journal: Economic
Policy 15, 372–406.

United Nations, 2022. World Population Prospects 2022, Online Edition. United Nations,
Department of Economic and Social Affairs, Population Division.

38

https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter03.pdf
https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter03.pdf
http://dx.doi.org/10.1017/9781009157926.005


van Vuuren, D.P., van der Wijst, K.I., Marsman, S., van den Berg, M., Hof, A.F., Jones, C.D.,
2020. The costs of achieving climate targets and the sources of uncertainty. Nature Climate
Change 10, 329–334.

Wada, K., Sano, F., Akimoto, K., Homma, T., 2012. Assessment of Copenhagen pledges with
long-term implications. Energy Economics 34, S481–S486.

Way, R., Ives, M.C., Mealy, P., Farmer, J.D., 2022. Empirically grounded technology forecasts
and the energy transition. Joule 6, 2057–2082.

Weyant, J., 2017. Some contributions of integrated assessment models of global climate change.
Review of Environmental Economics and Policy 11, 115–137.

Wilkerson, J.T., Cullenward, D., Davidian, D., Weyant, J.P., 2013. End use technology choice
in the national energy modeling system (nems): An analysis of the residential and commercial
building sectors. Energy Economics 40, 773–784.

Van der Zwaan, B.C., Gerlagh, R., Schrattenholzer, L., et al., 2002. Endogenous technological
change in climate change modelling. Energy Economics 24, 1–19.

39



Appendices for Online Publication

In Appendices A-E, we formally derive the analytical results in Section 2. Our strategy is to use
the most general possible model. That is, to the extent possible we derive results for general
functional forms, which then apply to the specific functions used in Section 2. This tends to
keep the mathematical notation uncluttered and provides a set of results of potentially broad
use, while maintaining a model structure in the main text that is more immediately relatable
to the literature. Some results hold under more general conditions than others, therefore, as we
proceed through the analysis we will make more specialised assumptions. Appendices F and G
contain further results from our quantitative analysis.

Appendix A General model

For ease of notation, we omit time subscripts unless confusion is possible. Other subscripts are
used to indicate partial derivatives. Therefore, we rename cumulative abatement A, instead of
Sa in the main text.

Define a knowledge stock H that accumulates according to the following equation of motion,
which depends on time t, the existing knowledge stock, investment I, and abatement a =

PBAU − P :
Ḣ = ψ(t,H, I, a). (39)

The most intuitive interpretation of H is a knowledge stock, but it can be any technologi-
cal parameter that is path-dependent. Assume the function ψ is twice differentiable in all its
arguments. The presence of H in the function may represent standing on the shoulders of gi-
ants (ψH > 0) or fishing out (ψH < 0). We assume ψH < r, i.e., the consumption discount
rate, to avoid a bang-bang solution. The knowledge stock may increase over time (∂ψ∂t ≥ 0),
e.g., via technological spillovers from non-green sectors, as a response to green R&D invest-
ment (ψI ≥ 0;ψII ≤ 0), or from learning-by-doing as a result of clean technology deployment
(ψa ≥ 0;ψaa < 0).

As in the main text, we assume that warming is proportional to cumulative emissions, that
is, T = ζS with

St = S0 +

∫ t

0
Pudu⇔ Ṡ = P. (40)

A.1 Cost-benefit analysis

Consider a consumption function c (a,H, I, T, t), twice differentiable in all its arguments, where
positive abatement is costly −ca ≥ 0, the MAC function is increasing (−caa > 0), and emissions
beyond BAU are useless −ca|a≤0 = 0. Knowledge decreases total and marginal abatement
costs (cH > 0;−caH > 0), and green R&D investment reduces consumption (cI = 1). Climate
warming causes convex damages (cT < 0, cTT < 0). We assume that apart from abatement costs,
green R&D and damages, the economy is on a balanced growth path with a constant savings
rate as in Dietz and Venmans (2019). As a result, we do not distinguish between production
and consumption.
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Population at time zero is normalised to one and grows at rate n. The utility function has
the standard properties uc > 0, ucc < 0. The social planner maximises welfare as discounted
utility,

max{a,I}
∫ ∞

0
e−(δ−n)tu (c (a,H, I, T, t)) dt, (41)

subject to
Ṡ = PBAU − a; Ḣ = ψ(t,H, I, a);S0, H0 given. (42)

The current value Hamiltonian of the problem is

H = u (c (a,H, I, T (S), t))− λ (PBAU − a) + µψ (t,H, I, a) . (43)

The FOCs include
ucca + µψa = λ, (44)

λ̇ = (δ − n)λ− ucζcT , (45)

uc = µψI , (46)

µ̇ = (δ − n)µ− uccH − µψH . (47)

The transversality conditions are limt→∞λe
−(δ−n)t = 0 and limt→∞µe

−(δ−n)t = 0.
Integrating (45) and (47), and plugging the integrals into (44), we obtain

cat =

∫ ∞

t
e−(δ−n)(u−t)ucu

uct
ζ (−cTu) du+ ψat

∫ ∞

t
e−

∫ u
t ((δ−n)+ψH)dsucu

uct
cHudu. (48)

Acknowledging that lnucuuct =
∫ u
t
u̇c
uc
ds and defining the discount rate r = δ − n − u̇c

uc
, we obtain

that the MAC equals the present value of future marginal damages (the SCC) plus the future
learning gain from an extra tonne of abatement today:

cat︸︷︷︸
MAC

=

∫ ∞

t
e−

∫ u
t rdsζ (−cTu) du︸ ︷︷ ︸
SCC

+

knowledge increment︷︸︸︷
ψat

...and its effect on abatement costs︷ ︸︸ ︷∫ ∞

t
e−

∫ u
t (r+ψH)dscHudu︸ ︷︷ ︸

Endog. Future Gain

. (49)

This corresponds to Equation (12) in the main text, i.e., the optimality condition for the model
with endogenous TC based on learning-by-doing. In the absence of learning-by-doing, the en-
dogenous future gain term drops out, giving the optimality condition for exogenous TC in
Equation (9).

Differentiating (44) and combining it with the other FOC gives

ċa = rca +
ψHψa − ψ̇a

ψI
+ cHψa − ζcT , (50)
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which after dividing through by ca gives the growth rate of the MAC,

ċa
ca

= r +
cHψa +

ψH
ψI
ψa − ψ̇a

ψI

ca︸ ︷︷ ︸
Endog. Future Gain

− ζcT
ca︸︷︷︸

Damages

. (51)

Peak warming

Lemma 1 Assume that from the point at which peak warming is reached the marginal abatement
cost and damage functions are static. Then TC decreases peak warming.

Proof: If the MAC and damage functions are static from the point at which peak warming
is reached, peak warming is also the steady state. If we conjecture that Ṗ = 0, the MAC,
temperature and hence marginal damages will be constant, Equation (49) is satisfied and has
the solution

MAC∗ =
−ζc∗T
r

. (52)

Since a model with TC has a lower MAC in the steady state, from (52) −c∗T is lower. And since
marginal damages are increasing in temperature, the steady state temperature is lower. ■

This lemma depends on static MACs and marginal damages after peak warming, which
ensure peak warming is the model’s steady state. However, peak warming may not be a steady
state. One special case is where both the MAC and damage functions are proportional to
consumption. In this case, r in (52) is replaced by r − g and the claim still holds, in fact.

Moreover, in the specialised model of Appendix B, we relax the assumption of no TC after
peak warming, allowing TC to continue after peak warming such that it is optimal to cool the
earth after peak warming with negative emissions. Yet, we will show that TC still decreases
peak warming under highly plausible conditions.

Lemma 1 underpins Remarks 1-3 in the main text as they relate to optimal emissions and
temperatures in the long run.

Exogenous TC

Lemma 2 In a cost-benefit setting, exogenous TC (ψa = 0) results in a lower initial MAC, lower
initial abatement, and a lower initial MAC growth rate than a model without TC.

Proof: To show this, conjecture that the model with exogenous TC has the same initial MAC
as the model without TC. From Equation (51), this implies that initial MAC growth is also the
same (the initial conditions ensure marginal damages are the same). The same MAC growth
rate combined with a decreasing MAC curve in the model with exogenous TC will lead to faster
abatement and lower temperatures after the start. This will lead in turn to faster growth of the
MAC in later periods (from Equation 51). From (49), lower emissions and temperatures lead to
a lower MAC, which contradicts our conjecture. As a result, the initial MAC needs to be lower.
If the MAC is lower and the MAC function is identical at time zero, initial abatement will be
lower. Regarding the initial MAC growth rate, (51) shows that since cT is identical from the
initial condition on temperature and ca is lower, the change in the MAC will initially be lower.
■
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In later periods, the lower MAC is compensated by lower marginal damages and the effect
of exogenous TC on the growth rate is ambiguous.

Lemma 2 provides the basis for the rest of Remark 1 in the main text, determining the qual-
itative effect of exogenous TC in abatement technologies on MACs, emissions and temperatures
in the short run. In a model of exogenous TC, the MAC and the carbon price are equivalent.

Endogenous, learning-based TC

Corollary 1 In a cost-benefit setting, endogenous TC (ψa > 0) has ambiguous effects on the
initial MAC, initial abatement and the initial MAC growth rate compared to a model without
TC.

In a model with endogenous TC, there is the additional marginal learning gain (Equation
49), which increases the MAC, all else being equal. Hence, the effect of endogenous TC on the
initial MAC, initial abatement and the initial MAC growth rate is in general ambiguous. This
provides the remaining basis for Remark 3 in the main text, determining the qualitative effect
of endogenous, learning-based TC on optimal MACs, emissions and temperatures in the short
run.

A.2 Cost-effectiveness analysis

In the case of cost-effectiveness analysis, damages are replaced by a temperature ceiling T ≤
T̄ , which corresponds to a constraint on cumulative emissions T̄ = ζS̄. The Hamiltonian in
Equation (43) is replaced by the following Lagrangian,

L = u (c (a,H, I, t))− λ (PBAU − a) + µψ (t,H, I, a)− θ (PBAU − a) , (53)

where the Lagrange multiplier θ indicates that whenever S = S̄, emissions cannot be positive.
The FOCs are

ucca + µψa = λ+ θ, (54)

λ̇ = (δ − n)λ, (55)

If S = S̄ : θ > 0; θ̇ ≤ 0; P ≤ 0.

If S < S̄ : θ = 0. (56)

Equations (62) and (64) remain the same. Call t̄ the time when the constraint hits. Before t̄,
the Lagrange multiplier is zero and the integral expression for the MAC is

cat︸︷︷︸
MAC

= λ0e
rt︸ ︷︷ ︸

Hotelling

+

knowledge increment︷︸︸︷
ψat

...and its effect on abatement costs︷ ︸︸ ︷∫ ∞

t
e−

∫ u
t (r+ψH)dscHudu︸ ︷︷ ︸

Endog. Future Gain

. (57)

At time t̄, the continuity of the costate variable implies continuous MACs and therefore continu-
ous emissions at zero. Using boundary conditions at time t̄, at̄ = PBAU , St̄ = S̄,

∫ t̄
0 Pdt = S̄−S0,
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and assuming that endogenous future learning gains are negligible after time t̄, we establish that
λ0 is the present value of the MAC at zero emissions at time t̄, λ0 = e−rt̄ cat̄ |a=PBAU

(this
requires the knowledge stock at time t̄, so there will be no closed-form solution in the general
case).

For green R&D or exogenous TC, we have ψa = 0 and the Hotelling rule is preserved. For
general cases of endogenous TC, the Hotelling rule is no longer valid.

Exogenous TC

Lemma 3 In a cost-effectiveness setting, exogenous TC has no effect on the growth rate of the
MAC (the Hotelling rule is unaffected), but results in a lower MAC over the entire path, less
initial abatement, higher abatement later, and peak warming is reached earlier.

Proof: From Equation (51) and the assumptions of cost-effectiveness (cT = 0) and no en-
dogenous TC (ψa = 0), we see that the MAC increases according to the Hotelling rule at rate r
in both models. Conjecture that the initial MAC would start at the same level. The model with
TC has lower abatement costs after time zero and would have weakly higher abatement over the
whole path, reaching zero emissions earlier. This would violate the condition that cumulative
emissions before reaching zero emissions must be equal in both models (ζ

∫∞
0 E = T̄ ). Hence,

the MAC must start lower. Since the MAC function is identical at the start, this must result
in lower abatement at the start. Since cumulative emissions must be identical, the abatement
path must cross the no-TC abatement path and lead to zero emissions earlier. ■

Endogenous, learning-based TC

Lemma 4 In a cost-effectiveness setting, endogenous TC (ψa > 0) has ambiguous effects on the
initial MAC, initial abatement and the initial MAC growth rate compared to a model without
TC.

Proof: In a model with endogenous TC, there is the additional endogenous future gains
component (Equation 49), which increases the MAC, all else being equal. Hence the effect of
endogenous TC on the initial MAC, and in turn initial abatement and the initial MAC growth
rate, is in general ambiguous. ■

A.3 Technological processes with different learning speeds

It is straightforward to extend the model to more technologies. We will show the derivation
for two families of abatement technology, each with a different TC process. Assume the same
conditions as above apply to each technology, ca < 0; caa < 0; ca|a<0 = 0, meaning that within
each abatement family there are diminishing returns to scale (see Bramoullé and Olson, 2005, for
a model with constant MACs and a technology accumulation function Ḣ = a). The assumption
of differentiability and zero MACs for negative emissions implies zero MAC at zero abatement.
This will ensure an interior solution for each technology family: at least some abatement is
optimal for each technological family.24

24In case abatement costs are non-continuous at zero, a non-negativity condition ai ≥ 0 should be added and
will lead to the obvious conclusion that families of technologies that are more expensive than alternative families
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The planner’s objective is

maxa,I
∫ ∞

0
e−(δ−nt)tu (c (a1, a2, H1, H2, I1, I2, T (S), t)) dt, (58)

subject to
Ṡ = PBAU − a1 − a2; Ḣi = ψ (t,Hi, Ii, ai) . (59)

The current value Hamiltonian of the problem is

H = u (c (a1, a2, H1, H2, I1, I2, T (S), t))− λ (PBAU − ai) +
∑
i=1,2

µiψ
i (t,Hi, Ii, ai) . (60)

The seven FOCs for i = 1, 2 include

uccai + µiψ
i
ai = λ, (61)

uc = µiψ
i
Ii , (62)

λ̇ = (δ − nt)λ− ucζuT , (63)

µ̇i = (δ − nt)µi − uccHi − µψHi . (64)

Integrating the costate equations (64) for each technology family and substituting in (61)
allows us to write (12) for each technology family separately.

Appendix B Specialised model

To obtain further analytical results, we must specialise some functional relationships. The
assumptions regarding welfare and warming are the same as in the preceding section. We now
assume emissions are produced according to Equation (4) in the main text, and we assume
quadratic damages and total abatement costs, like Equations (3) and (5) in the main text,
respectively. Exogenous TC that reduces abatement costs over time is represented by the slope
of the MAC curve φ decreasing as a function of time.25 Instead of a general knowledge stock,
we assume that endogenous, learning-based TC is specifically driven by cumulative abatement
At =

∫ t
−∞ audu.26

We can write cumulative emissions as a function of time and the state variable S:

H(t, S) = A =

∫ t

0
PBAUudu− S + S0. (65)

of technologies, even at very low levels of deployment, and even when endogenous future gains are taken into
account, should not be deployed yet.

25The slope of the MAC curve is also affected by a separate R&D knowledge stock, which is accumulated by
R&D investments (but not by abatement), ˙̃H = ψ̃

(
Ĩ , t

)
. This stock is optimized according to a third FOC,

uc = µ̃ψ̃Ĩ .
26This is also compatible with a knowledge stock which builds up proportional to abatement, and a scaling

factor which depends on both time and deployment-dependent R&D investments Ḣ = ϱ (I, t) a. However, in this
case we assume that optimal investments make the function ϱ (I∗, t) constant over time (the full model would
have a second optimality condition uc = µρIa). We normalise the unit of H such that ϱ = 1.
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This model can be solved with only one state variable and its shadow price λ incorporates both
damages and endogenous, learning-based TC.

We obtain the following expression for consumption per capita:

c = c0 exp

[
gt− φt

2σ2t c
2
a2 (A/A0)

−χ − γ

2
ζ2S2

]
. (66)

Note that we have written the emissions control rate as a function of abatement µ = a
σtc

. The
MAC is

ca = − φt
σ2t c

a (A/A0)
−χ = −c φt

P 2
BAUt

a (A/A0)
−χ . (67)

Utility u(c) = c1−η

1−η . We assume decreasing population growth n = n0e
−gnt and standardise

initial population to one. The welfare functional is

max
∫ ∞

0
e−(δ−nt)tu dt. (68)

The present Value Hamiltonian is

HPV = e−(δ−nt)tu (c (t, S, a))− λS (PBAU − a) . (69)

The FOCs are
λS = −e−(δ−nt)tucca, (70)

λ̇S = e−(δ−nt)tuccS , (71)

where cS = c
(
−γζ2S − χφt

2A0σ2
t c

2a
2 (A/A0)

−χ−1
)

includes both marginal damages and endoge-
nous learning gains from TC.

Integrate (71) between time t and infinity with terminal condition limt→∞λ
S = 0:

λSt =

∫ ∞

t
e−(δ−nu)uc1−ηu

(
γζ2S +

χφt
2A0

µ2 (A/A0)
−χ−1

)
du. (72)

Combining this result with (70) and dividing by −e−(δ−nt)tuct gives the expression MAC=SCC:

−ca =
∫ ∞

t
e−δ(u−t)+(nuu−ntt)

(
cu
ct

)−η
cu

(
γζ2S +

χφu
2A0

µ2 (A/A0)
−χ−1

)
du. (73)

Acknowledging ln cuct =
∫ u
t dlncs ⇔ cu

ct
= e

∫ u
t

ċ
c
ds ⇔

(
cu
ct

)−η
= e−η

∫ u
t

ċ
c
ds shows that the first

factor in the integral is the discount factor with the Ramsey discount rate δ − nt + η ċc .
Note that when we write the MAC as a function of BAU emissions, both MACs and damages

are proportional to consumption, so we can write this equation relative to consumption while
reducing the discount rate by the growth rate of consumption:

φt
P 2
BAUt

a (A/A0)
−χ =

∫ ∞

t
e−δ(u−t)+(nuu−ntt)−(η−1)

∫ u
t

ċ
c
ds

(
γζ2Su +

χφu
2Au

µ2u (Au/A0)
−χ
)
du.

(74)
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To find a differential equation for the MAC, first take the time derivative of (70):

λ̇S = −e−(δ−nt)t(−δ + nt + ṅtt)ucca − e−(δ−nt)tu̇cca − e−(δ−nt)tucċa. (75)

Substitute out λ̇S from (71) and (75), divide by e−(δ−nt)tuc, and use − u̇c
uc

= η ċc to give

−ċa =
(
δ − nt − ṅtt+ η

ċ

c

)
(−ca) + cS , (76)

which corresponds to

ċa
ca︸︷︷︸

MAC growth

= r − ζcT
ca︸︷︷︸

Marginal Damages

+
cA
ca︸︷︷︸ .

Endogenous Future Gains

(77)

To find a differential equation for abatement, we take the time derivative of (67) to calculate
the growth rate of the MAC :

ċa
ca

=
φ̇

φ
+
ȧ

a
− 2

σ̇

σ
− ċ

c
− χ

a

A
.

Plugging the growth rate of the MAC into (77) results in (78) (extended to decreasing population
growth), i.e.,

ȧ

a
= δ − nt − ṅtt+ (η + 1)

ċ

c︸ ︷︷ ︸
r+g

− φ̇

φ
+ 2

σ̇

σ
+
χa

A
− 1

2

χa

A
− σ2c2γζ2S

φa (A/A0)
−χ . (78)

Note that if BAU emissions are constant, we have σ̇
σ = −g , which boils down to using r − g

instead of r + g.
Equation (78) shows that TC will increase initial abatement speed for real-world parameters.

Let us first show this for exogenous TC. Denote the (negative) growth rate of exogenous TC
as gTC = φ̇/φ and define ∂a

∂gTC
as the difference in abatement between two identical models

with marginally different TC growth rates. Similarly, define ga = ȧ/a and denote ∂a
∂gTC

as the
difference in abatement between two models, where the TC growth rate has been marginally
altered. A change in the exogenous TC rate will affect initial abatement, but not A, S and φ,
because they are defined by their initial conditions. Taking the derivative of Equation (78) with
respect to gTC at time zero gives

− ∂ga
∂gTC

= 1− γζ2S

φa(A/A0)−χ
∂a/a

∂gTC
. (79)

The factor γζ2S
φa(A/A0)−χ is the marginal damage over the MAC, which is typically lower than 2%,

(it is the adjusted discount rate r + g − 2 σ̇σ at the steady state and considerably smaller at the
start of the transition). So even if ∂a/a

∂gTC
is large, say initial abatement increases by 5% for a 1%

increase of TC, the RHS remains large positive. So exogenous TC increases the initial abatement
speed.

For endogenous, learning-based TC, a very similar argument can be made. Denote the
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(negative) growth rate of endogenous, learning-based TC as gTC =
d
dt
(A/A0)

−χ

(A/A0)
−χ = −χa

A . Taking
the derivative of equation (78) with respect to gTC at time zero gives

− ∂ga
∂gTC

= 1/2− γζ2S

(φa(A/A0)−χ
∂a/a

∂gTC
. (80)

The same term as for exogenous TC reappears and for the same reasons this will be small. More-
over, ∂a/a

∂gTC
is not only small, it is often negative (initial abatement increases with endogenous,

learning-based TC), as it is for our parameters. The term 1/2 comes from the fact that the
endogenous future gain incentive creates a flattening effect on the abatement path that is half
the size of the opposite cost-reduction effect. So again, endogenous, learning-based TC increases
the initial abatement speed.

The extension to a market economy is a straightforward application of the first welfare
theorem. The first order conditions will be the same provided that λA equals the sum of the
tax and the subsidy. Appendix D shows a comparison between the market equilibrium and the
social optimum in a more elaborate model.

Peak warming

We have already developed several results for the general model in Appendix A. These are of
course also valid in this more specialised model. However, by adding more structure, we can
produce a few more results.

Lemma 5 TC decreases peak warming if at the time of peak warming optimal abatement satisfiesr + g − 2 σ̇σ

neg︷︸︸︷
− ȧ
a

pos︷ ︸︸ ︷
− φ̇
φ
+
χa

2A


(
r + g − 2 σ̇σ

) φt∗
(
A
A0

)−χ
φ0

< 1. (81)

Proof: The claim follows from rewriting Equation (78) at the time of peak warming as

γζT ∗ =

r + g − 2
σ̇

σ

− d
dt(

MAC
c )− cA

c︷ ︸︸ ︷
− ȧ
a
− φ̇

φ
+
χa

2A

φa

(
A

A0

)−χ
, (82)

and dividing this by the equivalent expression for the model without TC. ■
This condition is satisfied unless peak warming is reached implausibly quickly. The first

factor on the left-hand side of the inequality converges to one in the long term and tends to
be very close to one at peak warming. The numerator comprises the discount rate, plus the
degrowth rate of the MAC (the cost-reduction effect, −d/dt(MAC/c)), minus the endogenous
future gains of learning-based TC. In the static model, this is just r+g−2 σ̇σ , but in the presence
of TC we have additional terms. The second factor is much smaller than one. It is the relative
reduction of the slope of the MAC curve due to TC at the time of peak warming.
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Lemma 5 extends Lemma 1 to the case where TC continues after peak warming is reached.
Therefore, it provides a more general set of circumstances underpinning Remarks 1-3 as they
relate to optimal policy in the long run.

Endogenous, learning-based TC under cost-effectiveness analysis

Lemma 6 In a cost-effectiveness setting, compared to a model without TC, the model with
endogenous TC will have lower MAC growth, a lower MAC over the entire path, less initial
abatement, higher later abatement, and reach peak warming earlier.

Proof: The emissions path will still be steeper, because the cost-reduction effect χa
A dominates

the endogenous future gain effect χa
A in Equation 78 (where γ = 0). Since cumulative emissions

are identical with and without TC in the cost-effectiveness case, the emissions paths must cross
each other, with emissions higher at the start under endogenous TC, lower at the end, and zero
emissions reached earlier. Higher initial emissions implies a lower initial MAC. Equation (77)
shows that endogenous future gains will reduce the growth rate of the optimal MAC (marginal
damages are zero in the cost-effectiveness analysis). A lower initial MAC combined with lower
growth implies a lower MAC over the entire path. ■

Note that the shadow price of carbon, λ in Equation (55), always follows a Hotelling path
irrespective of TC. This result is also reported in Goulder and Mathai (2000).

Decreasing carbon intensity (AEEI)

Lemma 7 In a cost-effectiveness setting, compared to a model with constant carbon intensity
( σ̇σ = 0), the model with decreasing carbon intensity will have lower initial emissions and reach
peak warming later, if optimal initial emissions are less than half of BAU emissions.

Proof: To investigate the role of decreasing carbon intensity σ̇ on the emission path, we need
to find an expression for the change in emissions, because abatement depends on σ. Taking the
time derivative of abatement a = σc− P yields

ȧ

a
= −1− µ

µ

Ṗ

P
+

1

µ

(
σ̇

σ
+
ċ

c

)
︸ ︷︷ ︸

˙PBAU
PBAU

. (83)

Combining this result with (78) and acknowledging that the damage term is zero for cost-
effectiveness analysis (replaced by a constraint on temperature), gives

Ṗ

P
= g +

(
2− PBAU

P

)
σ̇

σ
+

(
PBAU
P

− 1

)(
φ̇

φ
− χa

2A
− r

)
, (84)

where PBAU = σc. 27

27When we assume constant exogenous TC ( φ̇
φ

= gφ.) and decreasing carbon intensity at a constant rate
( σ̇
σ
= gσ), we can integrate Ṗ using boundary conditions

∫ T

0
Ptdt = S̄ and PT = 0. This gives

Pt = PBAU0e
(g+gσ)t − a0e

(g+2gσ−gφ+r)t. (85)
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The factor 2 − PBAU
P is positive whenever emissions are less than half of BAU emissions,

(P < 1
2PBAU ). So if initial emissions are less than half of BAU emissions, the entire emissions

path will be flatter. Since the exogenous temperature constraint sets cumulative emissions , the
flatter emissions path will lead to lower initial emissions and later peak warming. ■

By contrast, for lenient, unambitious climate scenarios, AEEI will initially steepen the emis-
sions path (when Pt > 1

2PBAUt ) and later on flatten the emissions path (when Pt < 1
2PBAUt ).

The effect of AEEI on initial emissions and the time of peak warming is therefore ambiguous.
The case of cost-benefit analysis is more complicated because AEEI increases peak warming.

Consider again the case where P0 =
1
2PBAU0 . The growth rate of emissions at time zero is

Ṗ

P
= g +

φ̇

φ
− r +

cS/cE︷ ︸︸ ︷
cγζ2S0

σ

φµ
.

This is unaffected by AEEI because marginal damages are set by initial cumulative emissions and
the MAC set by our hypothesis that µ = 1/2 . In subsequent periods, AEEI will again flatten the
emissions path. This flattening will be reinforced by an increasing MAC in later periods (effect
of σ in the last term). However, combined with larger cumulative emissions, initial emissions are
ambiguous. Nevertheless, in the limit case where initial emissions are extremely low (approach
zero), AEEI will flatten the emissions path and therefore (slightly) decrease initial emissions.28

By contrast, in the limit case where initial emissions approach BAU emissions, AEEI reduces
the emission speed limP−>PBAU

Ṗ = g + σ̇
σ .

These results are summarised in Remark 2 in the main text.

Heterogenous learning rates

A more detailed model may have several groups of abatement technologies, each with a MAC
function ci,t

φi,t

P 2
BAUt

ai

(
Ai
A0i

)χi

. Cumulative emissions are now St = S0 + PBAU t −
∑
Ai. For N

groups of technologies, the model now hasN decision variables andN stock variables (cumulative
abatement for each group of technologies). Assuming a constant discount rate, the integral form
of the Euler equations for each technology is

φi,t
P 2
BAUi,t

ai,t (Ai,t/A0,i)
−χi

︸ ︷︷ ︸
MAC%

i

=

∫ ∞

t
e−(r−g)t︸ ︷︷ ︸

Discount factor

 γζ2Su︸ ︷︷ ︸
Marg damages%

+
χiφi,u
2Ai,u

µ2i,u (Ai,u/Ai,0)
−χi︸ ︷︷ ︸

Endogenous future gains%i

 du.

(86)

The first term describes BAU emissions over time and the second term describes abatement over time. AEEI
has a double effect: it reduces BAU emissions (steepening the emissions path) and it slows down abatement
(flattening the emissions path).

28At low emissions, the equation of motion for emissions converges to limE−>0 Ė =

c0σ0

(
φ̇
φ
− σ̇

σ
− r + σ0

φ0
γζ2S0

)
showing that fast AEEI leads to a flatter emissions path.

50



Appendix C The specialised model with inertia

This model builds on the specialised model described in Appendix B. It is the model that we
will use for quantitative analysis. To fit the model to the observation that BAU emissions in
the IPCC-NGFS database are constant (or at least not increasing), we set AEEI equal to GDP
growth. This also simplifies notation.

Call v = ȧ the abatement speed. Assume a quadratic penalty on abatement speed (as a
proportion of GDP) of θ

2v
2. Consumption per capita now becomes

c = c0e
(gt−φt

2
a2(A/A0)

−χ− θ
2
v2− γ

2
ζ2S2). (87)

The present value Hamiltonian is

HPV = e(−δ+nt)tu(c)− λS(EBAU − a) + λav, (88)

with FOCs

λa =e(−δ+nt)tuccθv, (89)

λ̇a =e(−δ+nt)tuccφta (A/A0)
−χ − λS , (90)

λ̇S =e(−δ+nt)tuccS . (91)

Differentiate the FOC of the maximisation:

λ̇a = e(−δ+nt)tuccθv

[
−δ + nt + ṅt− η

ċ

c
+
ċ

c
+
v̇

v

]
, (92)

substitute this result in Equation (90) and divide by e(−δ+nt)tuccθ:

v

[
−δ + nt + ṅtt− (η − 1)

ċ

c

]
+ v̇ =

φta (A/A0)
−χ

θ
− λS

e(−δ+nt)tuccθ
, (93)

with
nt + ṅt = n0e

−gnt (1− gnt) , (94)

and

ċ

c
= g+

(φ0 − φ∞) gφ
2

a2 (A/A0)
−χ−φtav (A/A0)

−χ+
φt
2
a2χ (A/A0)

−χ a

A
−θvv̇−γζ2S (EBAU − a) .

(95)
The growth rate of consumption is very close to g, but the component −θvv̇ cannot be neglected.
Reorganise to obtain a differential equation in v̇,

v̇ =
1

1 + (η − 1)θv2


δ − n0e

−gnt (1− gnt) + (η − 1)

Net of θvv̇︷ ︸︸ ︷(
ċ

c

)  v +
φta (A/A0)

−χ

θ
− λS

e(−δ+nt)tuccθ

 .
(96)

We now have a system of four differential equations in four variables S, a, v, λS (Equations 40,
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78, 96 and 91). The boundary conditions are

S(0) = S0,

a(0) = a0 = EBAU − E0, (97)

a(∞) = EBAU ,

v(∞) = 0.

The MAC is the current value shadow price of carbon, expressed in consumption units, i.e.,

MAC =
λSeδt

uc
. (98)

From Equation (93) we can rewrite this as 29

MAC = entt

 cφta (A/A0)
−χ︸ ︷︷ ︸

∂c/∂a standard MAC

+ cθv

[
δ − nt − ṅtt+ (η − 1)

ċ

c

]
− cθv̇︸ ︷︷ ︸

Abatement speed costs (pos)

 . (99)

Alternatively, the integration of Equation (91) gives the MAC as the sum of both the SCC and
the endogenous future gains:

MAC =
λSeδt

uc
=

∫ ∞

t
enuue−δ(u−t)−η

∫ u
t

ċ
c
ds︸ ︷︷ ︸

Discount factor

cu

(
γζ2S +

χφu
2A

a2 (A/A0)
−χ
)
du. (100)

The discount factor is the standard Ramsey discount factor as can be seen from
(
cu
ct

)−η
=

e−η
∫ u
t

ċ
c
ds.

Appendix D Model with energy inputs and knowledge spillovers
from private to aggregate

In this Appendix, we extend the simple model of Section 2 in two directions. First, we explicitly
model energy inputs, giving the model two mechanisms for abatement: energy efficiency and
carbon intensity of energy, which is modelled with a simple abatement variable rather than
explicit clean and dirty energy. We assume that innovation affects the carbon intensity of
energy and not energy efficiency. This feature creates a different role for the carbon price and
the innovation subsidy: the optimal tax applies to all abatement technologies and equalises the
MAC between sectors, whereas subsidies target the sectors with the largest innovation potential.

Second, we assume that when firms innovate, they obtain an individual advantage before
their knowledges diffuses in the wider economy. That is, not all knowledge is shared with other
producers, some knowledge is private as in Gerlagh et al. (2009); Greaker and Pade (2009). We

29For analytical simplicity, we usually focus on the marginal effect of abatement on consumption per capita, i.e.
ca. However, since a is expressed as worldwide abatement, the marginal effect of abatement on total consumption
is more relevant, because it corresponds to costs in production. So we report the latter and we multiply costs by
population size entt.
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show that the optimal R&D subsidy does not compensate for private knowledge, only for the
gradual leakage from private firms to public firms.

Firm i produces with the following Cobb-Douglas production function, combining labour L,
capital K and energy E (we leave out index i for now),

Y = (ALL)
1−ν−αKαEνΓΛ, (101)

where Γ and Λ represent abatement costs and damages from climate change, respectively. Emis-
sions are defined as P = ψ(1 − µ)E, where µ ∈ [0, 1] is abatement effort and ψ is the carbon
intensity of energy inputs. Dirty inputs are expressed in tonnes of CO2. Companies can abate
a = µψE, which is costly. Abatement costs are proportional to production and quadratic in
abatement,

Γ = e
−φ

2
a2

(
H+ωhi
H0+ωh0

)−χ

, (102)

where H is the public knowledge stock and h is the private knowledge stock. Companies make an
effort z to reduce their abatement costs, building up their private knowledge stock. However, the
private knowledge stock becomes public after some time. This leads to the following dynamics:
ḣi = zi − δhi and Ḣ =

∑N
i δhi. The knowledge stock reduces abatement costs with a constant

elasticity χ. Effort z costs C(z).
As TC is the result of R&D which is different from abatement, the optimal policy requires

two instruments, a Pigouvian carbon tax τ and a knowledge subsidy s which is proportional to z.
Also, the model has two different abatement mechanisms: energy efficiency and carbon intensity
of energy. TC only applies to the latter. As a result, using only a carbon tax leads to excess
energy efficiency effort and insufficient TC, whereas using only a subsidy leads to insufficient
energy efficiency.

Market equilibrium

We assume the total number of companies N is large enough that companies are price takers
and the market is competitive. Normalising the price of the final good to one, the profit function
of the company is

π = ALL
1−ν−αKαEνΓΛ− wL− rK − pEE − C(z)− τψ (1− µ)E + sz. (103)

s.t. Ḣ =
∑N

i δhi; ḣi = zi − δhi. To maximize profits inter temporally, the company solves the
following current value Hamiltonian

H CV = π + λH

(
N∑
i

δhi

)
+ λhi (zi − δhi) . (104)

The FOCs include
∂H

∂µ
= 0 ⇔ Y φa

(
H + ωhi
H0 + ωh0

)−χ
= τ, (105)

∂H

∂E
= 0 ⇔ νY/E = ψ (1− µ) τ, (106)
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∂H

∂z
= 0 ⇔ dC

dz
− s = λh, (107)

˙λH = rλH − Y
φ

2
a2χ

(
H + ωhi
H0 + ωh0

)−χ−1 1

H0 + ωh0
, (108)

λ̇h = (r + δ)λh − Y
φ

2
a2χ

(
H + ωhi
H0 + ωh0

)−χ−1 ω

H0 + ωh0
− δλH . (109)

The integral form of (108) and (109) gives

λHt =

∫ ∞

t
e−r(u−t)

[
Yi
φ

2
a2χ

(
H + ωhi
H0 + ωh0

)−χ−1 ω

H0 + ωh0

]
du, (110)

λht =

∫ ∞

t
e−(r+δ)(u−t)

[
Yi
φ

2
a2χ

(
H + ωhi
H0 + ωh0

)−χ−1 ω

H0 + ωh0
+ δλH

]
du. (111)

The company sets the subsidy net of R&D costs equal to λh, which is the value of knowledge.
This value of knowledge is composed of all future direct effects on its abatement efforts (the first
term in the integral) plus the fact that the firm contributes to aggregate knowledge, which will
also make abatement cheaper for the individual firm. Yet, the shadow price of this aggregate
knowledge λHt corresponds to the aggregate productivity gains for firm i only, which is N times
lower than the gain from a social point of view. To make that point more formally, we now
derive the social optimum.

Social optimum

We assume taxes and subsidies are collected lump sum, without a cost of public funds. All
variables are now aggregate quantities, unless indexed by i. The social planner maximises the
present value of production

Y =

N∑
i

Yi =

N∑
i

ALL
1−ν−α
i Kα

i E
ν
i e

−φ
2
a2i

(
H+ωhi
H0+ωh0

)−χ
− γ

2
ζ2S2

−
N∑
i

C(zi), (112)

s.t. Ḣ =
∑N

i δhi; ḣi = zi − δhi; Ṡ = ψ (1− µ)E. The current value Hamiltonian is

H CV = Y + λH

(
N∑
i

δhi

)
+

N∑
i

λhi (zi − δhi)− λSψ (1− µ)E. (113)

The FOCs include

Y φa

(
H + ωhi
H0 + ωhi0

)−χ
= λS , (114)

νY/E = ψ (1− µ)λS (115)

dC

dzi
= λhi , (116)

˙λH = rλH −
N∑
i

Yi
φ

2
a2χ

(
H + ωhi
H0 + ωhi0

)−χ−1 1

H0 + ωhi0
, (117)
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λ̇hi = (r + δ)λhi − Yi
φ

2
a2χ

(
H + ωhi
H0 + hi0

)−χ−1 ω

H0 + ωhi0
− δλH . (118)

The integral form of (117) and (118) gives

λHt =

∫ ∞

t
e−r(u−t)

[
N∑
i

Yi
φ

2
a2χ

(
H + ωhi
H0 + ωhi0

)−χ−1 ω

H0 + hi0

]
du, (119)

λht =

∫ ∞

t
e−(r+δ)(u−t)

[
Yi
φ

2
a2χ

(
H + ωhi
H0 + ωhi0

)−χ−1 ω

H0 + hi0
+ δλH

]
du. (120)

Equation (117) shows that the shadow price of aggregate knowledge is now N times larger.
Therefore, the term δλH inside the integral of (120) of the company specific shadow price is
N times larger. Indeed the individual company may take into account that spillovers to the
aggregate knowledge stock will be beneficial for itself too, but this advantage is N times larger
from a social perspective. Comparing both solutions indicates that the subsidy should be

s = (1− 1/N)

∫ ∞

t
e−(r+δ)(u−t) [δλH] dτ. (121)

Note that when spillovers are negligible the subsidy converges to zero, limδ−>0 s = 0, whereas
when spillovers are extremely large, the subsidy converges to the shadow price of the aggregate
knowledge stock limδ−>∞ s = (1− 1/N)λH .

The first FOCs (114) and (115) indicate that both the MAC via decarbonisation of energy
and the MAC via energy efficiency gains equal the SCC. Comparing this with the FOCs of the
market equilibrium indicates that the optimal tax should be set at the SCC, τ = λS .

Appendix E Correspondence between exogenous and endogenous
TC

E.1 Method of isolating endogenous future gain effect

Our method of isolating the endogenous future gain effect proceeds in two steps. The first
step is to estimate a time-dependent MAC function (i.e., exogenous TC), with a MAC that
is identical to the endogenous TC model at each point in time. This can be achieved using a
sufficiently high-order polynomial. The second step is to take the exogenous TC MAC curve
and use it to recalculate optimal model trajectories. Any difference between the optimal paths
of the endogenous TC model and its exogenous replica must then be down to the endogenous
future gain effect.

We can show this in theory. Call a∗ the optimal abatement path of the model with endoge-
nous TC. Conjecture that this is also the optimal path of the model with exogenous TC. By the
assumption of identical MACs, the abatement path a∗ will result in the same left-hand side of
Equation (12) at each point in time. Given that we use the same climate model (Equation 40),
the model without TC results in the same temperature path. Figure A1 shows that since MACs
are identical, total abatement costs are also identical. Hence, consumption and the discount rate
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Figure A1: Graphical representation of the comparison between endogenous TC and exogenous
TC with identical MAC function. The endogenous TC model has a linear marginal abatement
cost function MAC% = φA−χa. The optimal path (which depends on cumulative abatement)
results in optimal slopes at each point in time. Next, a 25th-degree polynomial in time is fitted
to obtain the same MAC but without the dependence on cumulative abatement. MAC =(
φ1 + φ2t+ φ3t

2 + φ4t
3...
)
a.

are the same. However, in the exogenous TC model, the absence of the endogenous future gain
effect decreases the right-hand side of Equation (12). Hence, our conjectured abatement path a∗

does not solve Equation (12), and the initial MAC and abatement are lower in the model with
exogenous TC. Lower abatement results in higher temperatures, higher marginal damages, and
a higher right-hand side of Equation (12). Therefore, both models converge in the long run. If
TC is zero after peak warming (∀t > tpeak : Ḣ = 0), Equation (12) shows that the optimal
abatement path of the endogenous TC model also solves the exogenous TC model, i.e., peak
warming and long-run temperatures are identical (although peak warming comes earlier in the
endogenous TC model).

E.2 Static approximation of MAC function under exogenous TC

We can also test the ability of a suitably calibrated static model to approximate the optimal
solution of a model of exogenous TC. Figure A2 shows our approach visually. Exogenous TC
results in an optimal pair {MAC%∗, a∗} at each moment in time, where again MAC% = φta,
i.e., the MAC as a proportion of consumption. Next, we construct a static MAC function that
is fitted to be identical at each point in time (i.e., at each level of abatement on the optimal
path of the exogenous TC model). This static MAC function will be concave, since TC makes
the MAC function, which is assumed to be linear, fall over time. We fit based on a polynomial
such that

MAC%∗ =

(
N∑
n=0

φnolearnn a∗n

)
, (122)
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Figure A2: Graphical representation of the comparison between TC and no TC with identical
but static MAC. The model with TC has a linear abatement cost function but with a time-
dependent slope φta =

(
φ∞ + (φ0 − φ∞)e−gφt

)
a in the case of exogenous TC. This model

results in an optimal set of {MAC%∗, a∗} depicted by the blue squares. Next, a polynomial in a
(of order 15) is fitted to obtain a time-independent MAC that is identical on the optimal path.
The polynomial also goes through the origin, in order to ensure similar total abatement costs,
represented by the area under the curve. The dotted area is the difference between the total
abatement costs of both models in 2100.

where the coefficients φnolearnn are independent of time, unlike in the model with exogenous TC.
We optimise the model with the static MAC function and check the solution is close to the

optimum of the model with exogenous TC. Figure A3 shows that the correspondence is almost
exact (less than 0.1% difference on emissions or MACs).

In fact, under certain specific functional forms the correspondence is exact in theory. In
particular, if marginal abatement costs and marginal damages are proportional to consumption
to the power ν and marginal utility is CES, the static MAC function is a perfect substitute
for exogenous TC. The assumption of constant elasticities implies that we can factorise the
marginal cost functions into a factor that does not depend on consumption and a power function
of consumption, respectively: ca = −MAC%(a, t)cν ; cT = −MD%(T )cν . Integrating Equation
(45) yields

λt =

∫ ∞

t
e−(δ−n)(u−t)ucuζc

ν
uMD%(T )du. (123)

Substituting Equation (44) gives

uctc
ν
tMAC%(a, t) =

∫ ∞

t
e−(δ−n)(u−t)ucuζc

ν
uMD%(T )du. (124)

uctc
ν
t is a constant (independent of time u) and can therefore be included in the integral,

MAC%(a, t) =

∫ ∞

t
e−(δ−n)(u−t)

(
cu
ct

)ν−η
ζMD%(T )du. (125)
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Figure A3: Exogenous TC versus no TC: fitting a polynomial in abatement to the MAC of the
exogenous TC curve. Emissions in the top-left panel, temperature above pre-industrial in the
top right, and the MAC on the bottom.
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Call a∗ the optimal abatement path of the model with exogenous TC. We try this path as a
candidate solution to the model without TC. By assumption of identical MACs, the abatement
path a∗ will result in the same left-hand side of Equation (125) at each point in time. Given
that we use the same climate model (Equation 40), the model without TC will result in the
same temperature path. Figure A2 shows that although MACs are identical, total abatement
costs will be higher in the model without TC (dotted area). Hence, consumption will be slightly
lower in the model without TC. But since we assume ν = η, the right-hand side of Equation
125 will also be identical at each point in time. Hence our candidate solution solves the Euler
equation and is the optimal solution of the model without TC.

What if η > ν? Figure A2 shows that although MACs are identical, total abatement costs
will be lower in the model with TC (dotted area). Hence, consumption will be slightly higher in

the model with TC. As a result, the discount factor
(
cu
ct

)ς−η
will be slightly lower, and MACs

and abatement will be lower too. The effect is too small to be visible on a graph though.

E.3 Approximation of R&D-based TC by exogenous TC

In this subsection we compare a model with exogenous TC with a model with endogenous R&D
which is unaffected by deployment.

Consider the general model of Appendix A, where the knowledge stock is independent of
abatement, but responds to investment I in early-stage R&D, that is, Ḣ = ψ(t,H, I). Assume
that this endogenous R&D is replaced by an exogenously decreasing MAC function, such that
on that the optimised path, the MAC function is identical at each point in time. Then, the
optimal emission and MAC paths are quasi-identical, they differ only to the extent that R&D
investment costs reduce consumption.

To show this, ignore investment costs cI for a moment. Call H∗(t) and I∗(t) the optimal
knowledge stock and investment respectively of the model with early-stage R&D. Compare this
to a model with exogenous TC, where the paths of the knowledge stock and investment respec-
tively are replaced by an exogenous function of time f(t), such that ∀t : c (a,H∗(t), I∗(t), T, t) =

c (a, f(t), T, t). The production function (which equals consumption in this setup) will be iden-
tical over the path, resulting in the same MAC and marginal damage functions. Since ψa = 0 in
both cases, the optimal abatement path a∗ of both models satisfy Equation (49) for cost-benefit
analysis and Equation (57) for cost-effectiveness analysis. Hence the exogenous TC model and
the early-stage R&D model have the same optimal abatement path.

Now bring back the R&D investment costs – these reduce consumption and therefore alter
marginal damages and the discount rate. The critical observation is that this effect on con-
sumption growth will generally be negligible, given the small size of the investment costs when
converted into a growth impact (IPCC, 2022). This is basis of Remark 4 in the main text.

Two caveats are in place though. First, note that although the technology function ψ is
independent of abatement, the dependence on investment makes TC endogenous, that is, in-
vestment in green technology becomes more attractive in a lower emissions scenario. This is
also why solving the model for the optimal R&D investment rule is not straightforward, as
investment depends on the abatement and vice versa.

Second, whenever policy is not optimal, or whenever beliefs on future costs and damages
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are updated, the two models will no longer behave in the same way, because exogenous TC is
independent of policy whereas investment in R&D depends on forward-looking policy.
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Appendix F GMM results by model

No TC Exogenous TC Endogenous TC
All models All models Exog models FE: initial FE: initial FE: initial All models Endog models FE: initial FE: initial FE: initial

MAC MAC & quadr MAC & TC MAC MAC & quadr MAC & TC
θ 1.5e-03*** -1.7e-05 -2.9e-05 7.7e-04*** idem 4.7e-04*** 5.1e-05 9.2e-05 6.6e-04*** idem 4.5e-04***
φ 2.7e-05*** 1.2e-04*** 1.2e-04*** 1.4e-04*** 1.3e-04***
gφ .048*** .049*** .013*** .011***
φ∞ 1.9e-05*** 1.5e-05*** 2.2e-07 idem 1.7e-05***
φ1 6.9e-05*** 6.8e-05*** 1.3e-04*** 8.2e-05*** 7.1e-05*** 2.2e-04***
φ2 1.3e-04*** 1.2e-04*** 9.7e-05*** 1.5e-04*** 1.2e-04*** 8.0e-05**
φ3 1.1e-04*** 1.0e-04*** 7.7e-05*** 1.3e-04*** 1.1e-04*** 9.9e-05***
φ4 4.3e-05*** 4.6e-05*** 8.7e-05*** 5.1e-05*** 5.0e-05*** 8.7e-05***
φ5 4.5e-05*** 4.6e-05*** 1.4e-04*** 5.1e-05*** 4.9e-05*** 9.1e-05***
φ6 5.3e-05*** 5.6e-05*** 8.6e-05*** 6.4e-05*** 6.1e-05*** 9.1e-05***
φ7 7.2e-05*** 7.2e-05*** 8.0e-05*** 8.8e-05*** 7.8e-05*** 1.0e-04***
φ8 1.8e-04*** 1.5e-04*** 1.7e-04*** 2.1e-04*** 1.5e-04*** 2.0e-04***
φ9 9.3e-05*** 6.6e-05*** 1.3e-04*** 1.1e-04*** 6.9e-05*** 1.2e-04***
φ10 2.0e-05*** 2.6e-05*** 8.3e-06*** 2.3e-05*** 3.1e-05*** 3.9e-06***
φ11 1.9e-04*** 1.7e-04*** 1.8e-04*** 2.3e-04*** 1.9e-04*** 1.3e-04***
φsq -4.0e-07*** -2.8e-07***
gφ1 .038***
gφ2 8.8e-03
gφ3 9.5e-03***
gφ4 .056***
gφ5 .068***
gφ6 .041***
gφ7 .023***
gφ8 .013***
gφ9 .026***
gφ10 3.0e-03**
gφ11 .011***
χ .361*** .302*** .315*** .216***
A0 16.3*** 12.7*** 92.5*** idem 36.6***
χ1 .515***
χ2 .058
χ3 .164***
χ4 .387***
χ5 .402***
χ6 .336***
χ7 .274***
χ8 .213***
χ9 .267***
χ10 -.236***
χ11 -.064
N 12393 12393 6545 12393 12393 12393 12393 5848 12393 12393 12393
ll 4.9e+04 5.0e+04 2.7e+04 5.2e+04 5.3e+04 5.2e+04 5.0e+04 2.3e+04 5.2e+04 5.2e+04 5.2e+04

Table A1: Parameter estimates for fitting both total and marginal abatement costs to the IPCC
and NGFS databases of IAM results, including model-specific estimates. Models are grouped as
follows: (1) AIM, (2) C3AIM, MERGE or C_ROADS, (3) GCAM, (4) GEM, (5) MESSAGE,
(6) REMIND, (7) WITCH, (8) POLES, (9) IMAGE, (10) COFFEE, (11) DNE. Idem indicates
that the value of the preceding (left) model is imposed. *** indicates significance at the 1%
level.
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Appendix G Additional quantitative results

Figure A4 presents optimal, cost-benefit climate policies in the absence of capital inertia (i.e.,
no abatement speed penalty). Without inertia, the social planner is free to choose large varia-
tions in initial emissions. Accordingly, initial emissions are much lower than in the presence of
capital inertia, regardless of the existence and type of TC. This results in more slowly increasing
temperatures, but since capital inertia is relevant in the short to medium run but less so in the
long run, temperatures in 2100 are similar.

Consistent with the theoretical results in Appendix B, emissions under exogenous TC are
initially higher (abatement is lower) than without TC, with a lower MAC/carbon price. Con-
versely, under endogenous, learning-based TC emissions are initially lower than without TC,
with a higher MAC. The abatement path is steeper under both forms of TC, which is also
consistent with the theory.

Figures A5 to A8 present optimal, cost-benefit climate policies with low/high discount rates
and slow/fast TC. These plots provide further details on the results summarised in Table 4.
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Figure A4: Optimal, cost-benefit climate policies without TC, with exogenous TC and with
endogenous TC, for the case of no capital inertia. Emissions in the top-left panel, temperature
above pre-industrial in the top right, and the MAC/carbon price on the bottom. Note that the
modest increase in emissions in scenarios without TC is the result of population growth and
marginal damages, which both create an incentive for early abatement (both factors exceed the
effect of the discount rate r + g − 2 σ̇σ in Equation (78)).
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Figure A5: Optimal, cost-benefit climate policies without TC, with exogenous TC and with
endogenous TC, under low discount rates (δ = 0 or η = 1). Emissions in the top-left panel,
temperature above pre-industrial in the top right, and the MAC/carbon price on the bottom.

64



2020 2040 2060 2080 2100

Year

0

10

20

30

40

50

G
tC

O
2

Emissions

No TC & =2%

Exogenous TC & =2%

Endogenous TC & =2%

No TC & =1.8

Exogenous TC & =1.8

Endogenous TC & =1.8

2020 2030 2040 2050

Year

50

100

150

200

250

$
/t

C
O

2

Marginal abatement cost

2020 2040 2060 2080 2100

Year

1

1.5

2

2.5

3

3.5

4

°C

Temperature increase

Figure A6: Optimal, cost-benefit climate policies without TC, with exogenous TC and with
endogenous TC, under high discount rates (δ = 0.02 or η = 2). Emissions in the top-left
panel, temperature above pre-industrial in the top right, and the MAC/carbon price on the
bottom.
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Figure A7: Optimal, cost-benefit climate policies without TC, with exogenous TC and with en-
dogenous TC, under slow TC. Emissions in the top-left panel, temperature above pre-industrial
in the top right, and the MAC/carbon price on the bottom.
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Figure A8: Optimal, cost-benefit climate policies without TC, with exogenous TC and with en-
dogenous TC, under fast TC. Emissions in the top-left panel, temperature above pre-industrial
in the top right, and the MAC/carbon price on the bottom.
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