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Abstract

The transition from traditional labor intensive to modern capital intensive production is a key factor for 
industrial development. Using half a million observations from Indian manufacturing plants, I analyze 
the effects of a secular decrease in industrial electricity prices through the lens of a model with technology 
choices and complementarities between electricity and capital inputs. Using instrumental variables, 
I show how lower industrial electricity prices can increase both labor productivity and electricity 
productivity. Apart from positive effects on firm economic and environmental performance, cost-price 
pass-through significantly benefited consumers, and the productivity improvements limited increases 
in carbon emissions.
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I. Introduction

The transition from traditional labor intensive to modern capital intensive production is a central tenet of
industrial development and essential for bridging international differences in industrial output per worker
(Caselli, 2005). Lower prices of key inputs can substantially affect this process and improve manufacturing
productivity, as observed, for example, following Indian reforms that reduced input tariffs (Goldberg
et al., 2010). Complementarities in production inputs typically amplify such effects (Kremer, 1993). Most
modern manufacturing requires electricity as a critical complementary input to run machines. The price of
electricity, conditional on physical access to power, can therefore play an important role in how countries
and sectors upgrade to modern capital intensive and electricity-using production (Atkeson and Kehoe,
1999). In this paper, I show that lower electricity prices, as a result, not only improve labor productivity,
but can surprisingly also improve electricity productivity (output per unit of electricity) through this
mechanism. While energy prices are usually thought to involve trade-offs between developmental and
environmental goals in highly industrialized countries (e.g. Marin and Vona, 2021), lower industrial
electricity prices could deliver on both dimensions in a context of industrial development.

The findings in this paper can explain a puzzling pattern in Indian aggregate manufacturing data,
where electricity prices fell substantially while electricity productivity increased at the same time. Intuition
from standard models would predict the opposite: substitution towards the cheaper input, electricity,
together with an unambiguous decrease in electricity productivity.1 The key insight to resolve this apparent
puzzle is that in the presence of discrete technological choices and complementarities, the substitution
effect towards electricity can be overturned by a technology upgrading effect. A reduction in electricity
prices can incentivize firms to move from a traditional labor-using technology to a more modern capital-
using technology that requires complementary electricity use.2 While this move increases both electricity
consumption and employment, output can increase disproportionately due to more capital intensive
production. As a result, lower electricity prices increase both labor and electricity productivity by speeding
up the transition to more modern capital intensive production technology. An important insight is that
this is achieved through lower costs of using a complementary input, rather than through a change in the
relative investment cost of modern capital per se (Aghion et al., 2022) or through changing labor costs, e.g.
from migration patterns (Imbert et al., 2022). This is also relevant for the broader ongoing electrification
debate: in highly industrialized countries lower electricity prices for industry or transport may primarily
facilitate a shift from fossil fuel to electric technologies, whereas in developing countries electrification
from lower electricity prices may extend beyond switching fuel sources, encompassing a more fundamental
transition from labor intensive to capital intensive technologies.

Apart from these broader implications for industrial development, the finding that lower electricity
prices can induce energy conservation per unit of output is important in its own right. Energy efficiency
receives much policy interest as one of the principal ways to reduce carbon emissions in manufacturing
industries as countries struggle to achieve climate goals (IEA, 2018a; Fowlie and Meeks, 2021), especially

1The effect on labor productivity depends on substitutability and returns to scale (e.g. Acemoglu, 2002).
2Ryan (2018) shows with a field experiment in Gujarat (India) that electricity is a complementary input to modern machinery

and production processes. Atkeson and Kehoe (1999) show that agents in typical putty-clay models optimize by investing in
complementary machines with changes in energy prices, which in turn magnifies positive effects on output and capital utilization
compared to clay-clay models (Pindyck and Rotemberg, 1983). Ravago et al. (2019) find that higher electricity prices amplified
premature deindustrialization and shifts towards more labor intensive manufacturing in the Philippines.
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in developing countries where production capacity and energy demand are expanding fast.3 In fact, many
developing countries including India focus solely on energy and emission intensity rather than levels as
policy objective under the Paris Agreement. While policy makers may fear that low industrial electricity
prices could fail to provide sufficient incentives to improve energy efficiency, we have surprisingly little
causal evidence of their effect on electricity productivity; indeed, this paper shows, to my knowledge,
the first plausibly causal evidence of their potential to increase both labor and electricity productivity. I
emphasize that this result is likely to be more relevant in contexts of industrial development and where
industrial electricity prices are cut from comparatively high levels, both of which are the case for India, the
setting of this paper.4 Although electricity prices are an equilibrium outcome, they serve as a sufficient
statistic that nests any policy channel. The estimated price elasticities apply to any policy that shifts prices
— deregulation, subsidy reform, grid investment, or fuel taxes—where the policy effect follows directly
from combining these elasticities with the policy’s effect on prices.

While this paper focuses on the effects of electricity prices, a related literature focuses on the reliability
of electricity and its implications. This is important in a developing country context where shortages
are frequent.5 Allcott, Collard-Wexler and O’Connell (2016) show that power shortages in India reduce
revenues by about 5% on average, and distort the plant size distribution due to returns to scale in self-
generation.6 Burgess et al. (2020) show that utilities are often caught in low cost-recovery and low
reliability equilibria. I show that both shortages as well as overall utility cost-recovery are stable over
time, because most electricity is supplied to residential and agricultural consumers who experienced
relative price increases from low levels. In India, prices are therefore too low in the Burgess et al. (2020)
sense for residential and agricultural consumers, but too high (above cost-recovery) for industry. Using
multiple measures of shortages, I show that shortages are not correlated with industrial electricity prices.7

Nevertheless, I provide robustness analyses for my estimates controlling for power shortages.
This paper proceeds in five steps. First, I set up amodel to illustrate how such counter-intuitive effects of

electricity prices are possible and generate testable predictions from these mechanisms. Second, I motivate
the empirical analysis with trends in the data and the Indian institutional set-up. Third, I estimate the effects
of electricity price reductions on industrial plants and test mechanisms including a mixture decomposition
that separates within-technology substitution from technology switching. Fourth, I estimate pass-through
to calculate incidence on consumers and welfare. Fifth, I estimate environmental implications, and contrast
my results with coal price reductions.

I begin the paper by developing a nested constant elasticity of substitution (CES) productionmodelwith
the innovation of non-convex discrete technology choices that have different degrees of complementarities

3Improvements in energy efficiency may in turn generate rebound effects in energy demand (Gillingham, Rapson andWagner,
2016). Effects in this paper are inclusive of potential rebound effects.

4India’s industrial electricity prices were around 70% higher than the G7 average in 1998, or six times as high in PPP terms.
For highly industrialized contexts, see Davis, Grim and Haltiwanger (2008) for the US, Marin and Vona (2021) for France, or von
Graevenitz and Rottner (2022) for Germany.

5Note that electricity productivity accounts for self-generated electricity as it is the ratio of deflated output to electricity
consumed, i.e. purchased and generated electricity minus electricity sold.

6Fried and Lagakos (2023) show important long run effects in general equilibrium. See also Alam (2013); Rud (2012); Jha,
Preonas and Burlig (2022) for further evidence on India, Reinikka and Svensson (2002) and Foster and Steinbuks (2009) on
African countries, Falentina and Resosudarmo (2019) on Indonesia, Fisher-Vanden, Mansur and Wang (2015) on China. Ryan
(2021) simulates the impact of transmission capacity improvements on the Indian electricity wholesale market.

7Note that Allcott, Collard-Wexler and O’Connell (2016) also argue that industrial electricity prices and shortages are not
correlated in India, which allows them to focus on shortages while ignoring prices.
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across inputs. The purpose of the model is to illustrate how lower electricity prices can improve both
electricity and labor productivity throughmore capital intensive technology adoption. Themodel generates
a set of testable predictions I later take to the data, some of which are opposite predictions compared to
standard CES models.

Tomotivate the empirical analysis and identification, I discuss price setting and other structural features
of India’s electricity sector and document key data patterns. Figure 1 presents trends at the aggregate level.
First, Panel (a) shows a secular increase in India’s manufacturing all-fuel energy productivity in the 2000s
after remaining mostly flat for several decades since the 1960s. Panel (b) focuses on electricity and the
period with more detailed data used for analysis. It shows aggregate electricity productivity improved by
34% from the 1998-2000 average to 2013.8 Surprisingly, this improvement happened during a time when
electricity became substantially cheaper. Real average industrial electricity prices fell by 48% during the
same time (right axis), a robust pattern across various data sources including plant level data, official price
indices and manually collected utility tariffs. It turns out that these at first counter-intuitive aggregate
trends can be well explained with the empirical IV estimates from the micro data. To justify an analysis at
the plant level, I document significant dispersion across plants in terms of electricity and labor productivity
as well as electricity prices, even within states and industries.

To estimate the effect of electricity prices at the micro level, I use a large panel data set of Indian
manufacturing plants from 1998 to 2013, which includes annual information on the quantity and average
price of electricity consumed at the plant level. Industry-by-region-by-year fixed effects allow for flexible
and unobserved aggregate trends in productivity, demand, and prices, differentiated by industry and
region, but there remain several further identification challenges that I discuss for my empirical framework.
For example, most Indian states have increasing block tariffs for industry such that plants with higher
consumption pay higher prices, or plants may negotiate discounts or benefit from favorable relationships
with state electricity providers, which could be correlated with their productivity.9 To address these
endogeneity concerns, I use two different instruments based on the institutional context of Indian electricity
pricing. The first uses electricity prices paid by other plants in the same state but different industry, kernel
weighted by the distance in the quantity of electricity purchased to smooth over block tariffs. The second
is a Bartik (1991) shift-share instrument that affects upstream electricity generation costs, based on coal
fired generating capacity shares and coal price shifts for power utilities, similar to Abeberese (2017).

I find that a one-percent decrease in electricity prices increases labor productivity by 0.39-1.06 and
electricity productivity by 0.24-0.78 percent for the two instruments respectively. The endogeneity bias
in the OLS estimates, however, is large. While the OLS elasticity of labor productivity with respect to
electricity prices is close to zero, the OLS elasticity of electricity productivity is of opposite sign as the IV
elasticity and statistically significant. I show that results are not driven by changes in the product mix, but
by within-product technology differences across plants and time. I provide a range of robustness checks
including additional price instruments based on policy shocks and an analysis of heterogeneous effects.

The proximate mechanism is that the effect of prices on output outweighs the effect on electricity
consumption or employment. I find that, as total variable costs increase, plants scale up with lower
electricity prices. To shedmore light on deeper mechanisms, I test predictions of the nested CES production
model, use exogenous shocks to machinery capital for a subset of plants from the timing of India’s FDI

8The patterns in Figure 1 hold within industries and are therefore not driven by mere reallocation between sectors.
9Mahadevan (2023) shows Indian households in winning party constituencies were allowed to manipulate electricity bills.
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Figure 1: Long run energy productivity, electricity productivity and electricity prices

Notes: Panel (a) plots annual energy productivity ratios, i.e. aggregate real value of output divided by the aggregate value of fuel and electricity
used, in Indian manufacturing over the longer run. Panel (b) plots annual aggregate electricity productivity ratios with the solid line, i.e. real
value of output divided by the quantity of electricity consumed in kWh, including bought and generated. The dashed line plots real average
electricity prices. Ratios in both panels are constructed by first aggregating numerator and denominator before taking the ratio. Output is deflated
at the industry level before aggregation and fuel and electricity use or prices are deflated using a general fuel and electricity wholesale price
deflator. The base year for deflation is 2004 throughout this paper.

liberalization in 2006, and examine further plant decisions and outcomes. I present evidence that lower
electricity prices significantly increase profits, plant total factor productivity (TFP), wages, investment in
machinery, labor, machine to labor ratios, machine to electricity ratios, and markups. To directly quantify
within-technology substitution versus technology switching, I estimate a finite mixture decomposition that
recovers positive substitution elasticities for both latent technologies, but shows that technology upgrading
— the compositional shift toward machinery-intensive techniques — overwhelms the standard substitution
effect. These results corroborate all model predictions including those that allow me to distinguish the
model from standard CES models, and are consistent with a setting where electricity prices influence
investment and technological decisions. Lower prices can incentivize firms to invest in modern electricity-
using machinery and processes, especially for plants with initially low machinery penetration. This, in
turn, improves productivity and output more than labor and electricity use.

I then estimate effects onwelfare. While there are clear positive effects for firms, it is a priori unclear how
much consumers are affected by pass-through of electricity costs to output prices, as well as direct losses
for power utilities and consumers through decreased revenues and higher residential electricity tariffs. I
exploit detailed information on output quantities and prices in the data to estimate pass-through elasticities
by industry using the above instruments for marginal costs. I then combine these with my estimates of
plant level market power and estimates of demand elasticities to recover plant level pass-through rates
and consumer and producer incidence shares under imperfect competition in a generalized oligopoly. I
account for industries serving final demand to varying degrees using input-output tables, and for utilities’
deficit being covered by rate increases in the residential sector, which reduces consumer benefits. Total
welfare gains from the 48% reduction in electricity prices are US$68 billion, which comprises US$37 billion
gains for firms, and US$31 billion gains for consumers (45% share).

I end the paper by considering the environmental implications via CO2 emissions and contrast the
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findings of electricity price effects with effects of coal prices on industries, which also provides an additional
test of mechanisms. First, using emission factors for specific fuels and the Indian grid, I estimate a 41.7Mt
increase in CO2 emissions from the 48% price reduction, equivalent to an additional welfare loss of US$4.2
billion at a social cost of carbon of US$100 per tCO2. This increase in emissions is driven solely by scale
as efficiency increased, and I show that without the estimated improvement in electricity productivity,
the emission increases would have been over double.10 Second, the effect of coal prices are opposite to
the effects of electricity prices. I estimate that lower coal prices decrease coal productivity and have no
significant effect on labor productivity and other measures of firm performance. Comparing the effects of
electricity and coal prices provides further evidence on the mechanism that electricity, unlike coal, has a
special role in industrial modernization as complementary input. This finding is also relevant for climate
policy, particularly regarding relative taxation of fossil fuels and electricity in developing countries.

The remainder of the introduction gives a brief overview of the literature. Section II sets up the
conceptual framework and generates testable predictions. Section III provides insights into the context of
Indian electricity supply relevant for identification, describes the data, and presents patterns of labor and
electricity productivity and prices in the data. Section IV develops the empirical strategy. Section V presents
and discusses results along with robustness checks, evidence on mechanisms, and policy implications,
before I conclude in Section VI.

A. Related Literature

This paper contributes to the broader literature on industrial development and the importance of capital
intensive production technologies (Caselli, 2005), and how cheaper prices of some inputs can help in this
process (Acemoglu et al., 2012; Goldberg et al., 2010; Verhoogen, 2023; Aghion et al., 2022), especially
with complementarity between energy and capital (Berndt and Wood, 1979; Pindyck and Rotemberg,
1983; Atkeson and Kehoe, 1999; Hassler, Krusell and Olovsson, 2021; Fried and Lagakos, 2023; Casey,
2024).11 I show that cheaper access to a critical input for modern production, electricity, can increase capital
investments and help transition to modern industrial technologies, while cheaper coal does not have the
same benefits.12 While electrical machines have a labor replacing effect, I find that this is overcompensated
by labor demand increases through the associated boost in productivity and scale, similar to the two
opposing effects of automation through direct labor replacement and indirect employment increases
through productivity (Acemoglu and Restrepo, 2018; Aghion et al., 2022).

This paper also contributes to the literature on impacts of energy, and electricity prices in particular,
on firm outcomes, where this is the first paper to show how lower electricity prices can improve labor
and electricity productivity. Abeberese (2017) studies the effect of electricity prices on firm switching to

10Similarly, estimated firm fuel substitution from coal to electricity attenuated the increase in emissions.
11See Acemoglu et al. (2012) on how this matters for the direction of technical change, Goldberg et al. (2010) or Martin (2012)

as an empirical example of traded inputs, Krusell et al. (2000) who show how cheaper ICT prices drove the skilled wage premium
due to complementarities, or Ding et al. (2022) who show that a decline in input prices increases non-manufacturing “knowledge”
employment in the presence of complementarities between physical and knowledge capital. Verhoogen (2023) provides a recent
literature review on firm upgrading.

12Calì et al. (2022) show that lower coal prices could even lead to productivity losses. Macher, Miller and Osborne (2021) show
that cement plants adopt efficiency enhancing technology when fossil fuel prices are high. Casey (2024) does not distinguish
between types of energy but shows how energy prices affect short and long run energy efficiency at an aggregate level. Hawkins
and Wagner (2022) show that energy price impacts on efficiency also depend on adjustment frictions to capital that may prevent
firms from updating technology.
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electricity intensive production in India, but there are important differences to this paper.13 Her headline
finding is that higher electricity prices induce firms to switch to less electricity intensive industries and
product mixes, suggesting, contrary to here, that lower prices decreased electricity productivity in India.
Importantly, this relies on pre-defined industry or product intensities which, however, ignore the salient
improvements within industries or products by design. By instead measuring firm electricity productivity
directly and using several instruments, I show that lower prices, in contrast, made firms more electricity
productive (i.e less electricity intensive) despite usingmore electricity, and find no effects on the pre-defined
product mix electricity intensity. I replicate Abeberese (2017) and show that the seemingly contradictory
findings on product mix intensity are due to a partial omission of included fixed effects from a coding
issue that once addressed, makes the relationship insignificant or reverses the sign of the effect, consistent
with the findings here.14 Davis, Grim and Haltiwanger (2008) is one of the first studies on plant level
electricity productivity and prices. They find a positive elasticity for most industries in the US, which,
however, is in a context of already highly mechanized production compared to the Indian context.15 This
comparison emphasizes that there are likely differential impact of electricity prices depending on the stage
in industrial development.16

In the developing context, several studies report a positive elasticity of electricity productivity to
electricity prices, but using OLS rather than instrumented prices, consistent with the OLS findings in this
paper which are of opposite sign to the IV estimates (Fisher-Vanden et al., 2004; Hang and Tu, 2007; Fisher-
Vanden et al., 2016; Rentschler and Kornejew, 2017). A range of studies analyze the impact of energy prices
on outcomes other than electricity productivity, mainly on employment or output (Deschenes, 2011; Kahn
and Mansur, 2013; Cox et al., 2014; Aldy and Pizer, 2015; Sadath and Acharya, 2015; Popp, 2002; Marin and
Vona, 2021). Most of these estimates, however, either rely on state level prices that ignore the substantial
heterogeneity in electricity prices across plants that this paper or Davis et al. (2013) report, or use an index
of all energy sources, not just electricity, conflating potentially opposite effects of electricity and fossil fuel
prices. The findings in this paper also tie into the literature on effects of environmental policy and carbon
pricing on firm performance (Martin, De Preux and Wagner, 2014; Martin, Muûls and Wagner, 2015; Calel
and Dechezleprêtre, 2016; Dechezleprêtre and Sato, 2017). Carbon pricing tends to lower electricity prices
relative to fossil fuel prices, and thus the relative price of clean and dirty energy that matters for directing
investment and clean growth as in Acemoglu et al. (2012).17 Finally, this paper contributes to the literature
on energy cost pass-through and incidence shares between firms and consumers (Weyl and Fabinger, 2013;
Fabra and Reguant, 2014; Ganapati, Shapiro and Walker, 2020; De Loecker et al., 2016; Miller, Osborne and
Sheu, 2017; Hausman, 2018), but in a developing country context.

13Similarly, Elliott, Sun and Zhu (2019) study the effect of electricity prices on industry switching in China.
14Apart from this crucial difference in the main finding, I also show (i) how this apparent puzzle can be rationalized with a

model and testable predictions, (ii) along with evidence of mechanisms including additional exogenous variation (iii) using
multiple instruments, (iv) a longer panel with three times the observations, (v) and analyzing impacts on consumers via
pass-through into output prices and carbon emissions.

15Using sectoral price data, Linn (2008) also finds a positive elasticity of electricity productivity to energy prices in the US. His
findings suggest that entrants’ energy efficiency respond more to energy prices than that of incumbents. See also Hawkins and
Wagner (2022) for an analysis of persistent effects of electricity prices on entrants in the US, and Pizer et al. (2002) who study
technology adoption, energy prices and aggregate energy efficiency.

16Their period of study was characterized by rising prices in the US, rather than declining prices from comparatively high
levels as was the case in India, so another explanation could be that effects on production technologies are asymmetric.

17The Porter and Van der Linde (1995) hypothesis, which postulates firm performance gains from environmental regulation,
may apply to fossil fuels, but not necessarily to electricity. See Lu and Pless (2021) for an empirical example focusing on fossil fuel
regulation in China.
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II. A Simple Model of Technology Choices with Electricity Price Changes

It is helpful to begin by showing how the presence of different production technologies can fundamentally
alter the impact of electricity price decreases on firm outcomes. Suppose a firm has a standard nested CES
production function to produce sales PQ, where the upper nest is given by:

PQ = A(αlL
ρl + (1− αl)X

ρl)
ϕ
ρl , (1)

where A is TFP, L is labor andX capital services. The returns to scale are ϕ < 1, which represents a bundle
of (possibly increasing) returns to scale in production and decreasing returns in demand.18 The elasticity
of substitution between labor and capital services is governed by ρl ≤ 1 and the labor share parameter is
αl. Capital services are produced in the inner nest combining machinery capital and electricity:

X = (αeE
ρe + (1− αe)K

ρe)
1
ρe (2)

Capital K and electricity E are complementary inputs (ρe < 0) and αe is the shape parameter. The
innovation in the model is that there are two discrete (i.e. non-convex) types of technology c available,
both of which produce the same output and require all three inputs. The first type (c = 1) is a traditional
technology which is more labor intensive, and where capital relies to a smaller degree on electricity.
The second type (c = c′ > 1) is a modern technology, which is capital service intensive, and uses
modern machinery that relies to a larger degree on electricity as complementary input (e.g. traditional
vs modern textiles manufacturing). The difference in technology is represented by altered parameters
in the production function to capture three key features of modern production: changes in the capital
service intensity (1− αl), the complementarity between capital and electricity ρe, and in fixed costs. The
parameters are affected by technology choice c ∈ {1, c′}, where c′ > 1:

αl = α̂l/c (3)

ρe = ρ̂e · c

Compared to the traditional technology (c = 1), the modern technology (c = c′ > 1) increases the share
of capital services to (1− α̂l/c

′) and decreases the labor share to α̂l/c
′, capturing more capital intensive

production. It also increases the complementarity between capital and electricity to ρ̂ec
′ (as ρ̂e < 0 the

absolute value of ρ̂e is increased), as modern machines are more reliant on electricity to produce.
There are fixed costsm · c associated with choosing a particular technology c ∈ {1, c′}, wherem ≥ 0

such that fixed costs are allowed to be higher for the modern electricity-using production process. A firm
maximizes profits Π given input prices pK , pL and pE :

max
K,L,E,c

Π = PQ− pK ·K − pL · L− pE · E −m · c (4)

It is useful to recall the effect of prices in a standard set-up without technology choices, where the effect of
an electricity price decrease on electricity productivity is unambiguously negative:

18The bundle consists of ϕ = ϕ̂(η + 1), where ϕ̂ are the returns to scale and η the inverse demand elasticity.
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Lemma 1. Without discrete technology choices (c = c′ = 1), an electricity price decrease from pE to pE −∆pE

always decreases electricity productivity PQ∗

E∗ .

Proof. Since c = 1 in all cases, factor demands and output are continuous in factor prices and we can derive

the marginal effect ∂ PQ∗
E∗

∂pE
> 0. Appendix A.1 shows the full proof. ■

However, once we allow for non-convex production technologies, two otherwise identical firms may
choose different technologies when facing lower electricity prices, which affects electricity productivity.
This across-technology effect can be larger than the pure within-technology effect of Lemma 1:

Proposition 1. With the availability of discrete technologies c ∈ {1, c′}, an electricity price decrease from pE to
pE −∆pE can increase electricity productivity PQ∗

E∗ .

Proof. Appendix A.1 provides a proof. ■

Figure 2 provides visualizations of Proposition 1 by solving the model for a given parameter set. These
patterns are not unique to this specific set of parameters; indeed, they can arise for a broad range of
substitution elasticities between labor, capital and electricity as shown in Appendix A.1 (Figure A.1). Panel
(a) shows electricity productivity at the optimum PQ∗

E∗ against electricity price decreases. The upper line
shows the plot conditional on themodern technology c = 3, and the lower line for the traditional technology
c = 1. Both are normalized by dividing by the electricity productivity of the traditional technology at the
original prices. Conditional on technology, both lines are strictly decreasing in electricity price reductions,
which reflects Lemma 1. However, as the evolution of profits in Panel (b) shows, the modern technology
is preferred once electricity prices are low enough such that it yields higher overall profits. The technology
adoption leads to a step change in electricity productivity as shown in Panel (a).

This increase in electricity productivity from lower electricity prices is driven by higher capital utilization
required by the complementarity in the new technology. Panel (c) shows that the capital utilization effect
can be so large that the capital to electricity ratio increases with the technology switch even though it
is electricity that becomes cheaper, not capital. I will test this prediction of the model in the empirical
part, by estimating the complementarity ρe by technology, including decomposing this overall effect into
pure substitution and across technology effects. This also allows distinguishing the model from standard
models without discrete technologies, since:

Lemma 2. Without discrete technology choices (c = c′ = 1), an electricity price decrease from pE to pE −∆pE

always decreases the capital to electricity ratio K∗

E∗ .

Proof. Appendix A.1 shows a proof. ■

Turning to labor productivity, without technology choices, an electricity price decrease can increase
or decrease labor productivity, depending on whether labor and capital services are complements or
substitutes (similar as in Acemoglu (2002)), illustrated in Figure A.2 in Appendix A.1. Irrespective of the
effect under constant technology, the switch to modern technology provides an additional boost to labor
productivity, as Panel (d) of Figure 2 shows, driven by a higher utilization of capital services.

Appendix A.2 shows similar graphs for further firm outcomes and input ratios. This provides model
predictions that are tested and corroborated in the empirical part of this paper. Appendix A.2 also
shows how the introduction of capital constraints, if binding enough, can delay the switch to the modern

8



(a) Electricity productivity (b) Profits

(c) Capital to electricity ratio (d) Labor productivity

Figure 2: The impact of technology choice with electricity price decreases

Notes: The figures plot firm outcomes on the vertical axes (all normalized) against relative electricity price decreases on the horizontal axis. Panel
(a) shows electricity productivity, Panel (b) firm profits, Panel (c) the capital to electricity ratio and Panel (d) labor productivity. The figures
show optimal choices both conditional on a specific technology as indicated, and the overall optimum (thick line). All outcomes are normalized
by dividing by (for profits: subtracting) its value at the traditional technology (c = 1) and original electricity price (∆pE = 0). The parameter
values for this simulation are set to {pK = 6, pL = 5, pE = 0.5, c = 3, α̂l = 1/3, αe = 0.5, ρl = −0.5, ρ̂e = −0.5, ϕ = 0.95, A = 9.15,m = 1}
and∆pE varies from 0 (corresponds to pE = 0.5, and 1 on the horizontal axis) to 1/12 (corresponds to pE = 0.4, and 0.8 on the horizontal axis).
As Appendix A.1 shows, these patterns are not unique to these parameter values, but instead exist for a broad range of values.

technology. Finally, Figure 2 only shows the effects on one firm, but for heterogeneous firms the thresholds
for switching technologies are at different values of electricity prices, such that aggregate electricity
productivity can increase more smoothly with electricity price decreases as shown in Appendix A.2.

III. India’s Electricity Sector, Data and Descriptive Statistics

To set up and guide empirical identification and interpretation, this section first describes the relevant
institutional context, followed by an analysis of key trends and variation in the manufacturing data.

A. India’s Electricity Sector

Where does electricity come from and how do prices come about? I next highlight five key contextual
features: (i) electricity is predominantly produced by coal fired plants, (ii) generation is mainly state
owned with increasing private ownership after deregulation in 2003, (iii) industrial electricity prices came
down from a high level, (iv) industrial electricity prices are to be set according to cost pressures and can
follow block tariffs, and (v) power shortages and electricity prices are uncorrelated.
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Fuel mix of power generation.—Electricity is mainly purchased from the grid andmost of India’s electricity
is generated by coal fired power plants (roughly 60%), followed by hydro. The variation in the share of
coal plants in generating capacity across states contributes to one of the shift-share instruments in the
analysis. This variation in coal capacity shares is mainly determined by the presence of coalfields, as coal
accounts for up to two-thirds of production costs in these plants (IEA, 2015). Appendix A.11 visualizes
the geography of coal power plants and coalfields on maps and shows evidence from regressions.

Ownership and deregulation.— India’s electricity generation is dominated by state and central govern-
ments. In 1998, they owned 65% and 30% of installed capacity, with the remaining 5% owned privately
(Ministry of Power, 1998a; Planning Commission, 2001-2002). The 2003 Electricity Act aimed to open the
heavily regulated sector to more competition, which led to an increase in the share of privately owned
capacity to 31% by 2013. The opening up of the power market following the Electricity Act has contributed
to lower electricity prices.19 Appendix A.12 provides details for how I combine the timing of the Electricity
Act with location of coalfields to instrument for electricity prices in robustness checks.

India’s high industrial electricity prices in comparison.— The context of India’s high industrial electricity
prices is important for interpretation of the results. Average electricity tariffs in 1998, the beginning of the
analysis period, were the equivalent of 15.1 US cents per kWh (2004 US$) for industrial users, around 70%
higher than the G7 average in nominal terms, or six times as high in PPP terms, and continued to be higher
in nominal terms until 2004 (see Appendix A.4 for more details). The industrial prices are significantly
above cost-recovery, but in stark contrast to residential or agricultural prices (5.8 and 0.9 US cents per
kWh in 1998). As a result, state electricity utilities have been loss-making almost across the board, despite
the cross-subsidization from industrial electricity prices (Ministry of Power, 1998b). The main reason
for the heavy cross-subsidization across sectors is political as farmers form important voting blocs that
governments aim to cater to (Abeberese, 2017).

Electricity pricing.— Electricity prices vary locally across manufacturing plants, determined by utility
tariffs that are typically revised annually. The tariffs have generally been heavily regulated, with price
levels tied to cost pressures for generators. Generation, transmission and distribution were largely vertically
integrated before 2003 with individual State Electricity Boards setting tariffs for different end-users and
locations within their jurisdiction.20 Unlike in many European countries, industrial electricity tariffs mostly
follow flat or slightly increasing block tariffs, as I show in Appendix A.5 using manually collected data from
government reports and by plotting plant average prices against quantities to visualize marginal electricity
prices. Prices remained heavily regulated after the Electricity Act of 2003 despite some unbundling
(Planning Commission, 2001-2002; IEA, 2015). Coal prices are the main cost pressure for coal-fired
generators and thus electricity prices. The largest coal producer, government owned Coal India Limited,
acts as a quasi-monopoly (81%market share in 1998) and supplies most power plants (Preonas, 2018). Coal
prices for power generators and industry are set independently and often move in opposite directions (see
Figure A.28), important context discussed below for identification with one of the instruments. Changes
in coal prices for power generators are due to changes in regulatory processes or cost of mining (Minsitry
of Coal, 2006, 2015).21 Finally, the observed fall in industrial electricity prices over the sample period is

19See Cicala (2017) for how the introduction of market mechanisms reduced US electricity prices.
20Regional trading of electricity is highly limited. The networks across regions are in the process of getting better integrated

(IEA, 2015). For additional information on unbundling and spot vs. longer term electricity markets see Planning Commission
(2001-2002); Cropper et al. (2011); IEA (2015); Ryan (2021); Preonas (2018); Mahadevan (2019).

21Since 2010, the coal price contains an additional tax of | 50 per tonne (4% of the price), which also feeds into the coal cost
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Figure 3: Electricity shortages, price ratios and cost of supply

Notes: Panel (a) plots electricity shortages over time, calculated as share of total required electricity using data from Central Electricity Authority
(2006-2015) and Allcott, Collard-Wexler and O’Connell (2016). Panel (b) plots ratios of electricity prices in agriculture, residential or commercial
over industrial electricity prices. These are calculated from publications of total revenue over total quantity of electricity delivered by sector from
the Indian Planning Commission (2001-2002) and Ministry of Power (2002-2015). Panel (b) also shows the overall ratio of average rate of revenue
(without subsidies) over the cost of supply available from 2002, both averaged across states.

due to a combination of lower generation costs (Figure A.28), deregulation and entry (Table A.4), and
reductions in cross-subsidization (Figure A.13).22

Electricity prices, power shortages and self-generation.— India’s generated electricity usually falls short of
required electricity.23 In the short run, distribution companies cannot adjust electricity pricing for end-users
at high-frequency to clear markets as a response to shortages (Allcott, Collard-Wexler and O’Connell, 2016;
Jha, Preonas and Burlig, 2022). In the longer run, one may be concerned that the decrease in industrial
electricity prices affected the amount of electricity shortages. Burgess et al. (2020) show howmany utilities
in developing countries are stuck in a low reliability – low cost-recovery equilibrium, where low prices
lead to more shortages. Yet, the degree of shortages was stable in India despite the fall in real industrial
electricity prices over the sample period. Figure 3 Panel (a) plots shortage data as share of total required
electricity from administrative reports for India overall and six major states over time. To explain the lack of
correlation between industrial prices and shortages, it is key to note that industry is not the main consumer
of electricity. As mentioned above, whereas industrial prices were above cost-recovery, residential and
particularly agricultural prices were far below cost-recovery but consumed more electricity. Panel (b)
plots the evolution of the price ratio of average agricultural and residential prices divided by industrial
electricity prices using government publications.24 While agricultural prices were only 6% of the industrial

shifting instrument.
22Three corresponding examples are in Figure A.28 that shows decreasing coal input costs for power plants, Table A.4 that

shows lower prices from deregulation and entry following the 2003 Electricity act, and Figure A.13 that shows that residential
and agricultural prices increased relative to industrial prices implying lower cross-subsidies.

23Total electricity shortages hovered around 4-11% during 1998-2013 (Ministry of Power (2018) and Figure 3) despite falling
average plant load capacity factors. India has one of the highest rates of transmission losses in the world (IEA, 2015).

24All statistics in Panel (b) are calculated as weighted average across utilities and states, with weights based on the share of
total electricity consumption by sector. Panel (b) of Figure A.13 shows simple averages instead.
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price level at the beginning of the sample in 1998, they were 27% by the end of 2013. This is a four-fold
increase in the relative price, showing a significant reduction in cross-subsidies. This in turn helped to
stabilize cost-recovery for utilities despite falling industrial prices. Panel (b) also plots the cost-recovery
where data is available from 2002. Cost-recovery is fairly stable around 80% helping explain the stability of
shortages over time.25

Importantly, this institutional context implies that industrial electricity prices are not correlated with
power shortages in India. Appendix A.6 shows this more formally using multiple types of data on
shortages and electricity prices. First, shortages as measured by unmet electricity demand at the factory
level from survey data is uncorrelated with electricity prices, both overall or at the intensive margin of
unmet demand (Figure A.16 and Table A.2). Second, the correlation between state level power shortages
from administrative data and industrial electricity prices is also insignificant and small (Table A.2). Using
electricity price information from government reports instead also shows that shortages are uncorrelated
with industrial electricity prices (Table A.3). By contrast, as Table A.3 shows, overall electricity prices based
on all consumer sectors rather than industry alone, are indeed correlated with shortages. This is because,
as Table A.3 also shows, the degree of cost-recovery drives electricity shortages and cost-recovery is in
turn driven by these overall electricity prices, similar as in Burgess et al. (2020). This is consistent with
the reasoning above based on Figure 3: due to reductions in cross-subsidies, lower industrial electricity
prices do not lead to more shortages, as it is the overall electricity price that matters for cost-recovery and
shortages. The fact that industrial electricity prices are not correlated with shortages allows me to focus
on industrial electricity prices.26 For the analysis, if anything, lower electricity prices would be expected
to lead to more outages introducing a countervailing downward bias implying my estimates would be
conservative. Nevertheless, I control for shortages in robustness checks in Appendix A.14.

Apart from the failure to account for supply and demand imbalances in the high frequency wholesale
market (Jha, Preonas and Burlig, 2022), power outages are also driven by failures in technical equipment
or networks (Allcott, Collard-Wexler and O’Connell, 2016). Coal supply issues, on the other hand, are only
responsible for 0.2% to 3.3% of failures in thermal plants,27 so while coal supply affects electricity prices,
it is unlikely to affect outages. Finally, power outages led to adoption of electricity generators by a few
larger industrial plants. Importantly, the adoption of electricity generators is mainly driven by insuring
against outages and not by electricity prices, since self-generation is typically more expensive than buying
electricity from the grid.28

B. Data

Manufacturing plant level data.— The main data source is the Annual Survey of Industries (ASI), India’s
mandatory annual establishment levelmanufacturing survey. Its long history since 1953makes it a relatively
reliable data source in the developing country context. The formal firms in the ASI are representative of

25Note that utilities cover the loss that they are making with government subsidies. So even if cost-recovery would decline,
shortages can be stable if government tops up an increasing shortfall.

26This is in line with Allcott, Collard-Wexler and O’Connell (2016) who by the same logic can focus on shortages while ignoring
industrial electricity prices. They also provide further evidence showing that a rainfall based instrument for hydro generation is
also uncorrelated with electricity prices in India.

27Calculated as share of total annual outages using data from Allcott, Collard-Wexler and O’Connell (2016).
28Bhattacharya and Patel (2008) estimate self-generation to be at least 25% more expensive than buying electricity. In other

developing countries, the price ratio between self-generated and grid electricity is even larger (Fried and Lagakos, 2023).
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two-thirds of manufacturing output (Allcott, Collard-Wexler and O’Connell, 2016), with the remaining
one-third made up of informal firms or firms with less than 10 employees.29 By matching panel and
cross-sectional editions of the ASI, I retrieve panel identifiers and district codes otherwise only available in
the respective editions, and use an annual panel from 1998 to 2013 for the main analysis.30

I use quantity and value of electricity purchased, generated, and sold. By dividing the value of electricity
purchased by its quantity, I can calculate the average price paid for electricity at the plant level.31

I validate the quality of the derivedASI price data by comparing it to data from government publications
in Figure A.6, by plotting it against manually collected tariff data mentioned below at the state by year
level for large consumers in Figure A.9, and by showing results are robust when using this tariff data
directly instead in Table A.7. Appendix A.3 shows further checks on the quality of the ASI-derived price
data. Electricity productivity is deflated output divided by the quantity of electricity consumed, i.e. net
purchases and self-generation. Labor productivity is deflated output divided by the number of employees.
I also use plant level output (sales), employees, wages, intermediate inputs, and other fuel expenditures
and quantities (coal, gas and oil). Importantly, I can distinguish between different types of capital and
use machinery capital (book value or investment), as it is the most relevant for this analysis. I measure
firm-level capital rental rate as total capital charges (interest, plant rental expenses, and depreciation)
divided by the gross book value of fixed assets. I construct total variable costs as the sum of wages, input
costs, and other variable expenses, and total revenues as the sum of sales and other receipts. The difference
is total profits. For the analysis of pass-through and incidence, I exploit information on output sales and
quantity at the plant-product level to construct output prices and quantity.

I drop observations in non-manufacturing industries, winsorize the lowest and highest percentile of
each variable within each year to reduce sensitivity to outliers, and deflate all monetary values to a common
base year 2004 throughout the paper.32 I weight all regressions by the included sampling multiplier. Table
1 shows that after the cleaning steps, there are 485,342 plant year observations from 160,836 plants, and
Appendix A.7 provides a brief discussion of the summary statistics.

Coal prices for thermal power plants.—Coal prices for thermal power plants (as opposed to manufacturing
plants) are from the Minsitry of Coal (2012, 2015). I use the published annual pit-head prices specifically
for power utilities customers and inclusive of royalties and taxes, based on a representative Coal India
Limited (CIL) mine and grade selected by the Minsitry of Coal (2012).33 Shares of coal fired power plants
in state installed capacity in 1998 are from the Ministry of Power (1998a, 2003).34

29The survey divides plants into a census sector, where all plants are sampled that have ≥ 100 employees (until 2004 ≥ 200),
and a sampling sector where 20% within each state by 4-digit-industry strata are sampled. The sampling frame consists of all
plants with ≥ 10 employees with electricity and all plants with ≥ 20 employees without electricity.

30The accounting year in India runs from April to March, and I refer to it with the first year (i.e. 2006 is April 2006 to March
2007). For robustness checks and trends in aggregate statistics, I add the 1993 and 1996 cross sectional editions of ASI micro data.
I also use aggregate ASI data at the industry by state by year level from 1967 to 1997 for long run trends.

31Average prices are similar to marginal prices as the slope of marginal prices is relatively flat i.e. pricing is fairly linear
(Appendix A.5). Note that firms may also react to average rather than marginal prices (Ito, 2014).

32I winsorize final variables only. That is electricity productivity (sales divided by electricity use) is winsorized before sales
and electricity use are winsorized to avoid double winsorization. I deflate outputs and inputs using 3-digit industry deflators,
investment and installed machinery capital using a machinery deflator, wages, total revenues, total costs and total profits using a
state deflator, and fuels and manually collected tariffs and prices (electricity, coal, gas, oil) using a fuel and electricity deflator.

33These are the ones of Eastern Coalfields Limited of Coal India Limited, Rajmahal field, Grade E, in line with those used by
Abeberese (2017). After 2011, India switched the coal grading from Useful Heat Value (UHV) to Gross Calorific Value (GCV). I
used the prices of the new grades G9 based on the correspondence given in Minsitry of Coal (2013). Prices are deflated with the
electricity and fuel deflator from Office of the Economic Adviser (2019). Appendix Figure A.28 plots these prices in real terms.

34Thermal shares as on 31st of March 1998, one day before the beginning of the sample. Chhattisgarh, Jharkhand and
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Table 1: Summary statistics from plant level data

Main variables:

Mean
Electricity bought (GWh) 1.84
Electricity generated (GWh) 0.63
Electricity sold (GWh) 0.09
Electricity consumed (GWh) 2.34
Electricity price (|per kWh) 4.44
Electricity share in total var cost .054
Electricity productivity (|per kWh) 493.87
Electricity productivity (|per | ) 121
Labor productivity (in mil. | ) 1.5
Output (in mil. | ) 280
Employees 162
Weighted by electricity consumed:
Electricity productivity (|per kWh) 130
Electricity productivity (|per | ) 33
Weighted by fuel consumed:
Electricity share in fuel expenditure 0.63
Observations 485342
Firms 160836
Districts in sample 541
States in sample 32
Regions in sample 6
4-digit industries in sample 133
2-digit industries in sample 22

Additional variables:

Mean Obs.
Total capital (in mil. | ) 36 482169
Mach. capital (in mil. | ) 21 474372
Capital investment (in mil. | ) 8.1 482621
Mach. investment (in mil. | ) 4.1 475490
Capital rental rate (|per | ) .21 477316
Total revenue (in mil. | ) 119 485263
Total variable costs (in mil. | ) 101 485263
Total profit (in mil. | ) 17 485263
AC-Markup (Price/AC) 1.2 485263
MC-Markup (Price/MC) 1.3 477710
TFP (Wooldridge) 7.3 477710
TFP (Levinsohn-Petrin) 9.8 477710
TFP (Olley-Pakes) 7 379038
Coal consumed (tonne) 383 485342
Coal price (|per tonne) 4153 49605
Coal price (|per kWh equivalent) .64 49605
Coal productivity (|per th. tonne) 1077 49605
Coal productivity (|per | ) 296 49605
Weighted by coal consumed:
Coal productivity (|per th. tonne) 56 49605
Coal productivity (|per | ) 23 49605

Notes: The tables shows the sample means based on the pooled plant level data from 1998-2013. The means are calculated using the sampling
multiplier as weights. Where indicated, the means are additionally weighted by the consumed electricity, fuel or coal to make the means more
representative of aggregate productivities. Marginal cost (MC) markups are calculated following De Loecker and Warzynski (2012), and plant
TFP are calculated using Wooldridge (2009), Levinsohn and Petrin (2003), or Olley and Pakes (1996) as indicated. See Singer (2019) for a detailed
example of TFP estimation using Wooldridge (2009) in the Indian context.

Additional electricity tariff data and deflators.— I collect annual utility level average tariffs, revenues,
and demand by sector as well as cost of supply from Planning Commission (2001-2002) and Ministry of
Power (2002-2015). Additionally, I collect dated state level average tariffs by consumer type and consumer
size from annual reports of the Central Electricity Authority (2006-2015) and from Indiastat (1998-2014)
through Lok Sabha and Rajya Sabha (Parliament of India) questions. Data on international industrial
energy prices is from IEA (2018b), and GDP deflators, exchange rates and PPP conversion factors from
World Bank (2017). Deflators for India (industry-wise, electricity and fuel, machinery) are from the Office
of the Economic Adviser (2019) and the state-wise deflator is from the Reserve Bank of India (2019).

Coalfields, power plants, and power shortages.—Geo-located data on Indian coalfields is from Trippi and
Tewalt (2011) which I combine with geo-located data of the 541 districts from the Database of Global
Administrative Areas (GADM) to calculate distances. Geo-located data on the capacity, commissioning
and ownership of coal fired power plants comes from the Center for Media and Democracy (2017), for gas
plants from KAPSARC (2018), for nuclear plants from NPCIL (2015) and for hydro plants from Gupta
and Shankar (2019). Data on state level power shortages comes from the Central Electricity Authority
(2006-2015), and from Allcott, Collard-Wexler and O’Connell (2016) for before 2005.

C. Trends and Heterogeneity in Electricity and Labor Productivity and Prices

To motivate the main analysis I next present key empirical patterns in the data.
Industrial energy and labor productivity over 50 years.— Panel (a) of Figure 1 shows that there was a

Uttarakhand were created in 2000, and shares correspond to Jan 2003 when data is first available.
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remarkable increase in energy productivity, more than doubling from 2000 until 2013, after staying roughly
constant between 1967 and 1999. This was not driven by a particular state or industry alone (Figures A.18
and A.19), and consistent with other aggregate data sources and in contrast to the evolution in OECD
countries (Figure A.10).35 Figure A.17 shows that labor productivity increased more steadily during these
five decades.

Industrial electricity and labor productivity, and prices and wages 1993-2013.— Panel (b) of Figure 1 shows
that electricity productivity increased by 34% from 1998-2000 to 2013. This trend did not occur because of
substitution away from electricity. If anything, there was substitution away from other fuels to electricity.36

As noted in the beginning, this secular increase in electricity productivity occurred while real electricity
prices fell by 48% during the same period.37 As I will show below, the paper can explain these at first
puzzling patterns. Indeed, simply taking the aggregate data points of Panel (a) in Figure 1 yields an
elasticity of -0.4, remarkably close to the plant level IV estimates in the main analysis (but of opposite
sign to the plant level OLS estimates). Appendix A.9 shows that the productivity and price patterns are
consistent across sectors and states, and not a story of mere across-sector or spatial reallocation.38 The
Appendix also confirms these patterns using alternative production and price data sources (IEA, 2016;
UNIDO, 2016; Office of the Economic Adviser, 2019), includingmanually collected tariffs from publications
by the electricity regulator, and contrast the electricity price decline with the 40% price increase in OECD
countries. Finally, during the electricity price decline from 1998-2000 to 2013, labor productivity and
wages increased by around 90% and 60% respectively (Figure A.17). The IV results below suggest that the
electricity price decline explains a sizable portion of the increase in labor productivity and to a smaller
extent in wages.

Heterogeneity in electricity and labor productivity and prices.— Before setting up the econometric analysis
at the plant level, it is crucial to ask how much variation in prices and productivities there is actually
left when looking within industries and states. To this end, Figure 4 plots the histograms of electricity
productivity, labor productivity and electricity prices in 2003.39 It shows that there remains substantial
dispersion even after partialing out state by industry (4-digit) effects. Plants at the 90th percentile pay
still around 33% higher electricity prices than those at the 10th percentile within state by industry clusters
within the same year. Plant labor and electricity productivity at the 90th percentile is 13 and 15 times
higher than at the 10th percentile, similar or slightly higher than US productivity dispersions found
in the literature (Bartelsman and Doms, 2000; Syverson, 2004, 2011). Appendix A.10 presents a more
formal variance decomposition following Davis et al. (2013), showing that state by industry effects can
only account for about half the variation in input productivities or electricity prices.40 Finally, I show

35The increase in energy productivity is consistent with the drop in emission intensity from 1990-2010 for a subsample of large
firms reported in Barrows and Ollivier (2018).

36The electricity share in the fuel mix grew from around 16 to 20% in energy units (Panel (b) of Figure A.10). The share of
electricity in fuel expenditure was roughly constant at 65% from 2000-2013 implying higher quantity used as prices decreased
substantially. Substitution to electricity meant that fuel productivity of other fuels increased considerably since 2000, as seen in
Panel (b) of Figure A.11.

37Note that these are prices in real terms. In nominal terms prices may have risen over parts of the sample but are meaningless
due to inflation. In the analysis, granular fixed effects absorb any difference in deflator choice due to prices being in logs.

38Ghani, Goswami and Kerr (2014) report an increase in electricity productivity mainly from within state-industry clusters.
39Figure A.21 shows a similar plot for the pooled sample across time after applying the same fixed effects as in the analysis

below, and also shows the variation in prices that is predicted by the instruments. Figure A.20 shows the equivalent of Figure 4
for each year.

40The Appendix also shows that there has been some convergence in prices over time.
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Figure 4: Heterogeneity in electricity and labor productivity and in electricity prices

Notes: Panel (a) plots the histogram of plant level logged electricity productivity in 2003. Electricity productivity ratios are the value of output
divided by the quantity of electricity used in kWh. The kernel density plot to the left shows the distribution of the residuals of logged electricity
productivity after partialing out state by 4-digit industry by year fixed effects. Panel (b) and Panel (c) show the same plots for labor productivity
and electricity prices in 2003. The patterns are similar for all years as shown in Appendix Figure A.20, and for the pooled sample with the same
fixed effects used in the analysis (Figure A.21).

in Appendix A.10 that plant electricity prices and productivity are persistent in the sense of first order
stochastic dominance through time following Farinas and Ruano (2005). This persistence within plants,
together with the substantial variation across plants in the data, suggests an empirical strategy that also
includes between-plant variation.

IV. Empirical Strategy

Using plant level data, the first goal of the empirical analysis is to estimate the effect of electricity prices on
outcome yjisrt, for example on electricity productivity or labor productivity:

yjisrt = β log(PE
jisrt) + αirt + ϵjisrt (5)

where yjisrt is in logs and PE
jisrt is the electricity price for plant j in industry i in state s in region r in

year t.41 The analysis is conditional on 4-digit industry-by-region-by-year fixed effects αirt. The fixed effects
account for confounding aggregate trends that may be correlated with electricity prices and outcomes, such
as technology and productivity, demographics, demand for manufacturing products, or industry structure
and product prices. These unobserved trends are all allowed to be differentiated by both 4-digit industry,
in part to control for Indian sectoral dereservation policy effects, as well as by region, in part because there
is poor integration of electricity markets across Indian regions (IEA, 2015; Ryan, 2021; Ministry of Power,
2018). Importantly, the fixed effects preserve policy-relevant variation across states, districts and plants
within the six regions that captures differences in tariff regulation and generation costs.

The above specification deliberately avoids plant fixed effects for three reasons.42 First, between-
plant variation likely captures a substantial amount of the key mechanism of technology differences and

41There are 133 4-digit industries, 32 states and 541 districts in the final sample. There are five power grid regions, where I
split one of them to reflect standard groupings into six regions in national accounts.

42I rely on the plant identifiers for inference as discussed in Section IV.D. Including plant fixed effects in the main regression
yields similar results, although with a loss of precision for one of the instruments. A Mundlak IV decomposition—after partialing
out the baseline fixed effects, using both plant-mean prices and within-plant deviations (and instrumenting each with the
corresponding components of IV A or IV B)—shows the between-plant component is stronger for both instruments than the
within-plant component.

16



upgrading within industry-region-years, compared to mere within-plant variation. Machinery installation
takes time and electricity prices are serially correlated, so responses to price changes can manifest gradually
showing up between plants rather than within-plant changes alone, consistent with putty-clay models of
energy adjustment (Atkeson and Kehoe, 1999; Hassler, Krusell and Olovsson, 2021; Casey, 2024). Therefore
this approach exploits variation beyond the short-run as typical with plant fixed effects, including also
longer-run variation manifesting between plants such as changes in production processes. As shown
in Section III.C, there is much interesting variation between plants: A regression of logged electricity
productivity on plant fixed effects can explain 80% of the variation (R2). In Appendix Figure A.24, I show
variations of popular Griliches and Regev (1995) decompositions that illustrate that the improvements in
aggregate electricity productivity are driven by both within-plant and between-plant variation. Second,
plant fixed effects require a strict exogeneity assumption, which is likely violated. Past shocks to output and
productivity affect current electricity prices through block tariffs that vary with consumption, introducing
bias.43 Third, plant fixed effects fail to address time-varying endogeneity issues at the plant level. To tackle
these concerns effectively, I instead use instrumental variable strategies as identifying variation.

The variation that remains after conditioning on industry-region-year effects reflects common state
or local tariff or cost movements that shift plants’ prices across space and time, as well as plant-level
movements due to nonlinear tariffs or bargaining and discounts. This remaining variation is substantial as
shown in Figures A.21 and 4, and I address next how I recover exogenous variation within these cells.

A. Endogeneity Concerns

To structure the discussion about endogeneity concerns, it helps to think about the exogenous and endoge-
nous components in log(PE

jisrt) within industry-region-year groups in Equation (5).
The exogenous components of prices can vary locally as discussed in Section III.A, determined by

changes in costs of electricity generation or policies and tariff regulation that are orthogonal to plant
level shocks. Suppose the endogenous elements contained in the price can be expressed as idiosyncratic
component ξjisrt at the plant level and λisrt at the industry by state level. This allows me to rewrite the
composite error ϵjisrt as sum of endogenous elements and true random error µjisrt:

ϵjisrt = ξjisrt + λisrt + µjisrt, (6)

The nature of ξjisrt and λisrt comprises several factors, all conditional on controlling for 4-digit industry-
by-region-by-year fixed effects αirt. First, shocks to output and electricity demand (in ξjisrt) can also
affect electricity prices due to different tariffs for different consumption bands (see Figures A.14 and A.15).
Second, plants or groups of firms within an industry may negotiate or exert pressure for lower electricity
prices (ξjisrt and λisrt). Their bargaining power and possible price corruption is likely related to their
economic performance, which leads to reverse causality problems.44 Third, there may be factors within
regions and industries not captured by the fixed effects that jointly affect economic performance, electricity

43Chamberlain (1982) describes the theoretical problem of plant fixed effects and strict exogeneity in such regressions (see
also Griliches and Mairesse (1999)). Olley and Pakes (1996), for example, show that production function coefficients are even
more biased with a plant fixed effects estimator than with pooled OLS.

44Furthermore, while manipulation of recorded electricity quantities is primarily an issue at the household level (Mahadevan,
2023) rather than at the firm level, prices here are derived from expenditures and recorded quantities, so instrumenting for prices
addresses remaining potential bias from this source.
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productivity and electricity pricing (in λisrt).45 Fourth, even within states, plants and industries may
locate where electricity prices are low and that may be correlated to their electricity productivity and
consumption (in ξjisrt and λisrt). Finally, average electricity prices at the plant level may suffer from
measurement error (in ξjisrt). I next turn to my two main instrumental variable strategies that aim to
isolate exogenous components of the price variation.

B. An Instrument Based on Other Plants (IV A)

The idea of the first instrument (IV A) is that any exogenous components in the electricity price should
also affect other plants nearby. Some weighted average of other plants, for example in the same state, could
therefore extract the common exogenous signal while being agnostic about the specific source of the signal
that could stem from changes in electricity generation costs or differences in regulation.46

By construction, some average of electricity prices of other plants removes the idiosyncratic endogenous
component ξjisrt. The validity of such types of instruments, however, depends on context Berry and Haile
(2016), due to concerns with SUTVA and the exclusion restriction. To mitigate such concerns, my strategy
is to construct IV A only with plants outside the plant’s own 2-digit industry, as both supply chains and
output market competition occur predominantely within 2-digit industries. I therefore rely exclusively on
information of plants in the same state, but in different 2-digit industries i2d, removing the industry-level
endgoenous component. The underlying assumption is that the endogenous components λisrt are not
correlated across the 22 2-digit industries within a state, but are allowed to be correlated within 2-digit
industries. Recall that industry-region-year effects are accounted for by αirt, so the elements in λisrt that are
common across regions are allowed to be correlated across 2-digit industries as well. Because remaining
endogeneity could also reflect spatial rather than sectoral proximity (e.g., spatially organized bargaining or
place-based political economy), I further relax Equation (6) in a robustness check by additionally excluding
plants in the same district when constructing a version of this instrument (IV C), with very similar results.

Finally, I give more weight to other plants with similar purchase quantities for constructing IV A to
smooth over potential block tariffs that are based on purchase quantities. Specifically, I use a triangular
kernel function with weights wq∗(qj) that is based on plants’ distance in their purchase quantity:

wq∗(qj) =


bq∗−|log(qj)−log(q∗)|

b2
q∗

if: log(qj) ∈ [log(q∗)− bq∗ , log(q
∗) + bq∗ ],

∀sj = sj∗ , tj = tj∗ , i
2d
j ̸= i2dj∗ .

0 otherwise
(7)

where q∗ is the electricity quantity purchased in kWh by plant j∗ that we want to create the instrument
for, and qj is the electricity quantity purchased by other plants j. The cutoff bq∗ is the 25th percentile of the
distribution of the logged ratio of the purchase quantities in absolute terms |log(qj)− log(q∗)|, and is thus
allowed to vary by plant j∗ that we want to instrument for.47 That is, the support of the kernel weights is

45Prices may also respond to changes in aggregate electricity productivity and electricity demand from firms despite being
strictly regulated. While the fixed effects account for these secular trends, I use lagged (instrumented) electricity prices in a
robustness check to address remaining concerns of reverse causality and find similar results.

46The instrument is somewhat reminiscent of Hausman instruments in demand estimation, which instruments goods prices
with prices of the same good in other cities (Hausman et al., 1994; Hausman, 1996; Nevo, 2001). They are relevant because they
share the common marginal costs of producing the good (electricity). In a robustness check I used a version of electricity prices
with pre-partialed out fixed effects similar to the JIVE estimator in Ackerberg and Devereux (2009), with highly similar results.

47The advantage of a flexible bandwidth is to ensure that enough observations are used for the construction of the instruments.
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over the 25% of plants that are closest in terms of electricity purchased, conditional on being in the same
state sj = sj∗ and year tj = tj∗ and in different 2-digit industries i2dj ̸= i2dj∗ . The weight decreases linearly
in the distance of logged purchase quantity. The first instrument IV A for the electricity price of plant j∗ is
then the average of the electricity prices of other plants PE

jisrt, weighted by the triangular kernel weights:

IV A
j∗isrt =

∑
j ̸=j∗

PE
jisrt

wq∗(qj)∑
j ̸=j∗ wq∗(qj)

(8)

Identification requires that there are no endogenous factors that are common across different (2-digit)
industries that affect both electricity productivity and prices simultaneously, but only conditional on the
industry-by-region-by-year fixed effects. Under the identification assumption, the instrument addresses the
endogeneity concerns laid out above in Section IV.A and captures common state and local tariff shocks. The
advantage of IV A is that it can be readily calculated in other settings. This can facilitate further analyses of
the impact of electricity prices in different contexts, such as developing vs. developed, or high price vs.
low price countries.

C. A Shift-Share Instrument Based on Electricity Generation (IV B)

The idea for the second instrument is to use a cost shifter for electricity generation, following Abeberese
(2017).48 Since coal is the largest cost factor in electricity generation (see Section III.A), the price of
coal shifts electricity generation costs for power plants, and therefore downstream electricity prices. The
instrument is based on a shift-share structure as in Bartik (1991). The shifters are nationally representative
coal prices specifically for power utilities (see Section III.B). These shifters are weighted by the pre-sample
(March 1998) shares of thermal coal fired capacity in total installed capacity at the state level:

IV B
srt = log(PCoalPower

t )
coal-based installed capacitysr1998

total installed capacitysr1998
(9)

Recent advances show that identification in shift-share designs requires only either exogenous shifters
(Borusyak, Hull and Jaravel, 2022) or exogenous shares (Goldsmith-Pinkham, Sorkin and Swift, 2020).
For shifters, one initial concern is that coal prices for power generation may also impact firms that use
coal directly. As discussed in Section III.A and III.B, in India’s case the coal price for power utilities is
set independently from the coal price for industry. The two sectors require different types of coal, with
thermal coal produced domestically by a national monopoly for power plants, and coking coal that is used
by a subset of manufacturing industries is being largely imported from global markets, so coal prices for
power plants do not directly affect coal prices for manufacturing plants. Indeed, Figure A.28 plots both
coal prices in real terms, and shows that often one decreases while the other increases at the same time.49

In a reassuring robustness check, I exclude all manufacturing plants that use coal directly, which are most
likely to be affected by exclusion restriction violations if there are any, with similar results (Table A.15).

Regarding the shares, conditioning on industry-by-region-by-year fixed effects helps as exogeneity of

I also tried the 10th and the 50th percentile, as well as a fixed cutoff based on the average 25th percentile with similar results.
48A similar shift-share instrument for energy prices relying on thermal shares in generation has also been used in Ganapati,

Shapiro and Walker (2020) or Elliott, Sun and Zhu (2019).
49See also Abeberese (2017) for a subsample.
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shares is only required within regions, and allows for trends and correlation of pre-sample shares with
industrial structure (e.g. if heavier industry locates in coal regions). I provide a map of the pre-sample
thermal shares in Figure A.29. I present additional evidence of exogeneity of shares in Appendix Table
A.5, where I show state level regressions of shares on several pre-determined variables using data from
Asher et al. (2020) to show that they are uncorrelated to measures of baseline industrial development,
such as with the share of rural population, access to electricity, labor productivity, capital labor ratio,
share of wages spent on skilled workers, or fuel share in output. To provide further support for this
identification assumption, I show robustness of the IV B estimates by including controls for these pre-
determined variables interacted with the coal price in Table A.6, indicating that the coal shares are unlikely
to spuriously correlate with future industrial development. Finally, Adao, Kolesár andMorales (2019) show
that standard errors may need adjustment for shift-share designs. Following their procedure, I recover
standard errors that are similar or slightly smaller after adjustment, likely due to negative correlation of
residuals within clusters that are based on thermal shares.50

Instrument IV B isolates exogenous movements in electricity prices driven by cost pressures from input
prices in upstream generation. An advantage of instrument IV B is that it could be less susceptible to
specific types of correlated shocks that may threaten the validity of instrument IV A, if they exist. The two
disadvantages of IV B are that it tends to be much weaker than IV A and that it is more difficult to replicate
in other contexts as it relies on external data.

D. Specification Choice, Estimation and Inference

To estimate the reduced form regressions, I do not include state by year effects for the baseline specification.
This is because IV B only varies at the state by year level and much of the exogenous variation is also at
the state by year level.51 I exploit the panel structure to calculate standard errors in all specifications. I
two-way cluster errors at the plant level, and at the state by year level, since one of the instruments varies
at that level. I provide robustness checks by two-way clustering at the district and the region by year
level with similar results. Since I am running the same model with multiple outcomes, I apply the Holm
(1979) Bonferroni correction for multiple hypothesis testing in Appendix Table A.30. Finally, I use the
two instruments separately to enable comparisons, but also provide results based on an over-identified
IV-regression with both instruments.

E. A Mixture-Based Decomposition of Substitution and Technology in the Machinery-Electricity Bundle

To shed light on mechanisms, I estimate the structural complementarity in the inner nest of electricity and
machinery use, based on the first order condition of the model in Section II. I focus on this equation for
two reasons. First, it is particularly informative because the reduced-form result can overturn a sharp sign
prediction from the CES benchmark with constant technology. The model predicts that the machinery to
electricity ratio can increase with lower electricity prices through the technology channel. In a nested CES
without technology choices, this sign would be unambiguously positive. Second, focusing on the inner
nest allows me to sidestep other structural parameters such as returns to scale.

50For Table 2, the standard error for Column 3 falls from 0.105 to 0.028 and for Column 6 slightly increases from 0.103 to 0.112.
51Including state fixed effects and state trends generates similar but slightly less precise estimates.
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Conditional on technology c, the first order condition of (4) in logs (see Equation (A.7)), adding fixed
effects αirt and an error term εjirst, is52:

log

(
Kjirst

Ejirst

)
= αc + σc log

(
pEjirst

pKjirst

)
+ αirt + εjirst (10)

where σc = 1
1−ρe(c)

is the technology-specific elasticity of substitution betweenmachinery and electricity.
It can be shown that even if the substitution elasticities vary across sectors or time, including the αirt

fixed effects recovers a consistent estimate of the weighted average substitution elasticity across sectors,
regions and time. The key challenge is that the substitution parameter depends on technology, but we
do not observe technology c directly. In reduced-form regressions as in (5), we capture the joint effect of
technology differences and some average of substitution elasticities across technologies, assuming valid
instruments for electricity prices. To recover structural parameters that capture average within-technology
substitution, I separate the two effects, which then allows me to decompose the reduced-form elasticity.53

To do so, I introduce a parsimonious finite mixture model with two latent technology types c ∈ {1, 2}.
Such models provide a standard way to represent unobserved heterogeneity with a small number of types
in structural settings, and have been used to capture discrete differences in decision rules and technologies
(Heckman and Singer, 1984; Keane and Wolpin, 1997; Kennan and Walker, 2011; Arcidiacono and Miller,
2011; Bonhomme, Lamadon and Manresa, 2022; Kasahara, Schrimpf and Suzuki, 2023). The idea is that
each observation can be generated by one of two latent technologies with different machinery–electricity
substitution elasticities, where technology membership is unobserved and statistically recovered, taking
into account endogeneity of the relative prices.

I allow electricity prices to shift the probability of using a technology. Specifically, I model the prior
probability of the modern technology πj2 as a logit function of log electricity prices l̃og pEj , demeaned by
industry-by-region-by-year averages to allow for correlation between electricity prices and these trends.54

For exposition, let j index plant-year observations. The prior technology probabilities are:

πj2 ≡ Pr(c = 2 | l̃og pEj ) = Λ

(
γ0 + γ1 l̃og pEj

)
, πj1 = 1− πj2, (11)

where Λ(·) is the logistic CDF, and the above electricity price instruments will be used to construct moment
conditions to identify γ1. The priors in (11) map observables into ex-ante technology shares, describing how
the probability of using the modern technology varies with electricity prices both within plants and across
plants, before taking into account the plant’s observed input mix. The posterior probabilities combine (i)
the prior πjc with (ii) a measure of fit of the technology-c specific relationship to the observed log(Kj/Ej).
Define ujc ≡ log(Kj/Ej)− (αc + σc log(p

E
j /p

K
j ) + αirt(j)) as the residual implied separately by technology

c ∈ {1, 2} for each observation. Using Bayes’ rule and a Gaussian likelihood with common variance s2 and

52Note that the structural constant σc log
(

1−αe
αe

)
is absorbed in the technology-relative intercept and fixed effect αc + αirt.

53In the estimation, I pool plants across industries and absorb industry-by-region-by-year fixed effects, so the technology-
specific slopes (σ1, σ2) are identified from within-cell variation and reflect an average machinery–electricity substitution elasticity
in the estimation sample.

54This centering is not equivalent to including a set of fixed effects in a nonlinear logit, which would require solving for
many more parameters, but it ensures that γ1 is identified from within-cell price variation. I label technology 2 as the more
machine-intensive modern technology.
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φ(·) denoting the standard normal pdf, the posterior probabilities are:

rj2 =
πj2 φ

(
uj2/s

)
πj1 φ

(
uj1/s

)
+ πj2 φ

(
uj2/s

) , rj1 = 1− rj2, (12)

To estimate the model, I normalize α1 ≡ 0 as only the relative intercept is identified, and estimate the
remaining parameters (α2, σ1, σ2, γ0, γ1, s

2) by GMM, updating priors and posteriors at each optimization
step. The advantage over the usual EM algorithm for mixture models is that GMM allows me to impose IV
orthogonality conditions separately for each technology type as well as for the probability of technology
use, allowing the different IVs to shift different subgroups and technology users. The estimator stacks
three blocks of moments:

(i) Technology-specific mean IV moments: E

[
rjc ujc

(
ĨV

A

j

ĨV
B

j

)]
= 0 for c ∈ {1, 2}, (13)

(ii) Technology-choice moments: E

(rj2 − πj2
)

1

ĨV
A

j

ĨV
B

j


 = 0, (14)

(iii) Variance moments: E

[(
u2j − vj

)( 1

log
(
pEj /p

K
j

))] = 0, (15)

where ĨV
A

j and ĨV
B

j arewithin-fixed effects demeaned versions of the excluded instruments. Moment block
(i) estimates the analogue of equation (10) using the posterior weights to integrate out the unobserved
technology type. Moment block (ii) imposes orthogonality of the difference between posterior and prior
technology probabilities with the instruments. Moment block (iii) matches second moments implied by
the mixture. Define the mixture residual as uj ≡ (1 − πj2)uj1 + πj2uj2, where ujc is the residual under
technology c defined above. Under the Gaussian likelihood, the model-implied conditional variance is
vj ≡ s2 + πj2(1 − πj2)

(
α2 + (σ2 − σ1) log(p

E
j /p

K
j )
)2.55 I estimate the parameters by two-step GMM and

compute standard errors from the covariance of the stacked moments that is two-way clustered on plants
and state-years.

A key benefit of the mixture specification is that it yields a transparent decomposition of the marginal
effect of electricity prices on the fitted log(K/E) relationship. Let the fitted value be ̂log(Kj/Ej) = (1−
πj2)aj1+πj2aj2+αirt(j), where ajk = αk+σk log(p

E
j /p

K
j ). Holding pK fixed implies ∂ log(pEj /p

K
j )/∂ log pEj =

1, and αirt(j) does not vary with log pEj , so differentiating with respect to log pEj implies

∂ ̂log(Kj/Ej)

∂ log pEj
= (1− πj2)σ1 + πj2σ2︸ ︷︷ ︸

within-technology substitution

+
∂πj2

∂ log pEj

(
aj2 − aj1

)
︸ ︷︷ ︸

technology differences

, (16)

55The first component of (15) pins down the overall variance level and therefore identifies s2 (given the parameters that
enter the between-technology term). The second component uses variation in relative prices to discipline the model-implied
heteroskedasticity of log(K/E) induced by the mixture, since the between-technology gap depends on log(pEj /p

K
j ).
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where ∂πj2

∂ log pEj
= γ1 πj2(1− πj2) in practice.56 Equation (16) clarifies how the aggregate K/E response can

flip sign even when both σ1 and σ2 are positive: if lower electricity prices increase the share of a more
machinery-intensive technology, the average switching term can dominate the average within-technology
substitution term. The decomposition into technology switching captures both within-plant adoption over
time as well as technology differences across plants, without requiring a fully dynamic adoption model.

F. Recovering Pass-Through Rates and Consumer Incidence

To explore how changes in electricity prices impact consumers that buy from affected manufacturing
plants, I need to identify several additional parameters. The incidence share of electricity price changes
depend on how electricity prices affect marginal costs (MC) through input substitution (γ ≡ dMC/dPE),
and on the pass-through rate of marginal costs to output prices (P ) determined by market structure and
market power (ρMC ≡ dP/dMC). I employ a partial equilibrium analysis following Ganapati, Shapiro
and Walker (2020) that allows for factor substitution, incomplete pass-through and imperfect competition.
As they show, in a generalized oligopoly under the assumption that average variable costs are equal to
marginal costs (AV C = MC), incidence is defined as:

I ≡ dCS/dPE

dPS/dPE
=

ρMC

1− (1− LϵD) ρMC
(17)

where CS and PS are consumer and producer surplus, ρMC ≡ dP/dMC is the pass-through rate of
marginal costs to prices, L ≡ (P − MC)/P is the Lerner (1934) index, and ϵD ≡ −[dQ/dP ][P/Q] the
market elasticity of demand. I next describe how I recover the three required parameters L, ϵD and ρMC .

First, I draw on an established literature to recover markups µ from the production side using firm
revenue and input data (Hall, 1988, 1990; Hall and Jones, 1999; De Loecker and Warzynski, 2012). The
basic idea is that if plants are cost minimizing, we can use the first order condition of a variable input,
which describes a relationship between markups, the output elasticity of that input and the revenue share
of that input. I follow this literature to estimate plant level markups (µ = P/MC) using materials as
variable input, which determine the plant level Lerner index L together with observed output prices. I
estimate the output elasticity and plant TFP using Levinsohn and Petrin (2003) and Wooldridge (2009).

Second, I use the well-known mapping between markups and demand elasticities implied by first
order conditions of profit maximization in oligopolistic environments. I define the market level demand
elasticities ϵD as the median of the plant level demand elasticities within a 4-digit industry by year by state
cluster.57 Market demand structure is thus allowed to vary across industries, time and space. This approach
differs from Ganapati, Shapiro andWalker (2020), who instead estimate demand functions, which requires
different assumptions. Both approaches require estimating production functions, oligopolistic competition,
and cost minimization. The only additional assumption in the approach here is profit maximization, which
appears innocuous given the existing assumptions.

56Because the technology adoption uses the within-fixed effect demeaned price l̃og pEj , the chain rule gives ∂πj2

∂ log pEj
= γ1 πj2(1−

πj2) · ∂ l̃og pEj /∂ log pEj , where within-cell marginal changes holding the cell mean fixed implies ∂ l̃og pEj /∂ log pEj = 1.
57Plant levelmarkups (and demand elasticities) can diverge from themarket demand elasticities, for example, due to distortions.

Singer (2019) provides some examples of such distortions in the Indian context. Taking the median or mean of production or
demand elasticities is common in the literature, see e.g. Asker, Collard-Wexler and De Loecker (2014).
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Third, the main challenge is estimation of the pass-through parameter ρMC . The most direct way
is to regress prices on marginal cost, which however requires output prices, not only revenues, as well
as marginal cost at the plant level. I leverage the detailed data on plant by product level revenues and
quantities that are separately reported for most plants, which allows me to calculate average sales prices
at the plant-product level. I construct a plant level average price across products (P), weighted by the
quantity of each product. From the estimated plant level price marginal cost markups µ, I can back out
plant level marginal costs MC with these prices. I recover prices and marginal costs for 88% of the 485,342
observations, covering 121 of the 133 4-digit industries. Since I also construct total variable cost (Section
III.B), I can recover AV C by dividing total variable costs by quantity sold. This allows me to examine the
validity of the underlying assumption (AV C = MC) for Equation (17). A regression of log AV C on log
MC yields a coefficient of 1.03 and an R2 of 0.99, indicating that the assumption is reasonable.

With prices and marginal costs in hand, I estimate pass-through elasticities for each 4-digit industry
separately, regressing prices (log(P )) on marginal costs (log(MC)). Crucially, I already have constructed
instruments for electricity prices, so these instruments should also shift marginal costs. This allows me to
instrument for endogenous marginal costs using IV A and IV B .58 The pass-through elasticity is converted
into the pass-through rate ρMC by multiplying it with the plant level markup µ. Pass-through is therefore
allowed to differ across industries and plants, where heterogeneity could arise, for example, through
market structure, concentration or market power. To summarize, the empirical components are:

L̂jisrt = 1− 1

µ̂jisrt
; ϵ̂D,isrt = medianisrt

(
1

1− 1
µ̂jisrt

)
; ρ̂MC,jisrt = µ̂jisrt

̂d log(Pjisrt)

d log(MCjisrt)

Finally, the incidence of consumer surplus as share of total incidence is:

Ishare = I/(1 + I) (18)

When constructing consumer surplus below in Section V.E, I will address two further complications.
First, not all firms sell directly to consumers, so consumer incidence shares are only relevant for output
going to final demand. Second, electricity price reductions for industrymight be financed through increases
in residential prices, which affects consumers directly.

V. Results

I first present the main results, along with robustness checks, before I explore mechanisms. Towards the
end of this section I estimate the incidence on consumers, calculate the aggregate effects on welfare and
emissions, and show the contrary effects of coal prices.

A. Electricity Productivity, Labor Productivity, and Their Components

First stages.— The first stage coefficients, standard errors and Kleibergen-Paap F-statistic are reported
in Table 2 and omitted in subsequent tables to avoid repetition. Table 2 shows that both instruments are

58Endogeneity concerns arise, for example, because marginal costs are estimated leading to measurement error. I use the two
instruments separately. Then, for each industry I take the weighted average of the two IV coefficients, where the weights are the
t-statistics, to obtain a single pass-through elasticity.
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strong and shift the endogenous electricity price in the expected direction.
Lower electricity prices improve electricity productivity.— The OLS correlation between electricity prices

and electricity productivity is positive with an elasticity of 0.37 in line with common intuition (Column 1 in
Table 2). However, the endogeneity bias in this estimate is large. The IV estimates in Column 2 and 3 are of
opposite sign and statistically highly significant, with an elasticity of -0.24 and -0.78 for the two instruments
IV A and IV B respectively. This positive OLS bias suggests that less efficient plants manage to obtain
lower electricity prices through, e.g., exemptions, negotiations, corruption or location choices, or have
lower block tariffs.59 Figure 5 visualizes these results in a binscatter of electricity productivity on electricity
prices conditional on industry-by-region-by-year fixed effects, following Cattaneo et al. (2024). Panel (a)
shows the OLS relationship, while Panel (c) and (d) show the relationship with predicted electricity prices
using IV A and IV B respectively. This shows that the results are not driven by outliers. Panel (b) uses
electricity tariffs from Central Electricity Authority (2006-2015) and Indiastat (1998-2014) which are at
the state by year level and therefore address a significant portion of the OLS bias in the plant level prices,
resulting in the same sign as the two IV estimates. Table A.7 shows more results using these tariffs where
the IV estimates are similar to those in Table 2, but the OLS is also negative and statistically significant.

The effect is stronger for IV B than for IV A. This could imply either treatment effects are heterogeneous
and the instruments shift different subpopulations, or one of the instruments is not completely exogenous
assuming homogeneous effects.60 To shed light on whether treatment effects are likely heterogeneous,
I follow Imbens and Angrist (1994) and Imbens and Rubin (1997) and discretize electricity prices and
both instruments by their median sample split after partialing out fixed effects. In particular, under their
monotonicity assumption, I can distinguish between compliers, those observations forwhich the instrument
affects treatment (electricity price), aswell as never-takers and always-takers, those that have a low and high
electricity price irrespective of the instrument. Comparing the outcome levels in electricity productivity
between compliers, never-takers and always-takers for both instruments suggests that the two IV estimates
are likely two different local heterogeneous treatment effects as they shift different subpopulations (Imbens
and Rubin, 1997).61 Importantly, the characteristics of the different subpopulations shifted by the two
IVs is in line with the analysis of mechanisms below, where we would expect differential effects: IV B

shifts plants with relatively lower baseline machinery to labor ratios compared to IV A, which results
in a stronger effect when using IV B .62 I exploit this below for estimating heterogeneous technologies
in a mixture model more formally, allowing the two instruments to shift subpopulations with different
technologies differentially.

The causal estimates derived from micro data offer a compelling explanation for the aggregate trends
observed in electricity productivity and prices in Figure 1. Specifically, with a 48% decline in electricity
prices, taking the average local treatment effects between IV A and IV B of -0.508 predicts a 39% rise in

59As a heuristic, I construct the difference between endogenous prices and prices predicted by the instrument. This difference
is significantly correlated with size measured by sales, implying smaller, possibly less efficient firms are receiving a price discount
corresponding to the endogeneity bias. See Bento and Restuccia (2017) or Hsieh and Klenow (2014) for the relationship between
firm size, distortions and efficiency in India.

60Table A.19 shows an over-identified model using both IV A and IV B simultaneously. The Sargan-Hansen J-test rejects that
both instruments have the same effect under homogeneous treatment assumption.

61For IV A, electricity productivity is 21% higher for compliers with low electricity prices than for never-takers, while it is 62%
for IV B . The outcome is 13% lower for compliers with high electricity prices than always-takers for IV A, and 32% for IV B .

62Against an overall mean of the machinery to labor ratio of 0.22, IV B compliers with low electricity prices have a previous
period ratio that is 0.06 lower than for never-takers (0.01 higher for IV A), whereas the difference between compliers and always
takers is near zero for both IV B and IV A.
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Table 2: Electricity prices and electricity productivity

Electricity productivity (log) Labor productivity (log)
(1) (2) (3) (4) (5) (6)

log(PE)
0.365*** -0.239*** -0.777*** -0.0282 -0.389*** -1.063***
(0.044) (0.070) (0.105) (0.043) (0.085) (0.103)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 485342 485342 485342 485342 485342 485342
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.97*** 0.06*** - 0.97*** 0.06***
First stage SE - 0.005 0.003 - 0.005 0.003
F-stat (Kleib.-Paap) - 43194.635 296.507 - 43194.635 296.507
SE clustered by Plant Plant Plant Plant Plant Plant
No. of first clusters 160836 160836 160836 160836 160836 160836
SE clustered by State-year State-year State-year State-year State-year State-year
No. of second clusters 501 501 501 501 501 501

Notes: The dependent variable is log electricity productivity (value of output divided by the quantity of electricity used in kWh) for the first
three columns and log labor productivity for the second three (value of output divided by employees). Each column represents a separate
regression at the plant level. The first column reports the results from an OLS regression on logged electricity prices. The second column uses the
instrument IV A based on the electricity prices of other plants. The third column uses the shift-share IV B . The first stage statistics are reported.
All regressions contain industry by year by region fixed effects. Regressions are weighted by the recorded sampling multiplier. Standard errors in
parentheses are two-way clustered at the plant and the state by year level. Stars indicate p-values: * < 0.1, **< 0.05, ***< 0.01.

electricity productivity (calculated as (1− 0.48)−0.508− 1). This aligns well with the observed 34% increase
at the aggregate level. The IV estimates can therefore explain the secular aggregate trends remarkably
well, especially considering that the simple OLS correlation at the micro level is of opposite sign. Note
that these elasticities do not imply that arbitrarily low prices are optimal as I will later show diminishing
returns with more plants mechanizing.

Technology or product mix?— It is possible that these improvements are driven by plants producing
different sets of products, rather than with better technology. To test this, I first include product fixed
effects (6145 products) and show in Table A.28 that estimates are similar and significant. This demonstrates
that the improvements are not driven by changes in the product mix, but by within-product technology
differences across plants and across time. Second, I map nation-wide average product level electricity
intensities of 2000 to the evolving product mix as dependent variable to test if firms producemore electricity
intensive products with lower prices. I find no evidence of this (see Table A.28). Since this outcome
ignores the salient differences in electricity productivity within products, this again implies that the
improvements are driven by within-product technology differences across plants and time that are crucial
in a world of technology differences within industries and products. Third, this last finding appears to
contradict Abeberese (2017), who using the latter outcome, finds that lower electricity prices increase
the electricity intensity of the product mix, suggesting firms became less electricity productive.63 I first
replicate Abeberese (2017) in Appendix A.15 and then show that the results hinge on a coding issue that
partially omits included fixed effects. Once this is fixed, the results turn insignificant or change sign, and
are entirely consistent with the insignificant findings on product mix in this paper. Importantly, by instead
analyzing firms’ electricity productivity directly in my main results, I show that Indian firms became more,
not less, electricity productive with lower prices.

Lower electricity prices improve labor productivity.— Lower industrial electricity prices have also con-
tributed towards developmental goals. Columns 5 and 6 of Table 2 show that lower electricity prices

63The effects on electricity consumption, employment and output are comparable to the ones in Abeberese (2017).
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(a) Electricity prices from ASI
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(c) Electricity prices predicted by IV A
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(d) Electricity prices predicted by IV B

Figure 5: Binscatter of electricity productivity and electricity prices

Notes: The figures show binscatter plots using Cattaneo et al. (2024) with plant level electricity productivity (log) on the vertical axis and with
industry-by-region-by-year fixed effects. Panel (a) plots against log electricity prices at the plant level using ASI data. Panel (b) instead plots
against utility tariffs at the state by year level from Central Electricity Authority (2006-2015) and Indiastat (1998-2014). Panel (c) and (d) plot
against predicted electricity prices from IV A and IV B respectively, where predicted electricity prices are obtained by using fitted values from
regressions on the respective instruments conditional on industry-by-region-by-year fixed effects. Results using labor productivity are in Figure
A.30

substantially increase labor productivity, with an elasticity of -0.39 and -1.06 for IV A and IV B respec-
tively.64 There is a significant bias in the OLS estimates in Column 4 that are close to zero, and the different
local average treatment effect analysis for IV A and IV B from above applies here as well. Taking the
average of the two IV estimates as -0.725, the 48% electricity price decline predicts a 61% increase in labor
productivity, explaining two thirds of the 90% increase in labor productivity documented in Section III.C.

Electricity prices and electricity consumption, employment, and output.— To understand the channels for
improved electricity and labor productivity, I start with the more proximate reasons by unpacking the
ratios into its components. Table 3 shows regressions split up into the components of electricity and
labor productivity, with logged electricity consumption (in kWh), employees, or output as dependent
variables. Electricity is not a Giffen good. In both the OLS and IV regressions, lower electricity prices
increase electricity consumption, with the causal effect being slightly larger. A one percent decrease in
electricity prices increases physical electricity consumption by 0.48 to 0.80 percent. Note that potential
rebound effects on demand from increased electricity productivity (Gillingham, Rapson andWagner, 2016)
are included here and therefore also in the main estimates. The OLS estimate for employees is insignificant,

64Binscatters for labor productivity are in Figure A.30.
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Table 3: Electricity prices, output, electricity use and employment

Output (log) Electricity consumption (log) Employees (log)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
-0.0268 -0.743*** -1.600*** -0.385*** -0.478*** -0.797*** 0.0119 -0.339*** -0.518***
(0.073) (0.143) (0.153) (0.064) (0.155) (0.148) (0.041) (0.076) (0.079)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 485342 485342 485342 485342 485342 485342 485342 485342 485342
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. - 0.97*** 0.06*** - 0.97*** 0.06*** - 0.97*** 0.06***
First stage SE - 0.005 0.003 - 0.005 0.003 - 0.005 0.003
F-stat (Kleib.-Paap) - 43194.6 296.5 - 43194.6 296.5 - 43194.6 296.5
Two-way clustered SE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The dependent variable is in logs and as indicated either value of output, kWh of electricity use, or employees. Each column represents a
separate regression at the plant level. All regressions contain industry by year by region fixed effects. Regressions are weighted by the recorded
sampling multiplier. Standard errors in parentheses are two-way clustered at the plant and the state by year level. Stars indicate p-values: *< 0.1,
**< 0.05, ***< 0.01.

but the IV estimates are significant, with a one percent decrease in electricity prices increasing number
of employees by 0.34 to 0.52 percent. Effects on electricity consumption and employment (i.e. labor) are
consistent with the model predictions in Section II and Appendix A.2.

The OLS effect of electricity prices on output is close to zero. In contrast, the IV estimates of the output
elasticity are large and negative (between -0.74 and -1.59). While the positive OLS bias operates through
all three variables, it is most pronounced in output. This implies that the bias comes primarily from
output shocks correlated with electricity prices, for example through exemptions because of negative
output shocks or because favorable prices may generate less competitive pressure to perform. The bias is
also consistent with attenuation bias from measurement error or endogeneity bias from increasing tariff
schedules where shocks to electricity consumption are positively correlated with electricity prices.

B. Robustness

Before moving to deeper mechanisms, I conduct a range of robustness checks, with most of the results
in Appendix A.14. Overall, these results reinforce the conclusion that the OLS estimates are significantly
upward biased and lower electricity prices increased electricity productivity and labor productivity.

Using alternative instruments yields similar estimate.— First, I use three alternative instruments. The
first, IV C , is similar to IV A except that I exclude plants in the same district for the construction of the
instrument. This allows for endogeneity in electricity prices based on spatial proximity, for example,
political economy considerations including corruption or lobbying within districts across industries. The
second instrument, IV D1 , is similar to IV B in that it is also a shift-share instrument. The shift is the timing
of the 2003 Electricity Act and the shares are the distance of district centroids to coalfields, interacted with
a dummy identifying states that have any coal power over the sample period.65 The rationale for IV D1

builds on the findings in Section III.A and Appendix A.12. The share of private power capacity can explain
lower electricity prices, but only from 2003. Since local changes in private power share are likely to be
endogenous, I use the district distance to coalfields, as Table A.4 shows that this distance predicts shares in
the private power capacity after 2003. Therefore, IV D1 leverages the distance to coalfields interacted with
the timing of the 2003 Act as instrument, controlling for all lower order terms. The event study in Figure

65The triple interaction helps avoid capturing irrelevant states that rely on hydro power as the North-West (Appendix A.12).
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A.27 shows how higher distance to coalfields increases electricity prices relatively from 2003. The third
instrument, IV D2 uses the staggered unbundling of generation, transmission and distribution by states
identified by Cropper et al. (2011). Mahadevan (2019) uses the staggered implementation of unbundling
in an event study and finds an effect on electricity prices. Appendix Table A.8 shows that the estimates
using these alternative instruments are similar to the main IV estimates.66

Using lagged prices.— Second, I use lagged prices and instruments to allow for more adjustment time to
prices.67 Using lags cuts the sample roughly in half as spells of plant observations are required. Tables
A.9 and A.10 show the contemporaneous effects for the reduced sample and then the lagged effects on
electricity and labor productivity. Reassuringly, the IV estimates for electricity and labor productivity
hardly change. The positive bias in the OLS estimates, however, is substantially reduced when using lags.

Controlling for power shortages and distance to coalfields.— Third, I control for state-year level power
shortages, for district distance to coalfields, or both simultaneously in Tables A.11 and A.12. Note that the
included industry-region-year fixed effects already account for a significant portion of power shortages,
but directly controlling for these serves as an additional check. The estimates remain negative and are
similar in magnitude.68 This is somewhat expected as I already showed in Table A.2 that shortages are
not associated with electricity prices. Both distance to coalfields and shortages, however, are significant in
explaining electricity and to some extent labor productivity. Finally, if shortages do not affect electricity
consumed and prices, but the ratio of electricity purchased to generated, we would expect a similar effect
when using electricity purchased, rather than consumed, to construct electricity productivity. Reassuringly,
this is corroborated in Table A.13.

Electricity intensive sectors, no direct coal users, and sector specific analysis.— Fourth, I restrict the sample
to electricity intensive sectors, defined as 2-digit sectors with an above average electricity intensity with
similar effect (Table A.14). Next, I restrict the sample to exclude all plants that use coal directly in their
inputs in Table A.15 to show robustness to remaining concerns about the shifter based on coal prices for
power utilities in IV B . In addition, Table A.6 shows robustness to control interactions of the coal price
with pre-sample state characteristics. I also run the analysis separately for six broad industry groups in
Tables A.16 and A.17. The effects are broadly similar across sectors, except perhaps for metals and minerals,
where estimates are insignificant, but still correct an upward bias in the OLS estimates.69

Controlling for input and output prices.— Fifth, electricity price changes may be correlated with electricity
price changes for other plants, potentially affecting input or output prices through equilibrium adjustments.
While the inclusion of industry-by-region-by-year fixed effects should largely account for these, I address
remaining concerns about product market competition or supply chain effects by controlling for input and
output price indices. These indices are specific to each plant’s product and input mix, based on national
median prices at the product level combined with within-plant sales and expenditure shares. Table A.22
shows that the estimates remain robust controlling for the input/output price indices.

66With the exception of IV D2 and labor productivity as outcome, which, however, is a noisy estimate.
67This may also address potential remaining reverse causality concerns. Instead of lagged prices, Table A.18 interacts prices

with a dummy for the first half of the sample period when prices were relatively higher. This shows that the effects on electricity
productivity are larger during the high price period, consistent with the notion that positive implications of decreasing electricity
price are particularly beneficial when baseline prices are high.

68Although somewhat noisier for IV A.
69Since the basic metals industry relies predominantly on coal across many production techniques, there could be a null effect,

with less complementarity between electricity and machines and less scope to move to electricity-based production. Figure A.19
supports this hypothesis. While energy productivity rose in this sector, electricity productivity remained fairly stable.
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Table 4: Electricity prices and firm performance: scale, substitution, productivity and markups
(a) Profitability and scale

Profits (mil. |) Total revenues (mil. |) Total variable costs (mil. |)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
-5.037*** -20.47*** -22.03*** -30.41*** -132.3*** -139.5*** -24.25*** -109.1*** -114.4***
(1.515) (3.243) (3.999) (8.863) (19.734) (21.182) (7.405) (16.537) (17.458)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 485263 485263 485263 485263 485263 485263 485263 485263 485263

(b) Input ratios

Machinery to labor (log) Labor to electricity (log) Machinery to electricity (log)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
-0.160** -0.627*** -1.517*** 0.380*** 0.122 0.283*** 0.259*** -0.467*** -1.178***
(0.065) (0.114) (0.151) (0.041) (0.092) (0.103) (0.053) (0.074) (0.124)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 467686 467686 467686 485342 485342 485342 467686 467686 467686

(c) Investment and fuel substitution

Investment in machinery (IHS) Ratio electricity to coal quantity Other fuels’ share in output
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
0.158 -0.852** -2.890*** -10.19*** -17.62*** -22.09* 0.00440*** 0.0135*** 0.0234***
(0.204) (0.390) (0.441) (3.103) (5.800) (12.383) (0.001) (0.002) (0.003)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 475489 475489 475489 47968 47968 47968 485342 485342 485342

(d) Average wages, TFP and markups

Average wage per worker (log) TFP (log) (Wooldridge, 2009) Price-MC markups log(µ)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
0.0314** -0.142*** -0.177*** -0.00699*** -0.0156*** -0.0330*** -0.0183*** -0.0404*** -0.106***
(0.014) (0.028) (0.033) (0.002) (0.003) (0.006) (0.006) (0.011) (0.019)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 444064 444064 444064 477697 477697 477697 484943 484943 484943

Notes: Each column represents a separate regression at the plant level. The dependent variables are indicated and described in Section III.B.
In Panel (a), the outcomes are in levels because profits cannot be negative. In Panel (c), the ratio of electricity to coal is in quantity terms in
MWh per tonne. Other fuels refer to gas, coal and oil. I take the inverse hyperbolic sine (IHS) of investment to deal with zeros in investment. All
regressions contain industry by year by region fixed effects. Regressions are weighted by the recorded sampling multiplier. Standard errors in
parentheses are two-way clustered at the plant and the state by year level. Stars indicate p-values: * < 0.1, **< 0.05, ***< 0.01.

Alternative clustering of standard errors and multiple hypothesis testing.— Sixth, I two-way cluster at the
district and the region year level to allow for more arbitrary correlation in errors, with slightly larger
standard errors but still significant results (Table A.21). Finally, I adjust all p-values upwards to account
for multiple hypothesis testing in Table A.30. Almost all estimates remain statistically significant.

C. Mechanisms

I next explore deeper mechanisms by testing model predictions from Section II, exploiting additional
exogenous variation, and showing the impact of electricity prices on several outcomes.

Testing model predictions: scaling up, investment and input ratios.— In the model in Section II, electricity
is a complementary input to modern production techniques. Lower electricity prices can incentivize to
use these more modern capital intensive production techniques which generates the increase in electricity
and labor productivity. I next test all predictions of the model visualized in Figure 2 and Figure A.3 using
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reduced form regressions without placing restrictions on complementarities or other model parameters.
All predictions of the model can be confirmed with economic and statistically significant estimates.

First, total costs increase despite lower input prices because plants scale up overturning the cost saving
effect of lower prices. Table 4a shows the effect on profits, total revenues and total variable costs (in levels).
A one percent decrease in electricity prices increases total profits by | 0.21-0.22 million (US$4,800) per
plant, increases revenues by | 1.3-1.4 million (US$30,000), but also increases total variable costs by | 1.1
million (US$24,000). The increase in variable costs from a decrease of electricity prices is consistent with
the prediction of the model in Section II, and implies that plants scale up with declining electricity prices.
The increase in employment echoes this scaling up effect (Columns 8-9 in Table 3).

Second, turning to input ratios, lower electricity prices increase machine to labor ratios (Columns 1-3 in
Table 4b), driven by additional investment in machinery (Columns 1-3 in Table 4c).70 Labor to electricity
ratios decrease (Columns 4-6 in Table 4b) despite employment increases (Table 3). Importantly, I also find
that machine to electricity ratios increase (Columns 7-8 in Table 4b). While these results corroborate all
model predictions, confirming this last prediction is perhaps most surprising. In the model, this arises due
to the discreteness in technological choices and complementarities in inputs, which I formalize next. In a
model without technological choices the machine to electricity ratio would instead unambiguously fall
(see Lemma 2).

Decomposing substitution elasticity and technology differences.— I implement the mixture decomposition
in Section IV.E in Table 5 to separate within-technology substitution from price-induced technology
differences in the machinery–electricity margin. Panel A reproduces the pooled IV sign reversal: the
elasticity of log(K/E)with respect to log(pE/pK) is negative using either instrument (−0.37with IV A and
−0.95 with IV B), so plants raise K/E when electricity becomes cheaper.71 Panel B shows that the sign
reversal does not reflect “negative substitution”: the estimated technology-specific substitution elasticities
are both positive (σ̂1 = 0.66 and σ̂2 = 0.11), implying that within a given technique plants substitute
toward electricity as it gets cheaper. The lower elasticity for the modern technology 2 implies stronger
complementarity in that technology, consistent with the model. Panel C shows why the aggregate flips sign:
the average within-technology component is +0.41, but the technology-switching component is −0.98,
yielding a total elasticity of about −0.56. Thus, the dominant channel is technology upgrading—electricity
prices shift plants toward more machinery-intensive techniques. This extensive-margin response reflects
compositional shifts across technologies both within plants over time and across plants, and overwhelms
the standard within-technology substitution effect.

Using baseline capitalization and FDI shocks to capital.—Since machine capitalization from lower electricity
prices appears to be the central mechanism, I next provide two further pieces of model-consistent evidence
showing that effects are stronger for plants with previously lower machinery to labor ratios.

First, in Figure 6a, I classify plants into low or high machinery capital to labor ratio based on whether
they are above or below median ratio within their respective four digit industries in the previous period,
and interact this classification with electricity prices, all appropriately instrumented. Consistent with the

70I use the inverse hyperbolic sine instead of the log of machinery investments to deal with zeros. Note that the bias for the
ratios, the difference between OLS and IV, depends on the bias in the numerator and denominator. For machinery to labor, the
sign does not flip, but the size of the bias is roughly similar as for the machinery to electricity ratio.

71These estimates are close to the reduced-form regressions in Table 4b (Columns 7–8), where log(K/E) is regressed on
electricity prices alone. Reassuringly, the results are unchanged when controlling directly for the user cost of capital in that table,
suggesting that the reduced-form estimates are not driven by omitted movements in capital costs.
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Table 5: Decomposing machinery–electricity substitution and technology switching

Panel A. IV Panel B. Structural GMM-IV Panel C. Decomposition

(1) (2) (3) (4) (5)

log(pE/pK)
-0.382*** -0.991*** 0.670*** 0.106*** Within-tech: 0.419

Across-tech: -0.927
Total: -0.508

(0.080) (0.153) (0.031) (0.038)
Structural parameter – – σ1 σ2

Observations 465886 465886 465886 465886 465886
Estimator (IV/GMM) IV A IV B GMM-IV GMM-IV GMM-IV

Notes: Panel A reports pooled IV estimates of log(K/E) on log(pE/pK) with industry-by-region-by-year fixed effects, using IV A and IV B

separately as indicated. Panel B reports structural GMM estimates of the technology-specific substitution elasticities (σ̂1, σ̂2) from the two-
technology mixture IV–GMM estimator (using both instruments). Panel C shows, based on Panel B, the implied within-technology versus
across-technology decomposition, averaging the marginal effects across all observations. Standard errors in parentheses are two-way clustered at
the plant and the state-year level. Stars indicate p-values: * < 0.1, **< 0.05, ***< 0.01.

model, plants with higher relative baseline machinery capitalization, and thus possibly operating already
with a more modern technology, see a less positive effect on electricity productivity from lower electricity
prices, all differences being statistically significant. This implies that the pure substitution effect is stronger
for relatively more capitalized firms, while the output and technology upgrading effect is relatively stronger
for less capitalized firms, as shown in Table A.25.72

Second, while the previous categorization may be based on possibly endogenous machine to labor
ratios, I next use a plausibly exogenous shock to machinery capitalization. Specifically, I use the roll out
of financial trade liberalization in India for a subset of industries from 2006. While India underwent a
substantial general trade liberalization in 1991, the 2006 policy allowed a subset of industries that were
initially restricted to automatically approve foreign capital investments along with an increased maximum
cap of foreign capital investments.73 Bau and Matray (2023) argue that the policy timing for treated
industries is plausibly exogenous and show in event studies that the liberalization increased revenues
and capital in affected industries. I use a triple differences design based on treated/nontreated industries,
pre/post the 2006 policy, and interact it with electricity prices all appropriately instrumented to analyze the
differential effect of prices for firms that receive the exogenous shock to their capital.74 This design is used
to test whether firms with more capital show smaller electricity productivity responses from electricity
prices. Figure 6b shows the coefficient on the triple interaction in an event study design with electricity
productivity as outcome five years before and after the policy took effect. Indeed, after the policy took
effect in 2006, the effect of electricity prices is higher for treated plants relative to non-treated plants. The
triple difference using the post 2006 period instead of individual years is statistically significant at the
1% level (Table A.26). This means that the firms that received the boost in capital show no increased
electricity productivity from lower electricity prices post 2006, while non-treated firms do.75 While the
parallel trends assumption cannot be tested directly, the pre-trends shown in Figure 6b are flat. Table A.26
shows additional results for labor productivity and output using the 2006 policy change.

Lower electricity prices induce substitution from fossil fuels.— It is likely that plants not only adjust their

72This stronger effect also suggests that capital constraints cannot be too severe if we expect low capitalized firms to be more
constrained (see Appendix A.2).

73See Bau and Matray (2023) for a detailed description. Table A.24 lists the treated industries.
74Note that my triple difference design allows me to account for additional unobserved factors by controlling for industry by

year by region fixed effects, which would absorb the standard event study effect in Bau and Matray (2023).
75The combined effect for treated firms is now slightly positive compared to negative for non-treated, see Table A.26.
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(b) Electricity prices and foreign capital access liberalization

Figure 6: Electricity price effects by previous machinery labor ratios and foreign capital access liberalization
Notes: Panel (a) shows the effect of electricity prices on electricity productivity by a median sample split within respective four digit industries
for plants with a low or high machinery capital to labor ratio in the previous period. The results are reported for OLS and IV with 95% confidence
intervals and pairwise tests for equality of coefficients. Panel (b) shows the triple difference coefficient and 95% confidence bands of the interaction
of electricity prices, years, and treated industries under the 2006 FDI liberalization, instrumented with IV A and electricity productivity as
dependent variable. The triple difference coefficient using pre and post rather than individual years is reported above the graph. All regressions
are weighted by the recorded sampling multiplier. Standard errors are two-way clustered at the plant and the state by year level.

ratios between machinery, labor and electricity with different technologies, but also substitute more
narrowly between electricity and other energy sources with lower electricity prices. This is import for
calculating the impacts on emission later. Table 4c shows that lower prices induce substitution from fossil
fuels to electricity. Using plants that report physical electricity and coal consumption, I estimate that the
ratio between electricity to coal energy inputs increases with declining electricity prices in Columns 4-6,
as plants substitute away from coal. Columns 7-9 show that the expenditure share of fuels other than
electricity (i.e. coal, oil and gas) in output also decreases with declining electricity prices. Plants therefore
not only electrify by becoming more machine intensive, they also electrify away from fossil fuels. One
consequence of this substitution from fossil fuels to electricity is that energy efficiency, that is output divided
by all energy units not just electricity, increases even more than electricity productivity.

Lower electricity prices increase electric equipment, wages, TFP, product lines, and markups.— To end this
section, I shed light on additional margins that help understand mechanisms. I first use the product level
data on plant inputs that allow me to calculate electric equipment inputs as share of total inputs at the
plant level. While this particular result should be interpreted somewhat cautiously, as many plants may
not report equipment as part of their inputs but rather as part of their machinery capital, it provides an
additional test of mechanism. Indeed, Appendix Table A.23 shows that lower electricity prices increase the
share of electric equipment, such as powerlooms, consistent with a technology upgrading mechanism.

Second, lower electricity pricesmay also affectworkers throughwages, not just employment, particularly
as I find increases in labor productivity (Bhagwati and Panagariya, 2014). Columns 1 to 3 in Table 4d
show that lower electricity prices increase average wages per worker. This could be driven by either unit
cost savings on other inputs (electricity), higher labor productivity due to more capital per worker (Table
4b), increased demand for workers due to upscaling (Table 4a), employing higher skilled workers, or a
combination thereof. Taking the average of the two IV estimates of -0.1595, the 48% electricity price decline
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Table 6: Electricity price changes and the share of incidence on consumers

Incidence Oligopolistic competition Monopoly Perfect competition
Median 0.63 0.54 1.17
25th to 75th percentile [0.53 - 0.79] [0.50 - 0.59] [0.99 - 1.45]
Components L̂ ϵ̂D ρ̂MC

Median 0.18 3.21 1.17
25th to 75th percentile [0.03 - 0.34] [2.48 - 4.34] [0.99 - 1.45]

Notes: The table shows consumer incidence shares from electricity price changes, according to Ishare = I/(1 + I), as well as its components as
described in Section IV.F. The quantiles are across all plants and all periods, using the sampling multipliers as frequency weights, where Lerner
Index L̂ and pass through rates ρ̂MC vary at the plant-year level, and market demand elasticity ϵ̂D at the industry-state-year level. The monopoly
case corresponds to L̂jisrt = 1/ϵ̂D,isrt, and the perfect competition case to L̂jisrt = 0which implies that the incidence share is equivalent to the
pass-through rates.

predicts an 11% increase in wages, explaining 20% of the 60% increase in wages (see Section III.C).
Third, upgrading to more modern capital intensive production processes could also have direct effects

on plant TFP. I estimate that the effects on TFP are small (Columns 4-6 in Table 4d), but highly significant
and robust to different methodologies of estimating TFP.76 These results are consistent with firms using
technologies that rely more on electricity but also improve performance. There is also evidence that lower
electricity prices increase product variety measured as the number of plant product lines (Table A.23).

Finally I examine how electricity prices affect price over marginal cost markups µ ≡ P/MC (see Section
IV.F). Columns 7 to 9 in Table 4d show that markups increase with declining electricity prices. This implies
that the improvement in firm profitability comes from both expansion and technology but also with an
increase in markups. This adjustment in markups means that lower electricity prices are only imperfectly
passed through to consumers, raising an important question of how the incidence of electricity price
changes is distributed, which I analyze next.

D. The Incidence of Electricity Price Changes

The degree to which firms pass through changes in electricity prices to consumers determines the incidence
of electricity price changes. As described in Section IV.F, I estimate pass-through elasticities by industry
and report the cumulative distribution function of these pass-through elasticities as well as two example
regressions in Figure A.31. The vast majority of pass-through elasticities are between 0.8 and 1.1. A pass-
through elasticity greater than one means that costs are disproportionately passed through to consumers.77

This can arise if producers fail to previously collude in an oligopoly. An increase in costs can help to solve
the coordination problem of raising prices, one possible reason for pass-through rates greater than one.

The pass-through elasticities are combined with estimated plant level markups (µ̂) into pass-through
rates ρ̂MC . Table 6 shows the three components to calculate incidence: the Lerner index L̂, the market
demand elasticity ϵ̂D and the marginal cost to price pass-through rate ρ̂MC , reporting the median, the
25th, and the 75th percentile of the distribution across plants, sectors and years. The median incidence
share Ishare across all plants is 63%. There is some heterogeneity across industries and years; the 25th and
75th percentiles are 53% and 79% respectively, even at the 5th percentile, the share of consumer incidence

76The main methodology to measure TFP is based on Wooldridge (2009) using deflated revenue data, so should be interpreted
as revenue TFP. Since markups increase, the impact on physical TFP could be slightly smaller. Table A.20 reports effects when
TFP is measured following Olley and Pakes (1996), Levinsohn and Petrin (2003) or Ackerberg, Caves and Frazer (2015).

77While the pass-through elasticity is smaller than one for the five industries studied in Ganapati, Shapiro and Walker (2020),
the pass-through rate ρMC is also greater than one for three of the five industries and in some of the studies cited therein.
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is a quarter of the total. Figure A.32 plots the incidence share over time for six aggregate industries,
showing that there has been a small decline over time in consumer incidence share of a few percentage
points. I also calculate the incidence under the extreme conduct assumptions of monopolies and perfect
competition, where L = 1/ϵD and L = 0 respectively, with lower and higher incidence estimates than in
the benchmark oligopoly case. The next section calculates aggregate consumer surplus that takes into
account that industries sell to final demand in varying degrees which determines the overall consumer
welfare share, in addition to calculating total profits and CO2 emissions.

E. Aggregate Effects on Welfare and CO2 Emissions

In this section I ask: how large was the monetary gain in producer surplus (profits) and consumer surplus
net of government utility losses from the 48% price reduction, and what was the effect on aggregate
CO2 emissions? To this end, I use calculations based on the estimated parameters within the support of
underlying electricity price changes, ignoring general equilibrium effects.

For the producer gains, I use the semi-elasticity of variable profits to electricity prices to calculate that
the 48% reduction of electricity prices led to an increase of | 13.90 mil. for the average plant.78 For the
entire manufacturing sector, this translates into profits of | 1.69 trillion or US$ 37.4 billion (in constant 2004
terms), equivalent to 2.8% of Indian real GDP in 2013.79

For consumer gains, there are two steps: First, since a subset of firms in the sample may not sell to
consumers directly, I am using input-output tables to obtain the share of output going to final demand by
industry with details in Section A.17. Using this data along with incidence shares estimated in Section V.D,
the first component of change in consumer surplus is US$ 34.4 billion. Second, the reduction in government
profits from sale of electricity was | 143 billion or US$3.5 billion.80 If utilities financed this deficit through
a rate increase for the residential sector, consumer surplus gains would be reduced directly by US$ 3.4
billion to US$31 billion, based on demand elasticities for the residential sector with details in Section A.17.

Using this figure, the share of consumer surplus in total welfare gains is 45%, which is lower than
average plant level incidence shares in Table 6, as the denominator of total welfare also includes profits
of firms that may contribute little to final demand. Importantly, this implies that electricity pricing for
industry is not only relevant for industrial development but also for consumers. The reduction in cross-
subsidization from industry (Appendix A.5) has thus also generated sizable net benefits to consumers
through lower output prices. The US$ 68.4 billion total welfare gains imply annualized gains of US$ 4.9
billion that are equivalent to 0.36% of Indian GDP or 4% of manufacturing value added in 2013 (UNIDO,

78I take -21.25 as the average of the two estimates in Table 4a and calculate log((1− 0.48)−21.25) = 13.90. Note that this is an
80% increase in profits over the mean (Table 1) and represents 19% of the increase in variable costs similar to average markup
estimates. The increase in variable profits is incentive consistent. First, note that capital expenditure increases by | 6.6 mil, using
the elasticity of overall book value of capital and the 15% depreciation rate from the Indian Income Tax Rules, so profits net of
capital costs increase by | 7.3 mil. Second, in the absence of electricity price reductions, if producers still decided to produce
exactly like in the factual with modern technology, the additional increase in variable costs would have been | 8.2 mil, larger than
variable profits net of investment costs implying that producers would not have chosen this in the absence of price changes.

79Based on 121,825 manufacturing plants in the sampling frame in 1998, calculated by summing over the sampling multiplier.
80While profit per kWh fell with electricity prices, the quantity sold increased. I take -0.638 as the average of the two estimates

on the impact on electricity consumption from Table 3 Columns 5-6, the average annual amount of electricity purchased from the
grid in 1998-2000 in the sampling frame (53.5 billion kWh), the average cost of electricity supply across the sample of 3.14 | /kWh
(6.9 US cents) from the Planning Commission (2001-2002); Ministry of Power (2002-2015) and the average industrial electricity
prices for 1998-2000 and 2013 (6.4 | /kWh and 3.32| /kWh): (3.32− 3.14) · 53.5 · (1− 0.48)−0.638 − (6.4− 3.14) · 53.5 = 160 billion
| . Note that this implied loss for utilities is conservative by using an average cost of supply. Even if cost of supply was double
and prices were below cost-recovery, additional utility losses would only be slightly higher.
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Table 7: Aggregate effects on CO2 emissions from a 48% electricity price decline

Additional emissions No substitution
from (in Mt): Estimate No substitution No productivity & no productivity
Electricity use 29.4 29.4 65.3 65.3
Coal use 12.7 34.1 40.5 75.7
Oil use -0.4 6.1 3.9 13.6
Total 41.7 69.6 109.7 154.6
Increase in % 31% 52% 82% 115%

Notes: The table shows the increases in emissions from a 48% decline in electricity prices. It is based on (i) the estimated effects on electricity use,
electricity productivity, and the substitution between fuels, and on (ii) emission and conversion factors from (Minsitry of Coal, 2012; IPCC, 2006;
Central Electricity Authority, 2006; IEA, 2013). The Estimate column shows the estimated effect on emissions. The three columns to the right show
the effects when substitution between electricity and coal and oil is switched off, or when the productivity gains from lower prices are switched
off, or both, all conditional on reaching the same output gains. Gas is omitted because its use is negligibly small in comparison.

2016). This demonstrates that the halving of industrial electricity prices from its comparatively high level
had substantial effects on the Indian economy and welfare. It is worth noting that average wages (Table
4d) and employment also increased (Table 3) suggesting possible additional benefits for workers.

These welfare estimates do not include environmental damages yet. I next calculate the implications
for aggregate CO2 emissions by combining the estimated effects of electricity prices on consumption,
productivity and fuel substitution with emission factors for specific fuels and the Indian power grid. I
include emissions from electricity, coal and oil and report the details of the calculation and data sources in
Appendix A.18. From a baseline of 134.5Mt annual CO2 emissions in manufacturing (1998-2000 average),
the 48% decline in electricity prices increased emissions by 31% or 41.7Mt (Column 1 in Table 7).

This increase in emissions was entirely driven by firms scaling up.81 In fact, Table 7 shows that the
increase in emission would have been much larger if there was no electricity productivity enhancing effect
from lower electricity prices, or no fuel substitution that induced coal and oil saving, all conditional on
reaching the same output gains. Switching off fuel substitution effects, which forces firms to use even
more coal and oil, would have produced a 52% increase in emissions (Column 2) instead of the 31%.
Switching off the estimated effects on electricity productivity, i.e. setting Columns 2-3 in Table 2 to zero,
would have produced an 82% increase in emissions (Column 3). Switching off both channels would
have increased emissions by 115% (Column 4). While the secular decrease in industrial electricity prices
increased CO2 emissions, this increase is less than half of what we would expect in the absence of the
electricity productivity enhancing effects from lower prices that I find.

Using a social cost of carbon of US$100/tCO2, the costs from higher emissions are US$4.2 billion. While
this is sizable, it is small compared to the US$67.3 billion welfare gains, so the reduction in industrial
electricity prices had substantial welfare benefits even after accounting for damages from emissions.

F. The Contrary Effects of Coal Prices

The mechanisms discussed in this paper derive from the special role of electricity as a complementary
input to modern capital intensive production processes. If this is the case, then we should not expect
similar effects for coal prices, as fossil fuels are generally not broadly associated with modern industrial
production. I next test this prediction using plant level coal prices for the roughly 45,000 observations
of plant-years that use coal. As these suffer from similar endogeneity problems as electricity prices, I

81That is if emissions are decomposed into output and emissions per output, the only reason emissions increased is because
output increased, as emissions per output fell substantially.
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Table 8: The contrary effects of coal prices on coal and labor productivity and firm performance

(a) Coal prices and coal productivity, labor productivity and profits

Coal productivity (log) Labor productivity (log) Profit
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PC)
0.848*** 1.484*** 1.617*** 0.0564*** -0.0251 0.300 -5.940*** -6.315 -7.393
(0.025) (0.179) (0.213) (0.020) (0.132) (0.193) (1.628) (15.050) (25.859)

OLS/IV OLS IV E IV F OLS IV E IV F OLS IV E IV F

Observations 44968 44968 44968 44968 44968 44968 44965 44965 44965

(b) Coal prices and output, coal use and employment

Output (log) Coal consumption (log) Employees (log)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PC)
0.0907*** -0.311 -0.135 -0.757*** -1.851*** -1.799*** 0.0328 -0.320* -0.491*
(0.031) (0.248) (0.343) (0.036) (0.273) (0.383) (0.021) (0.193) (0.252)

OLS/IV OLS IV E IV F OLS IV E IV F OLS IV E IV F

Observations 44968 44968 44968 44968 44968 44968 44968 44968 44968

Notes: Each column represents a separate regression at the plant level. The table shows results from OLS regression on logged coal prices, and
IV regressions using IV E , which is based on the coal prices of other plants, or the shift-share IV F , as indicated. The dependent variables are
indicated and described in Section III.B. In Panel (a), coal productivity is the value of output divided by the quantity of coal used in tonnes, and
profits are in levels as they can be negative. The first stage coefficients are 0.57 for IV E with a KP F-stat of 154 and 0.01 for IV F with an F-stat of
86. All regressions contain industry by year by region fixed effects. Regressions are weighted by the recorded sampling multiplier. Standard
errors in parentheses are two-way clustered at the plant and the state by year level. Stars indicate p-values: * < 0.1, **< 0.05, ***< 0.01.

construct two instruments for coal prices for the coal used by manufacturing plants.
The first instrument, IV E is an analogue to IV A, using coal prices of manufacturing plants in the same

state, but in different 2-digit industries, without the kernel weights. The second instrument, IV F , is a
shift-share instrument like IV B . The shares are the logged distances of district centroids to the nearest
coalfields, where distance captures increases in sourcing costs.82 The shifter is the nationally representative
coal price at pit heads for industry (as opposed to power utilities) of the appropriate coal grades from
Minsitry of Coal (2012, 2015). When national average prices at the pit head rise, manufacturing plants
further away from pit heads may see differential total price increases due to the differential size of shipping
cost components in total costs.

Table 8 shows the results. Indeed, in contrast to electricity prices, lower coal prices significantly decrease
coal productivity. The IV coefficients are similar to each other, are of the same sign as the OLS coefficient
and even slightly higher, in contrast to the results for electricity prices. While lower coal prices significantly
increase coal consumption, they only have a small and insignificant effect on output or labor productivity
in the IV specifications. Lower coal prices also have no significant effect on TFP (Table A.27).83 There are
small and insignificant effects on profits and revenues and an ambiguous effect on costs (Table 8a and
A.27). Contrary to electricity, there is no similar scaling-up or technology effect with lower coal prices.
This supports the notion that electricity is a special energy input complementary to modern production.

G. Policy Implications

I highlight five policy implications from these findings that are crucial for the context of industrial de-
velopment and decarbonization. First, cross-subsidizing low agricultural and residential rates with high

82The location of coalfields and power plants is illustrated in Figure A.26.
83This is in line with Calì et al. (2022) who even find positive effects on TFP from higher coal prices in Indonesia and Mexico.
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industrial rates can have negative externalities for both industrial development and electricity productivity.
In the context of industrial development, lower electricity prices can achieve a win-win on both margins,
and ultimately also benefit consumers.

Second, this does not imply that taxing carbon, which may increase electricity prices, is necessarily
harmful, as such reasoning conflates two types of market failures. The pure climate and pollution external-
ities from fossil fuel combustion can be internalized by pricing carbon. Simultaneously tackling excessive
industrial electricity prices through reduced electricity taxes or cross-subsidization, or increased industrial
electricity subsidies can address the industrial development market failure that generates lower electricity
productivity from too little technology upgrading, especially in a setting of imperfect competition in the
product market. The effect of these two instruments together could be comparable to subsidizing clean
electricity generation, which can also reduce industrial electricity prices and incentivize lower fossil fuel
use. However, in a setting of limited public budgets, it could be especially appealing that these instruments
may be jointly budget neutral compared to expensive clean energy subsidies.

Third, as India and other low and middle income countries aim to transition to renewable energy,
industrial electrification away from fossil fuels becomes essential in achieving climate goals to leverage
electricity from renewables. This requires incentives for firms through lower relative prices between
clean electricity and carbon intensive fuels to help direct investment in a clean transition as in Acemoglu
et al. (2012, 2016). This strategy is even more appealing if lower electricity prices also improve electricity
productivity and if taxing dirtier fuels has little direct effect on firm performance as shown in the previous
section. Electrifying non-energy sectors also speaks to current decarbonization challenges in transportation
and industrial sectors of high income countries, where relatively lower electricity prices may incentivize
such transitions.

Fourth, capital constraints could introduce frictions into the process of upgrading tomodern technology
as shown in Appendix A.2 in this model (see also Lanteri and Rampini (2023a,b); Hawkins and Wagner
(2022)). The effects of lower electricity prices could be constrained in the presence of such capital constraints,
and complementary policies that address capital frictions could fully unlock the technology upgrading
mechanism. Note, however, that if we think that capital frictions especially affect less capitalized firms,
the results in Figure 6 showing stronger effects for less capitalized firms suggest that frictions are not
dominating the effect. Finally, while industrial lobbying efforts in India may have been focused on securing
import tariffs to boost competitiveness in output markets, the findings imply that focusing industrial
lobbying efforts on lowering industrial electricity prices instead may be a promising alternative.

VI. Conclusion

What is the role of industrial electricity prices in a context of industrial development? This paper shows
that lower electricity prices can serve both environmental and developmental goals by improving elec-
tricity productivity and labor productivity in firms. As policy makers grapple with ambitious targets for
improving energy efficiency, e.g. doubling the previous rate of improvements agreed at COP28, these
findings could be interpreted as win-win in lower income country settings where trade-offs often occur.

Using detailed data on electricity consumption and average prices at the plant level combined with
instrumental variables to remove bias, I recover estimates at the micro level that help explain secular
aggregate trends in electricity and labor productivity at the macro level in India. I interpret the results
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through the lens of a model with discrete technological choices and complementarities between electricity
and capital, and confirm model predictions with empirical tests. Lower electricity prices incentivize firms
to use modern capital intensive and electricity-using production techniques. This boosts output and
overcompensates input substitution effects, which increases electricity and labor productivity through
higher capital utilization. The underlying mechanism and resulting efficiency improvements therefore
depend on context, and I show diminishing returns as the economy mechanizes. These effects are likely to
be most salient in the process of industrial development, rather than at advanced industrialized stages.
Nevertheless, the broader implications of these findings of electricity pricing in technology transitions
are also crucial for addressing current decarbonization challenges of electrifying industry, transport, or
residential heating in advanced economies as renewables ramp up.

The benefits of lower industrial electricity prices not only accrue to firms. Using data on output prices,
I estimate how cost savings are passed through to consumers and find that around one half of the welfare
benefits accrue to consumers through lower output prices. While total carbon emissions increase from
scaling up of industry, the boost in electricity productivity attenuates the additional emissions from scaling
up by more than a half. The drop in industrial electricity prices in India led to substantial overall welfare
benefits considering producers, consumers, utilities and environmental damages. Lower coal prices do
not have such positive effects as electricity prices. This implies that policies that increase fossil fuel prices
to internalize environmental and climate externalities, while addressing high industrial electricity prices
such as reducing cross-subsidization to address the developmental and efficiency market failures may be
particularly beneficial in a context of industrial development. Future research could extend the analysis to
incorporate production networks and general equilibrium effects.84
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A.1 Model proofs
The firm’s optimization problem is:

max
K,L,E,c

Π = PQ− pK ·K − pL · L− pE · E −m · c (A.1)

and for notational simplicity define Z andW as:

PQ = A(αlL
ρl + (1− αl)X

ρl)
ϕ
ρl ≡ AZ

ϕ
ρl (A.2)

X = (αeE
ρe + (1− αe)K

ρe)
1
ρe ≡ W

1
ρe

and

αl = α̂l/c (A.3)

ρe = ρ̂e · c

Conditional on technology choice c ∈ {1, c′}, where c′ > 1, the first order conditions are:

ϕAZ
∗ ϕ
ρl
−1

αlL
∗ρl−1 = pL (A.4)

ϕAZ
∗ ϕ
ρl
−1

(1− αl)X
∗ρl−1W

∗ 1
ρe

−1
(1− αe)K

∗ρe−1 = pK (A.5)

ϕAZ
∗ ϕ
ρl
−1

(1− αl)X
∗ρl−1W

∗ 1
ρe

−1
αeE

∗ρe−1 = pE (A.6)

Taking ratios of the first order conditions yields the input demands conditional on c:

K∗ =

(
pE(1− αe)

pKαe

) 1
1−ρe

E ≡ κKEE
∗ (A.7)

X∗ = (αe + (1− αe)κ
ρe
KE)

1
ρe E ≡ κXEE

∗ (A.8)

L∗ =

(
(1− αl)αe

αl

pL
pE

κρl−ρe
XE

) 1
ρl−1

E ≡ κLEE
∗ (A.9)

E∗ =

[
ϕA

αe(1− αl)

pE
κρl−ρe
XE

(
αlκ

ρl
LE + (1− αl)κ

ρl
XE

) ϕ
ρl
−1
] 1

1−ϕ

(A.10)

Conditional on c, output and electricity productivity is:

PQ∗ = A(αlκ
ρl
LE + (1− αl)κ

ρl
XE)

ϕ
ρl E∗ϕ ≡ κPQEE

∗ϕ (A.11)
PQ∗

E∗ = κPQEE
∗ϕ−1 (A.12)

Proof of Lemma 1. Since c = 1 in all cases, the conditional demands and output are also unconditional
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and continuous in factor prices. Therefore, we can derive the marginal effect ∂ PQ∗
E∗

∂pE
> 0, which is given by:

∂ PQ∗

E∗

∂pE
=

∂κPQE

∂pE
E∗ϕ−1 + (ϕ− 1)κPQEE

∗ϕ−2∂E
∗

∂pE
(A.13)

Note that prices and quantities as well as ratios of those are positive, i.e.

pK , pL, pE ,K, L,E, κKE , κXE , κLE , κPQE > 0

Next, I show that the following ratios are increasing in electricity prices:

∂κKE

∂pE
=

1

1− ρe︸ ︷︷ ︸
>0

(
pE(1− αe)

pKαe

) 1
1−ρe

−1

︸ ︷︷ ︸
>0

1− αe

pKαe︸ ︷︷ ︸
>0

> 0

∂κXE

∂pE
= (αe + (1− αe)κ

ρe
KE)

1
ρe

−1︸ ︷︷ ︸
>0

(1− αe)κ
ρe−1
KE︸ ︷︷ ︸

>0

∂κKE

∂pE︸ ︷︷ ︸
>0

> 0

∂κLE
∂pE

=
1

ρl − 1︸ ︷︷ ︸
<0

(
(1− αl)αepL

αlpE
κρl−ρe
XE

) 1
ρl−1

−1

︸ ︷︷ ︸
>0

(1− αl)αepLκ
ρl−ρe
XE

αlpE︸ ︷︷ ︸
>0

[
ρl − ρe
κXE

∂κXE

∂pE
− 1

pE

]
︸ ︷︷ ︸

<0

> 0

For the last term
[
ρl−ρe
κXE

∂κXE
∂pE

− 1
pE

]
< 0, note that:

(
ρl − ρe
κXE

∂κXE

∂pE

)
− 1

pE
=

1

pE
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ρl − ρe
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≤1 since

ρl≤1 & ρe<0

((
αepK
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1−ρe αe
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Next, note that:

∂κPQE
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XE)

ϕ
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Finally, note that the profit function Π∗ is convex ∂2Π∗

(∂pE)2
≥ 0, and by Hotelling’s lemma ∂Π∗

∂pE
= −E∗.85,86

Taken together this implies that ∂E∗
∂pE

≤ 0.
Therefore, since ϕ < 1:

∂ PQ∗

E∗

∂pE
=

∂κPQE

∂pE
E∗ϕ−1︸ ︷︷ ︸

>0

+(ϕ− 1)κPQE︸ ︷︷ ︸
<0

E∗ϕ−2∂E
∗

∂pE︸ ︷︷ ︸
<0︸ ︷︷ ︸

>0

> 0 (A.14)

■

Proof of Proposition 1. I first offer a simple proof by contradiction and then provide the necessary and
sufficient conditions for the proposition to hold.

Suppose that on the contrary, electricity price decreases always decrease electricity productivity. Given
the production decisions in Equations (A.1), (A.2) and (A.3), it is possible to find sets of parameter values
{pK , pL, pE , c, α̂l, αe, ρl, ρ̂e, ϕ,A,m} and electricity price decreases ∆pP for which electricity productivity
is increasing, i.e. PQ∗

E∗ |pE < PQ∗

E∗ |pE−∆pE . A proof of existence of such parameter values is the example
in Figure A.3, which is a simulation based on the model in Equations (A.1), (A.2) and (A.3). In the
neighborhood of the technology threshold, a decrease in the electricity price results in an increase in
electricity productivity. This is not a unique example. It is straightforward to show additional examples by
searching over parameter values that satisfy the below conditions. Indeed, Figure A.1 solves the model
for a broad range of substitution elasticities including from strong complementarity up to substitutability
between labor, capital and electricity, and shows there exist parameter sets where Proposition 1 holds for
all combinations of substitution elasticities with reasonable values for all remaining parameters (see figure
notes for details).

Finally, the necessary and sufficient conditions on parameter values and electricity price decreases for
this proposition to hold are:

Π∗(pE −∆pE , c = c′) > Π∗(pE −∆pE , c = 1), i.e. prefer new technology with new prices

Π∗(pE , c = 1) > Π∗(pE , c = c′), i.e. prefer old technology with old prices
PQ∗(pE −∆pE , c = c′)

E∗(pE −∆pE , c = c′)
>

PQ∗(pE , c = 1)

E∗(pE , c = 1)
, i.e. increased PQ∗/E∗ at new optimum

Because of Lemma 1, we know that this proposition can only hold in the presence of technology switches.
The set of all possible parameter values that satisfy this proposition is given by these equations. Since this
involves a non-linear combination of all parameters, the necessary and sufficient conditions are stated in
general form with numerical example as in Figures A.1 and A.3 sufficient for a proof of existence. ■

85For convexity: consider twoprices pE and p′E , and define p′′E = δpE+(1−δ)p′E ∀δ ∈ (0, 1). Note thatΠ∗(pE) ≥ Π(p′′E , E
∗(pE))

and Π∗(p′E) ≥ Π(p′′E , E
∗(p′E)). Multiplying the two inequalities by δ and (1 − δ), summing and rearranging terms yields

δΠ∗(pE) + (1− δ)Π∗(pE) ≥ Π∗(p′′E).
86For Hotelling’s lemma apply the Envelope Theorem. Differentiating the profit function at the optimum, ∂Π∗

∂pE
= ( ∂PQ∗

∂E∗ −
pE)

∂E∗

∂pE
+ ( ∂PQ∗

∂K∗ − pK) ∂K
∗

∂pE
+ ( ∂PQ∗

∂L∗ − pL)
∂L∗

∂pE
−E∗ = −E∗, where the terms in parentheses are zero because of the first order

conditions.
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Figure A.1: Alternative substitution elasticities between labor, capital and electricity

Notes: The figures plot electricity productivity on the vertical axes (all normalized) against relative electricity price decreases on the horizontal
axis. The panels vary the elasticity of substitution between capital and electricity (ρ̂e) across rows from strong complementarities (-20) to weak
complementarities (-0.5) for the traditional technology (with the modern technology appropriately more complementary) and the elasticity
of substitution between capital services and labor (ρ̂l) across columns from complementarities (-2) to substitutability (0.5). The figures show
optimal choices both conditional on a specific technology as indicated, and the overall optimum (thick line). All outcomes are normalized by
dividing by their value at the traditional technology (c = 1) and original electricity price (∆pE = 0). These model simulations were generated by
fixing the substitution elasticities as indicated and then searching for values of the other parameter to satisfy the implicit conditions given in the
proof of Proposition 1, conditional on reasonable bounds {pK = (0.2, 20), pL = (0.2, 20), c = (1.1, 10), α̂l = (0.15, 0.75), αe = (0.1, 0.8), ϕ =
(0.75, 0.999), A = (1, 50),m = (0, 5)}. There are many solution parameter that satisfy Proposition 1, and Panel (n), for example, shows a slightly
different set than Figure 2.

Proof of Lemma 2. Since c = 1 in all cases, the conditional demands and output are also unconditional
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Figure A.2: Labor productivity and electricity price decreases with constant technology: the role of complementarity
vs substitutability between capital services and labor

(a) Capital services and labor complements (ρl < 0) (b) Capital services and labor substitutes (ρl > 0)

Notes: Both panels show solutions of the model and histograms changes in log labor productivity after an electricity price decrease, both with
constant technology c = 1. In particular, I draw 10 million values from independent uniform distributions for all parameters and prices. For
prices I use support [1, 10], for the shape parameters αe αl I use [0, 1], for the bundle of returns to scale in production and demand ϕ I use
[0.5, 0.99], for fixed cost parameterm I use [0, 10]with c = 1, for total factor productivity A I use [0.1, 10] and for the complementarity parameter
ρe I use support [−10, 0]. In Panel (a) the complementarity between labor and capital services ρl is drawn over support [−10,−0.001] implying
complements. In Panel (b) ρl instead is drawn over support [0.001, 0.6] implying substitutes. I additionally draw electricity price decreases over
support [0%, 50%] and calculate labor productivity before and after the price decrease for all 10 million draws in Panel (a) and Panel (b). Both
histograms winsorize the change in log labor productivity at the 1 and 99 percentiles respectively (none of which induces a sign change).

and continuous in factor prices. Therefore, we can derive the marginal effect ∂K∗
E∗

∂pE
> 0, which is given by:

∂K∗

E∗

∂pE
=

∂κKE

∂pE
=

1

1− ρe︸ ︷︷ ︸
>0

(
pE(1− αe)

pKαe

) 1
1−ρe

−1

︸ ︷︷ ︸
>0

1− αe

pKαe︸ ︷︷ ︸
>0

> 0 (A.15)

Again, note that prices and quantities as well as ratios of those are positive, i.e.

pK , pL, pE ,K, L,E, κKE , κXE , κLE , κPQE > 0

and observe directly that

∂κKE

∂pE
=

1

1− ρe︸ ︷︷ ︸
>0

(
pE(1− αe)

pKαe

) 1
1−ρe

−1

︸ ︷︷ ︸
>0

1− αe

pKαe︸ ︷︷ ︸
>0

> 0

■

Turning to labor productivity, in the absence of technology choices, i.e. c = 1, the effect of lower
electricity prices on labor productivity depends onwhether capital servicesX and laborL are complements
(ρl < 0) or substitutes (ρl > 0). This is similar as in Acemoglu (2002), where factor specific technical
change is either biased in the same factor or in another factor, depending on whether they are substitutes
or complements. Figure A.2 illustrates the role of this complementarity (ρl) in the relationship between
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electricity price decreases and labor productivity in the absence of technology choices (c = 1). Both
panels show model based simulations. In particular, I draw 10 million values from independent uniform
distributions for all parameters and prices.87 In Panel (a) the complementarity between labor and capital
services ρl is drawn over support [−10,−0.001] implying complements. In Panel (b) ρl instead is drawn
over support [0.001, 0.6] implying substitutes. I additionally draw electricity price decreases over support
[0%, 50%] and calculate labor productivity before and after the price decrease for all 10 million draws in
Panel (a) and Panel (b). The panels show changes in log labor productivity after the price decrease, both
with constant technology c = 1. Panel (a) shows that for all 10 million draws, the change is negative i.e.
labor productivity decreases with an electricity price decrease when ρl < 0 (complements), as in Figure 2
where ρl = −0.5. Intuitively, optimization requires using additional labor with increased capital services
use, which together with decreasing returns implies lower labor productivity. Panel (b) shows that labor
productivity increases with an electricity price decrease when ρl > 0 (substitutes). The intuition is that
optimization now requires higher substitution away from labor which increases labor productivity.

87For prices I use support [1, 10], for the shape parameters αe αl I use [0, 1], for the bundle of returns to scale in production
and demand ϕ I use [0.5, 0.99], for fixed cost parameterm I use [0, 10]with c = 1, for total factor productivity A I use [0.1, 10] and
for the complementarity parameter ρe I use support [−10, 0].
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A.2 Further model predictions and visualizations
Figure A.3 shows several margins of how a firm adjusts with the decline of electricity prices. Panel (a) to
(d) in the first two rows repeat the graphs from Figure 2. After sufficient electricity price decreases ∆pE ,
the firm switches to the modern technology that is now more profitable (see Panel b), which brings about
a step change in electricity productivity, the capital to electricity ratio (Panel c) and labor productivity
(Panel d). When switching to the modern capital intensive and electricity-using technology, electricity use
increases as illustrated in Panel (e). Employment also increases as shown in Panel (f). The fourth row
shows that the switch to modern technology expands the firm: total sales in Panel (g) and total costs in
Panel (h) increase at the threshold. The last row shows two further input ratios. Driven by substitution to
the modern capital intensive technology, the capital services to labor ratio increases at the threshold in
Panel (i), which allows both employment in Panel (f) and labor productivity in Panel (d) to increase. The
labor to electricity ratio falls (Panel j). Each of these predictions on input productivities, profits, sales, total
costs and input ratios generated by the model are tested and confirmed in the empirical analysis.

Figure A.4 shows the impact of introducing capital constraintsK ≤ b, which modifies the firm maxi-
mization problem. I plot the solutions to the problem, both in terms of electricity productivity in the plots
on the left, and capital in the plots on the right. The rows from the top to the bottom successively tighten
the capital constraint b. In the top row, the point of switching to the modern technology is equivalent to
the baseline in Panel (a) of Figure 2 and A.3. As is visible on the right, the capital constraint only becomes
binding when electricity prices fall even more, after the switch has become profitable already. In the
second row, the constraint already binds for the modern technology before the point of switching to it,
which, barely visible, slightly delays the optimal switch. In the third row, the constraint is even tighter,
which significantly delays the optimal switching point. In the fourth row, with an even tighter constraint
on capital, there is no optimal switch over the support of the 20% electricity price decrease, as it is more
profitable to keep the traditional technology under such severe capital constraints.

Figure A.5 plots the same electricity productivity graphs as in Panel (a) of Figure 2 and A.3, but for
heterogeneous firms. In particular, I use 100 firms, which vary in their total factor productivity Ai ranging
from 9.1 to 9.25 in equal intervals. The graph shows 10 of these firms, and those with a higher Ai make the
switch to the modern production technology earlier, i.e. with smaller electricity price decreases. Panel
(b) of Figure A.5 plots aggregate electricity productivity (

∑
PQ∗

i /
∑

E∗
i ) across these 100 firms. It shows

that aggregate electricity productivity can increases more smoothly over an extended range of electricity
decreases as heterogeneous firms switch at different points. Similar graphs can be generated if firms are
heterogeneous on other dimensions than total factor productivity. Once all firms have switched to the
modern technology, aggregate electricity productivity is decreasing with further electricity price decreases
(until a new more modern technology becomes available).
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Figure A.3: Electricity price decreases and predictions for firm outcomes

Notes: The figures plot firm outcomes on the vertical axes (all normalized) against relative electricity price decreases on the horizontal axis. Panel
(a) shows electricity productivity, Panel (b) firm profits, Panel (c) capital to electricity ratio, Panel (d) labor productivity, Panel (e) electricity
consumption, Panel (f) employment, Panel (g) sales, Panel (h) total costs, Panel (i) capital services to labor ratio, and Panel (j) labor to electricity
ratio. The figures show optimal choices both conditional on a specific technology as indicated, and the overall optimum (thick line). All outcomes
are normalized by dividing by (for profits: subtracting) its value at the traditional technology (c = 1) and original electricity price (∆pE = 0).
The parameter values for this simulation are fixed at {pK = 6, pL = 5, pE = 0.5, c = 3, α̂l = 1/3, αe = 0.5, ρl = −0.5, ρ̂e = −0.5, ϕ =
0.95, A = 9.15,m = 1} and ∆pE varies from 0 (corresponds to pE = 0.5, and 1 on the horizontal axis) to 1/12 (corresponds to pE = 0.4, and
0.8 on the horizontal axis).
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Figure A.4: Electricity price decreases in the presence of capital constraints

Notes: The figures plot electricity productivity (normalized) on the left and capital on the right (in levels) against electricity price decreases on
the horizontal axis. The firm maximization problem is modified to include a capital constraintK ≤ b. From the top to the bottom panels, each
row has successively more stringent capital constraints as indicated. The figures show optimal choices both conditional on a specific technology
as indicated, and the overall optimum (thick line). Electricity productivity is normalized by dividing by its value at the traditional technology
(c = 1) and original electricity price (∆pE = 0). The parameter values for this simulation are fixed at {pK = 6, pL = 5, pE = 0.5, c = 3, α̂l =
1/3, αe = 0.5, ρl = −0.5, ρ̂e = −0.5, ϕ = 0.95, A = 9.15,m = 1} and ∆pE varies from 0 (corresponds to pE = 0.5, and 1 on the horizontal
axis) to 1/12 (corresponds to pE = 0.4, and 0.8 on the horizontal axis).

A-10



Figure A.5: Electricity price decreases, heterogeneous firms and aggregate electricity productivity

(a) Impact on electricity productivity of firms with different total factor productivity Ai

(b) Impact on aggregate electricity productivity

Notes: Panel (a) plots electricity productivity for 10 selected firms that have heterogeneous total factor productivity Ai against relative electricity
price decreases on the horizontal axis. The figures show optimal choices both conditional on a specific technology as indicated, and the overall
optimum (thick line). The 10 firms that are displayed in Panel (a) are selected from the 100 firms for which Ai varies from 9.1 to 9.25, and have a
value for Ai indicated above each graph. Panel (b) shows aggregate electricity productivity (

∑
PQ∗

i /
∑

E∗
i ) across all 100 firms. Electricity

productivity in both panels is normalized by its value corresponding to the traditional technology (c = 1) and original electricity price (∆pE = 0).
The other parameter values for this simulation are fixed at {pK = 6, pL = 5, pE = 0.5, c = 3, α̂l = 1/3, αe = 0.5, ρl = −0.5, ρ̂e = −0.5, ϕ =
0.95,m = 1} and ∆pE varies from 0 (corresponds to pE = 0.5, and 1 on the horizontal axis) to 1/12 (corresponds to pE = 0.4, and 0.8 on the
horizontal axis).
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A.3 Comparing electricity prices and productivities using alternative data
sources

This section provides additional descriptive graphs. First, the patterns in electricity prices and electricity
productivity are confirmed with alternative data sources. Figure A.6 shows the evolution of the industrial
electricity price in real terms from three different sources. The solid line is the ASI-derived price as in
Figure 1. The dashed line is the average price derived from publications of the Planning Commission
(2001-2002) and Ministry of Power (2002-2015) dividing total utility revenues (summed across all utilities)
by total kWh supplied for the industrial sector. The dotted line is a weighted average of industrial electricity
tariffs manually collected from the reports of the Indian Central Electricity Authority (2006-2015) and
from Indiastat (1998-2014), weighted by supplied kWh across states. All three sources show a similar
pattern of decreasing prices. Figure A.7 plots the electricity price index in real terms from the Office of the
Economic Adviser (2019) corroborating this pattern. Figure A.8 plots the average of industrial electricity
tariffs specifically for heavy industry, one of several size bins within industry. Figure A.9 compares the
ASI-derived electricity prices and the collected average industrial electricity tariffs for large industry across
state-year clusters and shows that they are highly correlated, but can deviate due to some firms not being
categorized as large industry or due to different tariffs within states that are captured by the ASI data.

FigureA.10 uses (IEA, 2016; UNIDO, 2016) data for electricity productivity showing a consistent pattern.
Panel (a) also shows that electricity productivity did not increase nearly as much in OECD countries over
the sample period. Panel (b) shows that the share of electricity in the energy mix has increased. Figure
A.11 shows electricity productivity per | rather than per kWh, and other fuel productivity per | . The figure
shows that electricity productivity is increasing even more when measured in | terms, which is consistent
with the decreasing electricity prices.
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Figure A.6: Comparing industrial electricity prices from three alternative sources
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Notes: The figure plots industrial electricity prices from three sources. The solid blue line is the ASI-derived price as in Figure 1.
The dashed red line is the average price derived from publications of the Planning Commission (2001-2002) and Ministry of
Power (2002-2015) dividing total utility revenues (summed across all utilities) by total kWh supplied for the industrial sector. The
dotted orange line is weighted average of industrial electricity tariffs manually collected from the reports of the Indian Central
Electricity Authority (2006-2015) and from Indiastat (1998-2014) through Lok Sabha and Rajya Sabha questions, weighted by
supplied kWh across states.

Figure A.7: Real electricity price index
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Notes: The figure plots the real electricity price index for industry. It is based on the deflated wholesale price index for electricity
for industrial purposes.
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Figure A.8: Average real utility tariffs for heavy industry
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Notes: The figure plots the real electricity tariff for heavy industry. The tariffs are manually collected from publications of the
Indian Central Electricity Authority (2006-2015) and from Indiastat (1998-2014) through Lok Sabha and Rajya Sabha questions.
Individual data points correspond to state level average tariffs for heavy industry.

Figure A.9: Comparing ASI-derived electricity prices and published average industrial electricity tariffs
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Notes: The figure plots ASI-derived real electricity prices aggregated to the state by year level against published real electricity
tariffs for large industry averaged at the state by year level. The tariffs aremanually collected frompublications of the Indian Central
Electricity Authority (2006-2015) and from Indiastat (1998-2014) through Lok Sabha and Rajya Sabha questions. Individual data
points correspond to state level average tariffs for heavy industry.
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Figure A.10: Electricity productivity and share in fuel mix using data from IEA (2016) and UNIDO (2016)

(a) Electricity productivity (per kWh)
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(b) Share of electricity in fuel mix
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Notes: Panel (a) plots the annual electricity productivity ratios (value of output divided by the quantity of electricity used (in kWh)). Both
quantities are for manufacturing only. Output is from UNIDO (2016), deflated with GDP deflators from World Bank (2017), and electricity
consumption from the IEA (2016). Plotted are the values and kernel smoother for India with the solid line, corresponding to the left axis. The
values and kernel smoother for OECD countries are the dashed lines, corresponding to the right axis. Panel (b) plots the share of electricity
consumption in total fuel consumption in India (both in ktoe) using data from IEA (2016).

Figure A.11: Electricity productivity and other fuel productivity (per | )

(a) Electricity productivity (per | )
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(b) Other fuel productivity (per | )
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Notes: Panel (a) plots the annual electricity productivity ratios (value of output divided by the value of electricity used). Panel (b) plots the other
fuel productivity ratios (value of output divided by the value of fuel other than electricity used). Plant output is deflated using 3-digit industry
deflators before aggregating over industries. Electricity and fuel values are deflated using a general fuel and electricity wholesale price deflator.
All data points come from the raw plant level ASI data and aggregated with sampling multipliers.
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A.4 India’s high electricity prices in international comparison
Average electricity tariffs in India were the equivalent of 15.1 US cents (2004 US$) for industrial users
in 1998. As Figure A.12 and Table A.1 show, the G7 or OECD average was around 8.9 US cents in 1998,
implying that the Indian industrial tariffs were around 70% higher. Adjusting for the difference in general
price levels between India and G7 countries, Indian tariffs were 630% higher in 1998 based on purchasing
power parity (PPP). Indian industrial tariffs were higher than G7 average prices until 2004 using market
exchange rates. In PPP terms, Indian prices were still 133% higher than the G7 average in 2013. The Indian
electricity price trends in the 2000s is in contrast to many other countries, where electricity prices instead
increased as shown in Figure A.12. While electricity prices in India almost halved during the sample
period, prices in OECD countries grew by roughly 40% (Table A.1).88

Figure A.12: Industrial electricity prices in an international context (US$ and PPP)

(a) Industrial electricity prices (Market exchange rates)
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(b) Industrial electricity prices (PPP)
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Notes: The figures plot real industrial electricity prices for six individual countries. Panel (a) is based on market exchange rates, and Panel (b) is
based on PPP conversion factors. The shaded areas correspond to the interquartile range and the 5th to 95th percentile of a given year. This is
based on a consistent set of 26 countries for which data for all years was available (see below). Raw price data comes from IEA (2018b), except for
India, where the prices are based on the micro data in the main text. For India, IEA (2018b) data is only available from 2006, which is similar to
the plotted data. Prices are deflated with national GDP deflators and turned into US$ or PPP-US$ with exchange rates and PPP conversion factors
from the World Bank (2017). The base year for deflation is 2004 throughout this paper. The 26 countries used for the percentiles are: Algeria,
Canada, Czech Republic, Denmark, France, Germany, Hungary, India, Ireland, Israel, Italy, Japan, Kazakhstan, Mauritius, Mexico, New Zealand,
Paraguay, Poland, Portugal, Slovak Republic, South Africa, Spain, Switzerland, Turkey, United Kingdom, United States.

88See Sato et al. (2019) for more evidence on general price trends in various countries since 1995. They show that electricity is
the most important fuel when accounting for overall energy prices.
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Table A.1: Industrial electricity prices in US-cents: India, OECD and G7 averages (US$ and PPP)

Market exchange rates PPP
India G7 OECD % of G7 % of OECD India G7 OECD % of G7 % of OECD

1998 15.14 8.91 8.96 170 169 60.08 8.24 10.40 730 578
1999 14.84 8.42 8.57 176 173 58.89 7.76 10.03 759 587
2000 12.37 8.36 8.43 148 147 49.09 7.75 9.94 634 494
2001 11.51 8.97 8.81 128 131 45.67 8.36 10.40 547 439
2002 11.08 8.68 8.89 128 125 43.96 8.08 10.49 544 419
2003 10.74 9.01 9.11 119 118 42.63 8.41 10.78 507 395
2004 9.64 9.00 9.07 107 106 38.24 8.38 10.77 456 355
2005 8.78 9.55 9.43 92 93 34.84 8.88 11.16 393 312
2006 8.30 10.58 10.03 78 83 32.94 9.79 11.77 336 280
2007 8.51 11.25 10.30 76 83 33.76 10.41 12.11 324 279
2008 7.84 10.88 11.02 72 71 31.12 9.98 13.05 312 239
2009 8.38 11.59 11.46 72 73 33.26 10.61 13.70 313 243
2010 7.92 11.42 11.11 69 71 31.44 10.50 13.24 299 238
2011 7.57 12.20 11.50 62 66 30.05 11.24 13.60 267 221
2012 7.63 12.79 12.18 60 63 30.29 11.77 14.38 257 211
2013 7.33 13.53 12.43 54 59 29.07 12.45 14.56 233 200

Notes: The table shows real industrial electricity prices for India, the simple average of the G7 nations, and the simple average of
OECD countries, for which data in all years were available. The left part is based on market exchange rates, the right part is based
on PPP conversion factors. Raw price data comes from IEA (2018b), except for India, where the prices are based on the micro data
in the main text. For India, IEA (2018b) data is only available from 2006, which is similar to the reported data. Prices are deflated
with national GDP deflators and turned into US$ or PPP-US$ with exchange rates and PPP conversion factors from World Bank
(2017). The base year for deflation is 2004 throughout this paper. The included OECD countries are: Canada, Czech Republic,
Denmark, France, Germany, Hungary, Ireland, Israel, Italy, Japan, Mexico, New Zealand, Poland, Portugal, Slovak Republic, Spain,
Switzerland, Turkey, United Kingdom, United States.
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A.5 Electricity prices across user groups, cross-subsidization and block
tariffs

The high electricity prices in India for industrial users are in contrast to low electricity prices for agricultural
and residential users, 0.9 and 5.8 US cents respectively in 1998 (Planning Commission, 2001-2002), even
though the cost of supply is usually lower for industrial users (Ministry of Power, 1998b).89 This asymmetric
price pattern leads to heavy cross-subsidization in Indian electricity. Industrial tariffs have typically
been above the average cost of supply, but high subsidies are required for the agricultural sector. While
agricultural consumers made up 32% of electricity consumption in 1998, they only accounted for 3.6%
of revenues from electricity sales (Planning Commission, 2001-2002). There was progress in reducing
cross-subsidization, but it was not eliminated despite efforts to depoliticize tariffs based on the Electricity
Act (2003). In 2013 industrial tariffs were still 7.6 US cents (2004 US$) compared to 2.0 cents for agricultural
tariffs (Ministry of Power, 2002-2015). As a result, state electricity utilities have been loss-making almost
across the board, recovering only between 73% and 89% of annual costs between 1998 and 2013 (Central
Electricity Authority, 2006-2015).

Figure A.14 compares industrial electricity prices across different consumption bands across Indian
states in 2007, using manually collected data from government reports (Central Electricity Authority,
2006-2015). Industrial tariffs mostly follow increasing block tariffs, at least up to a point. On average, a
higher band (of five bands) is associated with a 1.8 percent increase in the tariff.90 Figure A.15 uses the
plant level data and plots electricity prices against electricity purchased, both after partialing out state by
year fixed effects, to recover an average slope of marginal prices. The figure confirms a slight increase in
tariffs with consumption, except for the largest consumers. This is in contrast to European countries, where
the tariff band for the largest consumers is on average less than half the band for the smallest consumers
(Eurostat, 2016). Increasing or decreasing block tariffs are one of the challenges I take into account when
identifying the effect of electricity prices.

89For the agricultural and residential tariffs, I divided total revenues by total kWh supplied for each sector across all utilities
and states using data from Planning Commission (2001-2002), which is effectively a weighted average tariff. The simple average
tariff in 1998 across states is 2.2 and 5.3 for agricultural and residential respectively. The implied industrial tariff from these
publications would be 13.9 in 1998, similar to the ASI reported average.

90This is from a regression of manually collected log deflated electricity tariffs at the state-year-band level on consumption
bands, accounting for state by year fixed effects.
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Figure A.13: Price ratios by user groups and cost of supply (weighted and simple average)

(a) Price ratios and cost-recovery (weighted average)
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(b) Price ratios and cost-recovery (simple average)

0
.2

.4
.6

.8
1

1.
2

R
at

io
 to

 in
du

st
ry

 p
ric

e 
or

 ra
tio

 to
 c

os
t o

f s
up

pl
y

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Price Agriculture/Industry Price Residential/Industry

Price Commercial/Industry Revenue/Cost of Suppy

Notes: Both panels plot ratios of electricity prices in agriculture, residential or commercial over industrial electricity prices. In Panel (a), these are
effectively calculated as weighted average over utilities and states using total revenue over total quantity of electricity delivered by sector. In Panel
(b) these are simple averages across all utilities and states ignoring the size of utilities. The panels also show the overall ratios of average rate of
revenue (without subsidies) over the cost of supply, averaged across utilities weighted by kwh of supply in Panel (a) and as simple average in
Panel (b). Data is from Planning Commission (2001-2002) and Ministry of Power (2002-2015).

Figure A.14: Reported industrial average tariff schedules in large states in 2007
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Notes: Plotted are the average tariffs by state by size of industrial consumer. There are five categories increasing in electricity
consumption from small to heavy2. The reported average tariffs are taken from the Indian Central Electricity Authority (2006-2015).
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Figure A.15: Residualized electricity prices and quantity purchased
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Notes: The figure shows a binned scatter plot where both plant level electricity prices, and log electricity purchased are pre-
residualized by partialing out state by year fixed effects. This shows that marginal prices are fairly similar to average prices, and
that tariffs are slightly increasing in quantity purchased except for the largest customers.
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A.6 Electricity shortages and electricity prices
To explore the relationship between electricity prices and power shortages, I use two measures of shortages.
First, I construct a manufacturing plant level measure by using the data on unmet electricity demand at the
plant level available in years 2004-2013 (with the exception of year 2006-2007). I calculate the share of unmet
electricity demand as a share of total electricity consumed by the plant. Figure A.16 plots unmet demand
against plant level electricity prices and shows no significant correlation between the two. Columns 1-6 of
Table A.2 more formally show that there is no significant correlation with electricity prices, where even
columns focus on the intensive margin of shortages dropping all observations with zero unmet demand.
Second, I construct a state level measure by using the administrative data on state level shortages reported
by utilities as a share of total required electricity at the state by year level as in Figure 3. Columns 7-9 of
Table A.2 shows that the correlation is, again, small and insignificant.

In Table A.3, I instead use electricity prices from the Planning Commission (2001-2002) and Ministry
of Power (2002-2015) publications, which are based on utility revenues divided by total kWh supplied. I
calculate average industrial electricity prices and average overall electricity prices at the state by year level.
I also calculate the share of costs recovered by utilities, which is the ratio of average revenues over average
cost of supply, available from 2002. I use the same data on state level shortages as in Columns 7-9 of Table
A.2 and Figure 3. In Panel (a) of Table A.3 I show OLS estimates based on the levels of prices and shortages.
In Panel (b) I show elasticity estimates based on PPML regressions and logged independent variables. The
first two columns confirm that there is no correlation between industrial electricity prices and shortages.
However, Columns 3-4 show that overall electricity prices are predicting shortages. This is, as Columns 5-6
show, because shortages are strongly correlated with cost-recovery, and cost-recovery in turn is driven by
overall electricity prices (Columns 7-8).

Figure A.16: Unmet electricity demand and electricity prices
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Notes: The figure shows a binned scatter plot of plant level unmet electricity demand as share of total electricity used against
plant level electricity prices. The data is from the ASI for the years 2004-2013, excluding 2006-2007. The figure shows that there is
no significant correlation between unmet demand and electricity prices.
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Table A.2: Electricity prices and two measures of power shortages

Share plant level unmet electricity demand State level shortages
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Electricity price (log) -0.0057 -0.042 -0.0055 -0.082 -0.0053 -0.042 0.014 -0.0028 0.0025
(0.0061) (0.12) (0.0042) (0.090) (0.0038) (0.075) (0.0090) (0.0067) (0.0034)

N 338140 12219 338140 12218 338140 12218 589459 589459 589459
Year FE No No Yes Yes Yes Yes No Yes Yes
State FE No No Yes Yes Yes Yes No Yes Yes
Region-year FE No No No No Yes Yes No No Yes
Int. marg. unmet No Yes No Yes No Yes No No No

Notes: The table shows estimates from OLS regressions on logged electricity price. In Columns 1-6 the dependent variable is
manufacturing plant level unmet electricity demand as share of total electricity consumed by the plant. Columns 2, 4 and 6 focus
on the intensive margin unmet electricity by dropping all observations where the dependent variable is zero. In Columns 7-8, the
dependent variable are state by year level electricity shortages reported by the utilities as share of total required electricity at the
state by year level. Regressions are weighted by the sampling multipliers. Standard errors in parentheses are clustered at the state
year level. Stars indicate p-values: * < 0.1, **< 0.05, ***< 0.01.

Table A.3: State power shortages, cost-recovery and utility electricity prices

(a) Levels: OLS regressions in levels

State level shortages State level cost-recovery
(1) (2) (3) (4) (5) (6) (7) (8)

Industry electricity price -0.00058 -0.0014
(0.0022) (0.0034)

Overall electricity price -0.0075* -0.012*** 0.15*** 0.16***
(0.0039) (0.0043) (0.024) (0.025)

Cost-recovery -0.091*** -0.13***
(0.016) (0.019)

N 419 419 420 420 327 327 327 327
Year FE No Yes No Yes No Yes No Yes
State FE No Yes No Yes No Yes No Yes
Region-year FE No Yes No Yes No Yes No Yes

(b) Elasticities: PPML regressions with log independent variables

State level shortages State level cost-recovery
(1) (2) (3) (4) (5) (6) (7) (8)

Industry electricity price (log) -0.12 -0.27
(0.14) (0.18)

Overall electricity price (log) -0.42** -0.85*** 0.64*** 0.72***
(0.18) (0.19) (0.078) (0.080)

Cost-recovery (log) -0.64*** -1.09***
(0.13) (0.15)

N 416 416 416 416 327 327 324 324
Year FE No Yes No Yes No Yes No Yes
State FE No Yes No Yes No Yes No Yes
Region-year FE No Yes No Yes No Yes No Yes

Notes: The table shows estimates from OLS regressions using variables in levels in Panel (a) and elasticity estimates from PPML
regressions using independent variables in logs, all at the state by year level. In Columns 1-6 the dependent variable are state by
year level electricity shortages reported by the utilities as share of total required electricity at the state by year level. In Columns
7-8 the dependent variable is the share of utility costs that are recovered through revenues at the state level. The electricity
price for industry and the overall electricity price is from Planning Commission (2001-2002) and Ministry of Power (2002-2015).
Standard errors in parentheses are clustered at the state by year level. Stars indicate p-values: * < 0.1, **< 0.05, ***< 0.01.
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A.7 Discussion of summary statistics Table 1
This section offers further description of the summary statistics shown in Table 1. First, there is considerable
self-generation as the average amount of electricity self-generated is a quarter of the amount of electricity
bought. This is driven by the 35% of plants that engage in self-generation, primarily to cope with outages as
discussed in the main text. Second, average electricity productivity is lower when weighting by consumed
electricity, which suggests that larger electricity consumers are less electricity productive.91 Third, on
average, electricity has the largest share in fuel expenditure (0.63).92 Fourth, electricity expenditure
constitutes on average about 6% of total average costs. The average electricity price is around seven times
higher than the coal price in kWh equivalent, as coal is a rawer form of energy. Fifth, machinery is the main
type of capital and investment (as opposed to e.g. buildings). Sixth, the average variable cost markup
(total revenues divided by total variable costs) is 20%, slightly lower than the marginal cost markup of
30%, where marginal cost markups are calculated following De Loecker and Warzynski (2012). Finally,
plant TFP are similar for different methods, following Olley and Pakes (1996), Levinsohn and Petrin (2003)
or Wooldridge (2009).

91Weighting by consumption maps plant level electricity productivity into aggregate electricity productivity, comparable with
Figure 1.

92This is similar to the 60% that Marin and Vona (2021) report for France. Note that the share in raw energy is lower, because
electricity prices are much higher per unit of energy than coal, gas or oil prices. As Panel (b) in Figure A.10 shows, the share of
electricity in the energy mix in terms of energy units has risen from 16 to 20% since 1998.

A-23



A.8 Labor productivity, wages and electricity prices

Figure A.17: Labor productivity and wages

(a) Labor productivity (long run)
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(b) Labor productivity and wages
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Notes: Panel (a) plots annual labor productivity ratios (aggregate value of output divided by the number of employees) in Indian manufacturing
over the long run. Output is deflated at the 2-digit industry level using 2-digit industry deflators before aggregating over industries. From 1967 to
1997 the raw ASI data in pre-aggregated form is used (at industry state year aggregation). From 1998 the raw plant level ASI data is used and
aggregated with sampling multipliers. Panel (b) plots annual aggregate labor productivity ratios in the solid line (value of output divided by the
number of employees) and real average wages in the dashed line. Aggregate labor productivity is calculated by first aggregating the value of
output and the number of employees by plants, and then taking the ratio of the aggregates. Real average wages are calculated by first aggregating
the wage bill of plants and the number of employees, and then taking the ratio of the aggregates. Plant output is deflated using 3-digit industry
deflators before aggregating over industries. Wages are deflated using a state-wise deflator. All data points come from the raw plant level ASI
data (from 711166 observations including years before 1998) and aggregated with sampling multipliers.
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A.9 Electricity price and productivity graphs across states or sectors
Second, similar secular trends in energy productivity, electricity productivity and electricity prices can
be observed across most states (Figures A.18) and industries (Figures A.19).93 This suggests that the
observed aggregate trends are not a story of mere reallocation across industries or states.

Figure A.18: Energy productivity (per | ), electricity productivity (per kWh) and prices by state

(a) Energy productivity (per | ) by state
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(b) Electricity productivity (per kWh) and prices by state
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Notes: The figure shows sixteen of the largest states. Panel (a) plots the annual energy productivity ratios (value of output divided by the value
of fuel and electricity used). Output is deflated at the 2-digit industry level using 2-digit industry deflators before aggregating over industries.
Fuel and electricity use is deflated using a general fuel and electricity wholesale price deflator. The ratio of aggregate output to aggregate fuel and
electricity consumption is displayed. From 1967 to 1997 the raw ASI data in pre-aggregated form is used (at industry state year aggregation).
From 1998 the raw plant level ASI data is used and aggregated with sampling multipliers. Panel (b) plots the annual electricity productivity
ratios by states (value of output divided by the quantity of electricity used in kWh) on the left axis and real average electricity prices on the right
axis. Plant output is deflated using 3-digit industry deflators before aggregating over industries and calculating aggregate output to aggregate
electricity use (left axis). Real average electricity prices (right axis) are calculated by first aggregating the value of electricity bought by plants and
the quantity bought, and then taking the ratio of the aggregates. All data points come from the raw plant level ASI data and aggregated with
sampling multipliers.

93Except for perhaps electricity productivity in metals and minerals (see Panel (b) of Figure A.19).
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Figure A.19: Energy productivity (per | ), electricity productivity (per kWh) and prices by industry

(a) Energy productivity (per | ) by industry
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(b) Electricity productivity (per kWh) and prices by industry
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Notes: The figure shows six broad industries: chemicals includes rubber and plastics, machinery includes metal products, and textiles includes
leather. Panel (a) plots the annual energy productivity ratios by industry (value of output divided by the value of fuel and electricity used).
Output is deflated at the 2-digit industry level using 2-digit industry deflators before aggregating over industries. Fuel and electricity use is
deflated using a general fuel and electricity wholesale price deflator. The ratio of aggregate output to aggregate fuel and electricity consumption is
displayed. From 1967 to 1997 the raw ASI data in pre-aggregated form is used (at industry state year aggregation). From 1998 the raw plant level
ASI data is used and aggregated with sampling multipliers. Panel (b) plots the annual electricity productivity ratios by industry (value of output
divided by the quantity of electricity used in kWh) on the left axis and real average electricity prices on the right axis. Plant output is deflated
using 3-digit industry deflators before aggregating over industries and calculating aggregate output to aggregate electricity use (left axis). Real
average electricity prices (right axis) are calculated by first aggregating the value of electricity bought by plants and the quantity bought, and
then taking the ratio of the aggregates. All data points come from the raw plant level ASI data and aggregated with sampling multipliers.
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A.10 Variation in electricity and labor productivity, and electricity prices
Figure A.20 plots the densities of logged electricity productivity, logged labor productivity and electricity
prices for every year in the sample. The figure show the unconditional densities and the densities after
partialing out state by industry (4 digit) fixed effects. They show that there remains substantial variation
across plants even within these state by industry groups throughout the sample. Figure A.21 instead shows
the variation pooled across years, and applying the same industry-by-region-by-year fixed effects as in the
main analysis. It also shows the variation in electricity prices that is predicted by the two instruments.

To more formally show the substantial variation left across plants within industry, spatial or consump-
tion size clusters, I decompose variances following Davis et al. (2013). I calculate the annual variance as
V =

∑
e se (pe − p)2 , where se are electricity purchase weights multiplied by the sample multiplier, pe

are logged electricity productivity, logged labor productivity, or prices, and p the weighted average log
productivity or price. I decompose total variance into a within “group” component V W , and a component
across “groups” V G:

V =
∑

e se
(
pe − pg

)2
+
∑

g sg
(
pg − p

)2
= V W + V G

where sg =
∑

e∈g se and pg the weighted average of log productivity or price within group g. I calculate
the decomposition separately five times for five different groups, which are states, deciles of electricity
purchase quantity, 4-digit industries, industry by states, and industry by states by deciles. Figure A.22
plots the total variance V and the across-group variances V G to visualize the degree to which the groups
can explain the variance across plants. The Figure also plots the share of V G in V (V G/V ) in the right
panels where higher shares mean that the groups can explain more of the variation.

Figure A.22 shows that state-industry effects can only account for around 50% of the cross-sectional
variance in electricity productivity, around 40% of the variation in labor productivity, and 60% of the
variation in electricity prices.94 For electricity and labor productivity, there is more variation across
industries, while for electricity prices there is more variation across states. This is intuitive, as production
techniques tend to vary more across industries, while electricity price-setting varies more across geography
as explained in Section III.A. The variance in electricity prices has been decreasing from 1998 to 2013.
Figure A.23 plots quantiles of the distribution over time and shows a convergence in electricity prices
that accompanied the secular price decline. The deciles of plants’ electricity consumption cannot explain
much of the variance. This is in contrast to the findings for the US (Davis et al., 2013) and France (Marin
and Vona, 2021) and consistent with the observation in Section III.A that tariff schedules in India can be
increasing or decreasing in consumption.

In Figure A.24 (a), I use a Griliches and Regev (1995)-style decomposition of changes in electricity
productivity, using electricity quantity as the activity weight (adjusted by the sampling multiplier). For
each endpoint year t on the x-axis, outcomes are averaged within two adjacent 3-year windows, A = {t−
5, . . . , t−3} andB = {t−2, . . . , t}. The window-to-window decomposition is computed on plants observed
at least once in both windows (“continuers”), and, to address rotating-sample variability, continuers are
reweighted in each window via calibration so that their weighted electricity totals match the full-sample
totals in that window. Both within improvement and between-plant reallocation contribute to the aggregate
change. The gap between the black (full-sample aggregate) and dashed series reflects plants not linkable

94Variation across districts (not plotted) can explain around 22% and 45% of electricity productivity and electricity prices
respectively. Districts for the later years are not available for all observations.
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across both windows (sampling rotation and true entry/exit), which are not separately decomposed. As a
complementary approach that does not require plants to be observed in consecutive years, I also report a
within/between decomposition computed year-by-year, leveraging long-term averages within plants in
Figure A.24 (b). Let pit denote electricity productivity and let sit = Qit/

∑
j Qjt be the electricity-quantity

share (adjusted by sampling multipliers). Define each plant’s long-run component as an electricity-
weighted mean µi =

∑
tQitpit/

∑
tQit and deviations p̃it = pit −µi. Then the aggregate Pt =

∑
i sitpit can

be decomposed as Pt =
∑

i sitµi +
∑

i sitp̃it, so changes satisfy∆Pt = ∆(
∑

i sitµi) +∆(
∑

i sitp̃it). The first
term captures reallocation toward plants with higher permanent productivity, while the second captures
within-plant movements relative to each plant’s long-run level.

To study the persistence of electricity productivity, labor productivity and electricity prices within
plants, I follow the approach of Farinas and Ruano (2005). I plot the CDF of logged electricity productivity,
logged labor productivity and electricity prices for two separate years in Figure A.25, all conditional on
previous period values. That is, I divide the sample into four quartiles based on previous period values
and plot the four CDFs of the current period separately for these quartiles. As the CDF of the higher
quartiles are to the right of the lower quartiles for every value, they first order stochastically dominate the
distributions of plants ranked in lower previous period quartiles. Therefore, plants from a higher previous
quartile are more likely to belong to the higher quartile in the current period. This implies that electricity
productivity, labor productivity and electricity prices are all persistent. One important implication of this
persistence is that I use variation within and across plants for the analysis.
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Figure A.20: Heterogeneity in electricity and labor productivity, and electricity prices within years
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Notes: The figure plots the histograms of a plant level variable by year. The grey shaded areas are the observed histograms. The left kernel
density plot shows the distribution of the residuals after partialing out state by 4-digit industry by year fixed effects. Panel (a) plots electricity
productivity in logs, which is the value of output divided by the quantity of electricity used in kWh. Panel (b) plots logged labor productivity,
which is the value of output divided by the number of employees. Panel (c) plots logged electricity prices, which are the value of electricity
divided by the quantity of electricity used in kWh.
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Figure A.21: Heterogeneity in electricity and labor productivity, and electricity prices in pooled sample after FE

(a) Electricity productivity
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Notes: Panel (a) plots the histogram of plant level logged electricity productivity in the pooled sample. Electricity productivity ratios are the
value of output divided by the quantity of electricity used in kWh. The kernel density plot to the left shows the distribution of the residuals of
logged electricity productivity after partialing out by 4-digit industry-by-region-by-year fixed effects. Panel (b) and Panel (c) show the same plots
for labor productivity and electricity prices in 2003. Additionally Panel (c) plots the density in electricity prices predicted by IV A and IV B .
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Figure A.22: Variance decompositions of electricity and labor productivities and electricity prices

(a) Electricity productivity variance decomposition
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(b) Electricity productivity variance decomposition
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(c) Labor productivity variance decomposition
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(d) Labor productivity variance decomposition

0
.1

.2
.3

.4
.5

.6
.7

.8
Sh

ar
e 

of
 e

xp
la

in
ed

 v
ar

ia
nc

e

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

% Ind-State-Decile % Ind-State % Industry (4-dig)
% Decile % State

(e) Electricity price variance decomposition
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(f) Electricity price variance decomposition
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Notes: The left Panels (a), (c) and (e) plot the annual total variance of logged electricity productivity, logged labor productivity and logged
electricity prices respectively, and the variance explained by specified groups as described in the text. The right Panels (b), (d) and (f) plot the
share of the variance explained by each group. Groups are deciles of electricity purchase quantity, 4-digit industries, states, and combinations
thereof.
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Figure A.23: Convergence in electricity prices
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Notes: The figure plots the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentile of real annual plant level electricity prices.

Figure A.24: Decomposing Aggregate Electricity Productivity

(a) Griliches-Regev Decomposition
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(b)Within-Between Decomposition
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Notes: Panel (a) shows a Griliches-Regev decomposition of changes in aggregate electricity productivity intowithin-plant improve-
ments and between-plant reallocation effects, using 3-year windows as described in the text. Panel (b) shows a within/between
decomposition of annual changes in aggregate electricity productivity, as described above in the Appendix text.
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Figure A.25: Conditional CDFs of productivities and electricity prices

(a) Electricity productivity 2003 (CDF)
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(b) Electricity productivity 2013 (CDF)
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(c) Labor productivity 2003 (CDF)
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(d) Labor productivity 2013 (CDF)
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(f) Electricity prices 2013 (CDF)
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Notes: The Panels (a), (c) and (e) plot the CDFs in 2003 separately for each quartile of the respective values in 2002, for logged electricity
productivity, logged labor productivity, and electricity prices respectively. The Panels (b), (d) and (f) plot the same graphs for the CDFs in 2013
separately for each quartile of the respective values in 2012.The CDFs are empirical CDFs obtained through a Gaussian kernel smoother with
bandwidth 0.1. The graphs show that each higher quartile first order stochastically dominates the lower quartiles. The conditional CDFs for other
years look similar.
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A.11 Maps of power plants and coal reservoirs
Figure A.26 visualizes the location and growth of coal fired power plants near coalfields in maps using
geo-located data on Indian coalfields and power plant characteristics. In 2013, a one percent increase in the
distance of a district to the nearest coalfield is associated with a 2 MW lower coal power capacity. This is
from a regression of installed coal capacity on logged distance to the nearest coalfield, all at the district
level in 2013 with 594 Indian districts. The coefficient is −191.4 with a robust t-statistic of 3.8 and R2 of
0.066.

Apart from demonstrating that coal plants are built near coalfields, the maps also show that hydro
plants are near rivers especially in the mountainous region (mainly North-West), nuclear plants are
typically built near the sea or rivers, and gas plants are built near ports and the major gas pipelines (e.g. in
the North-East). Thermal plants accounted for 74% in 1998 and 68% in 2013, with the remainder produced
by hydro (25% in 1998, 18% in 2013) and renewables (1% in 1998, 12% in 2013) (Ministry of Power, 1998a;
Planning Commission, 2014). Of the thermal generation, the vast majority is made up of coal-based
generation (around 85% throughout).
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Figure A.26: Maps of coalfields and power plants by year

Coalfields

Power plants in 2013

Power plants in 1998

Power plants 2018 and under construction

Notes: The maps plot the coalfields (time invariant) and the stock of power plants in the corresponding years. The size of the
markers corresponds to installed capacity. Data sources are described in Section III.B.
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A.12 The Electricity Act and entry of private power plants near coalfields
This section provides further details on the ownership dynamics of Indian electricity generation, and
the impact of the Electricity Act of 2003 on private ownership and electricity prices. In 1998, state and
central government owned 65% and 30% of installed capacity respectively, with the remaining 5% owned
privately (Ministry of Power, 1998a; Planning Commission, 2001-2002). The Electricity Act of 2003 aimed
to open this heavily regulated sector to more competition,95 which led to more privately owned power
plants entering. By 2013, the share of privately owned capacity rose to 31%, cutting mostly into the share
of state-owned capacity (40%), while the centrally owned share remained at 29% (Planning Commission,
2014).96 In February 2019, the share of the private sector (46%) was almost equal to the share of the
combined government owned capacity (Central Electricity Authority, 2019).

The opening up of the power market after the Electricity Act of 2003 appears to have contributed to
lower electricity prices. I examine the relationship between the median of the district level industrial
electricity price and the share of installed coal fired capacity that is privately owned within a district. Table
A.4 shows that the share of privately owned plants is significantly negatively associated with median
electricity prices – but only after 2003.97 A ten percentage point increase in the share of privately owned
plants decreases median electricity prices by 0.24%. I use the timing of the Electricity Act to construct an
instrument for prices for a robustness check of the analysis. Since the location choice of additional privately
owned generating capacity is likely endogenous, I instead use the distance of districts to coalfields, which
predicts the location of additional generating capacity (see Map A.26). Indeed, as Columns 4-6 of Table
A.4 show, the share of private thermal capacity is predicted by the distance to coalfields.

Therefore, I construct a Bartik instrument (IV D1) based on the time-invariant distances to coalfields
combined with the timing of the Electricity Act in 2003 to instrument for electricity prices as robustness
check for the main analysis. I refine the instrument by using a triple interaction with a dummy that is one
if a state has ever any coal fired generation power. This helps to increase power as states in the North-West
near the Himalayas, for example, are heavily reliant on hydro power so distance to coalfields matters less
and introduces noise. Columns 7-9 show that a 100 km decrease in the distance to the closest coalfield
decreases electricity prices by 0.8%. Figure A.27 shows an event study version using the plant level data
directly instead of district level median prices. From 2003, plants that are further away from coalfields
experience a relative increase in electricity prices compared to those that are closer to coalfields.

95The preamble states “An Act to consolidate the laws relating to generation [...] of electricity [...], promoting competition
therein [...].”.

96From 1998 to 2013, total installed capacity rose by 143%.
97This holds conditional on district and year fixed effects, and conditional on district and region by year fixed effects. I also

control for time-varying total district level installed capacity.
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Table A.4: Electricity prices, privately owned share in district installed capacity, and coalfields

Electricity price (log) Share private capacity Electricity price (log)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Share private capacity -0.0092 -0.0066 -0.0022
(0.015) (0.018) (0.014)

Share private capacity
x after 2003

-0.024** -0.024** -0.022***
(0.012) (0.012) (0.0025)

Distance to coalfield (’00 km)
x after 2003 x state w. coal power

-0.019*** -0.014** -0.016** 0.079*** 0.079*** 0.075***
(0.0071) (0.0067) (0.0073) (0.018) (0.018) (0.017)

N 7991 7991 7991 7991 7991 7991 7991 7991 7991
Total capacity No Yes Yes No Yes Yes No Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Region-year FE No No Yes No No Yes No No Yes

Notes: The table shows estimates from OLS regressions at the district-year level with the log median electricity price within a
district as dependent variable in the first three columns and last three columns. The dependent variable in Columns 4-6 is the
share of privately owned capacity in district level installed capacity and includes joint private/state and private/central ownership
categories. The Indian Electricity Act was introduced in 2003 and the variable after 2003 indicates a dummy that is one from 2003.
The distance to coalfields at the district level is in hundreds of km. The variable state w. coal power is a dummy that takes one if a
state has ever had any coal power throughout the sample. The total capacity covariate controls for total installed capacity of any
type and fuel at the district year level. District fixed effects absorb the distance to coalfields in levels. Regressions are weighted by
the sampling multipliers and by the number of plants within a district-year cluster. Standard errors in parentheses are clustered
two-way at the district and state by year level. Stars indicate p-values: * < 0.1, **< 0.05, ***< 0.01.

Figure A.27: Event study of impact of 2003 Electricity Act and distance to coalfields on electricity prices
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Notes: The figure plots the coefficient on a triple interaction between district centroid distance to coalfields (in 100 km), year
dummies, and a dummy that is one if there has ever been any coal fired power generation in a state. The regression is based on
the plant level data as in the main paper with log electricity prices as dependent variable. All lower order interaction terms are
included as well as industry by year by region fixed effects and district fixed effects. 95% confidence bands are based on standard
errors that are two-way clustered at the plant and state by year level.
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A.13 Coal price for power utilities and industry, and coal share in installed
capacity

Figure A.28: Coal price for power utilities versus coal price for industry
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Notes: The solid line plots the coal price for thermal power plants and are from Minsitry of Coal (2012, 2015) as described in
Section III.B. Prices for coal used in manufacturing industries are plotted with the dashed line. These are averages of the coal
prices at the plant level in the ASI micro data (see Section III.B). All coal prices are in real terms and deflated using a general fuel
and electricity wholesale price deflator. In nominal terms, coal prices have been mostly increasing.
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Figure A.29: Share of coal power in total installed capacity

Notes: The shading indicates the share of coal fired thermal power generation capacity in total installed capacity at the state level
in March 1998. Data comes from Ministry of Power (1998a, 2003).

Table A.5: Correlation of coal power shares with other predetermined variables

Share Share Share Labor pro- Capital labor Share mana- Fuel share Wage share
rural domestic power power ductivity (log) ratio (log) gerial wages in output in output
(1) (2) (3) (4) (5) (6) (7) (8)

Coal power share 0.0216 0.181 -0.156 0.370 0.143 -0.0368 0.0183 -0.0141
(0.129) (0.158) (0.153) (0.300) (0.318) (0.035) (0.024) (0.022)

Observations 31 31 31 31 31 28 26 26

Notes: The table shows state level regressions of the indicated outcome on the pre-sample coal power shares in generating capacity that is used in
the construction of IV B . Each column represents a separate regression controlling for region fixed effects as in the main analysis. The outcomes
in Columns 1-3 come from the 91 Population Census from SHRUG. Share rural is the rural share in population. Share domestic power is the
share of villages that have electricity for domestic use. Share power is the share of villages that have electricity for any use. The outcomes in
Columns 4-5 are based on the 1998 version of the ASI microdata. Labor productivity is sales divided by number of employees. Capital labor ratio
is total book value of capital divided by number of employees. The outcome in Column 6 is based on the 1996 version of the ASI microdata, and
share managerial wages is the share of wages going to supervisors and managers in total wages. The outcomes in Columns 7-8 are based on the
aggregate ASI data in 1997. Fuel share in output is total spending on fuel as share of output. Wage share in output is total emoluments as share of
output. Robust standard errors are in parentheses.
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Table A.6: Electricity prices and electricity productivity: controlling for interacted presample shares for IV B

IV B

(1) (2) (3) (4) (5) (6) (7) (8)

log(PE)
-0.796*** -0.539*** -0.559*** -0.781*** -0.819*** -0.562*** -0.384*** -0.931***
(0.118) (0.096) (0.092) (0.105) (0.101) (0.114) (0.105) (0.156)

Share rural X CP -0.0149*
(0.009)

Share domestic power X CP -0.0317***
(0.006)

Share power X CP 0.0281***
(0.006)

log(Labor productivity) X CP -0.0129**
(0.005)

log(Capital labor ratio) X CP -0.0267***
(0.005)

Share managerial wages X CP 0.153***
(0.039)

Fuel share in output X CP -0.609***
(0.051)

Wage share in output X CP 0.403***
(0.099)

OLS/IV IV B IV B IV B IV B IV B IV B IV B IV B

Observations 481164 481164 481164 485115 485115 462049 455584 455584
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. 0.06*** 0.06*** 0.07*** 0.06*** 0.06*** 0.07*** 0.06*** 0.05***
First stage SE 0.004 0.003 0.003 0.003 0.003 0.005 0.004 0.004
F-stat (Kleib.-Paap) 244.509 359.692 399.509 327.169 283.964 214.346 228.501 145.095
Two-way clustered SE Yes Yes Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. The main difference is that each regression contains a control variable that is a pre-sample state level
variable interacted with the log coal price (CP) used in construction of IV B . See Table A.5 for explanation of interacted control
variables.
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A.14 Additional regression results and robustness checks

Figure A.30: Binscatter of labor productivity and electricity prices

(a) Electricity prices from ASI
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(b) Electricity prices from government
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(c) Electricity prices from IV A
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(d) Electricity prices from IV B
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Notes: The figures show binscatter plots using Cattaneo et al. (2024) with plant level labor productivity (log) on the vertical axis and with
industry-by-region-by-year fixed effects. Panel (a) plots against log electricity prices at the plant level using ASI data. Panel (b) instead plots
against utility tariffs at the state by year level from Central Electricity Authority (2006-2015) and Indiastat (1998-2014). Panel (c) and (d) plot
against predicted electricity prices from IV A and IV B respectively, where predicted electricity prices are obtained by using fitted values from
regressions on the respective instruments conditional on industry-by-region-by-year fixed effects. Results using electricity productivity are in
Figure 5.

Table A.7: Using published average electricity tariff data instead of ASI derived plant level prices

Electricity productivity (log) Labor productivity (log)
(1) (2) (3) (4) (5) (6)

log(PE)
-0.203*** -0.273*** -0.772*** -0.212*** -0.411*** -1.047***
(0.045) (0.072) (0.100) (0.056) (0.091) (0.117)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 478910 478910 478910 478910 478910 478910
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.93*** 0.06*** - 0.93*** 0.06***
First stage SE - 0.037 0.004 - 0.037 0.004
F-stat (Kleib.-Paap) - 649.603 263.237 - 649.603 263.237
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. The main difference is that the manually collected utility tariffs are used for the endogenous electricity price variable
instead of ASI-derived prices. The utility tariffs are at the state by year level and averaged across industrial consumer bands, taken from Central
Electricity Authority (2006-2015) and Indiastat (1998-2014). Reassuringly, even using OLS with this average tariff measure already removes a lot
of the plant-level OLS bias present in the OLS estimates in main Table 2. The IV estimates between this table and the main Table 2 are statistically
indistinguishable.
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Table A.8: Similar estimates with three alternative instruments IV C , IV D1 and IV D2

Electricity productivity (log) Labor productivity (log)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(PE)
0.37*** -0.27*** -0.50 -0.57** -0.26 -0.028 -0.42*** -0.83** -0.95*** 0.27
(0.044) (0.071) (0.32) (0.27) (0.18) (0.043) (0.087) (0.35) (0.25) (0.19)

OLS/IV OLS IV C IV D1 IV D1 IV D2 OLS IV C IV D1 IV D1 IV D2

Observations 485342 444428 444428 444424 485342 485342 444428 444428 444424 485342
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FE No No No Yes No No No No Yes No
Lower interactions - - Yes Yes - - - Yes Yes -
First stage coef. - 0.97*** 0.07*** 0.07*** 0.12*** - 0.97*** 0.07*** 0.07*** 0.12***
First stage SE - 0.005 0.017 0.011 0.014 - 0.005 0.017 0.011 0.014
F-stat (Kleib.-Paap) - 37768.975 17.023 43.819 70.403 - 37768.975 17.023 43.819 70.403
Two-way clustered SE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. The main difference in this table is the use of alternative instruments, IV C , IV D1 , and IV D2 .
Columns 3-4 and 8-9 also control for the lower order interactions between distance to coalfields, post 2003 Electricity Act, and
a dummy if the state has ever coal power, as IV D1 is based on the triple interaction between these variables (see also Section
A.12). Columns 2-4 and 7-9 contain fewer observations due to some constraints in matching the ASI data versions with panel
information and district information after 2009 for plants that do not appear before 2009.

Table A.9: Lagged electricity prices and electricity productivity

Electricity productivity (log)
(1) (2) (3) (4) (5) (6)

log(PE)
0.295*** -0.273*** -0.735***
(0.049) (0.062) (0.087)

Lagged log(PE)
0.0184 -0.275*** -0.727***
(0.042) (0.060) (0.086)

OLS/IV OLS IV A IV B OLS IV A(lag) IV B(lag)
Observations 225576 225576 225576 225576 225576 225576
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.98*** 0.06*** - 0.98*** 0.07***
First stage SE - 0.005 0.003 - 0.005 0.003
F-stat (Kleib.-Paap) - 46326.167 421.154 - 39799.891 405.397
SE clustered by Plant Plant Plant Plant Plant Plant
No. of first clusters 67789 67789 67789 67789 67789 67789
SE clustered by State-year State-year State-year State-year State-year State-year
No. of second clusters 469 469 469 469 469 469

Notes: See Table 2 for notes. The main difference is that the first three columns restrict the sample to the same observations as in the last three
columns, where lagged logged electricity prices (and lagged instruments) are used.

Table A.10: Lagged electricity prices and labor productivity

Labor productivity (log)
(1) (2) (3) (4) (5) (6)

log(PE)
-0.0412 -0.255*** -0.484***
(0.045) (0.083) (0.101)

Lagged log(PE)
-0.0478 -0.251*** -0.478***
(0.045) (0.083) (0.100)

OLS/IV OLS IV A IV B OLS IV A(lag) IV B(lag)
Observations 225576 225576 225576 225576 225576 225576
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.98*** 0.06*** - 0.98*** 0.07***
First stage SE - 0.005 0.003 - 0.005 0.003
F-stat (Kleib.-Paap) - 46326.167 421.154 - 39799.891 405.397
SE clustered by Plant Plant Plant Plant Plant Plant
No. of first clusters 67789 67789 67789 67789 67789 67789
SE clustered by State-year State-year State-year State-year State-year State-year
No. of second clusters 469 469 469 469 469 469

Notes: See Table 2 for notes. The main difference is that the first three columns restrict the sample to the same observations as in the last three
columns, where lagged logged electricity prices (and lagged instruments) are used.
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Table A.11: Electricity prices and electricity productivity: controlling for distance to coalfields and shortages

OLS IV A IV B

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
0.343*** 0.472*** 0.459*** -0.256*** -0.131 -0.121 -0.828*** -0.940*** -0.980***
(0.045) (0.043) (0.044) (0.071) (0.085) (0.088) (0.102) (0.149) (0.148)

Distance to coalfield
(in ’00 km)

-0.0179** -0.0190*** -0.0138* -0.0176** -0.00996 -0.0154*
(0.007) (0.007) (0.007) (0.007) (0.008) (0.008)

Shortage 0.398* 0.284 0.646*** 0.517*** 0.979*** 0.862***
(0.226) (0.239) (0.187) (0.192) (0.198) (0.201)

OLS/IV OLS OLS OLS IV A IV A IV A IV B IV B IV B

Observations 444428 473433 432748 444428 473433 432748 444428 473433 432748
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. - - - 0.98*** 0.97*** 0.98*** 0.06*** 0.05*** 0.05***
First stage SE - - - 0.005 0.006 0.006 0.003 0.004 0.004
F-stat (Kleib.-Paap) - - - 41074.924 25423.121 26129.044 307.814 173.595 176.737
Two-way clustered SE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. The main difference is that control variables are added as indicated.

Table A.12: Electricity prices and labor productivity: controlling for distance to coalfields and shortages

OLS IV A IV B

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
-0.0630 0.0866** 0.0629 -0.466*** -0.151 -0.213** -1.043*** -1.089*** -1.012***
(0.044) (0.042) (0.042) (0.084) (0.103) (0.100) (0.097) (0.159) (0.144)

Distance to coalfield
(in ’00 km)

0.0362*** 0.0399*** 0.0389*** 0.0406*** 0.0428*** 0.0426***
(0.007) (0.007) (0.008) (0.008) (0.008) (0.009)

Shortage -0.415* -0.562*** -0.318 -0.451** 0.0679 -0.130
(0.229) (0.216) (0.219) (0.198) (0.279) (0.237)

OLS/IV OLS OLS OLS IV A IV A IV A IV B IV B IV B

Observations 444428 473433 432748 444428 473433 432748 444428 473433 432748
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. - - - 0.98*** 0.97*** 0.98*** 0.06*** 0.05*** 0.05***
First stage SE - - - 0.005 0.006 0.006 0.003 0.004 0.004
F-stat (Kleib.-Paap) - - - 41074.924 25423.121 26129.044 307.814 173.595 176.737
Two-way clustered SE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. The main difference is that control variables are added as indicated.

Table A.13: Electricity prices and electricity productivity using only purchased electricity

Electricity productivity (log)
(1) (2) (3)

log(PE)
0.434*** -0.157** -0.731***
(0.046) (0.076) (0.110)

OLS/IV OLS IV A IV B

Observations 485342 485342 485342
Ind-region-year FE Yes Yes Yes
First stage coef. - 0.97*** 0.06***
First stage SE - 0.005 0.003
F-stat (Kleib.-Paap) - 43194.635 296.507
Two-way clustered SE Yes Yes Yes

Notes: See Table 2 for notes. The main difference is that the dependent variable is constructed using only electricity purchased
instead of electricity consumed.
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Table A.14: Electricity prices and electricity and labor productivity in electricity intensive sectors

Electricity productivity (log) Labor productivity (log)
(1) (2) (3) (4) (5) (6)

log(PE)
0.323*** -0.210*** -0.585*** -0.168*** -0.545*** -1.049***
(0.047) (0.074) (0.102) (0.047) (0.085) (0.103)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 260571 260571 260571 260571 260571 260571
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.97*** 0.06*** - 0.97*** 0.06***
First stage SE - 0.005 0.004 - 0.005 0.004
F-stat (Kleib.-Paap) - 32799.401 324.537 - 32799.401 324.537
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. The main difference is that the sample is restricted to electricity intensive sectors only.

Table A.15: Electricity prices and electricity and labor productivity in plants that do not use coal

Electricity productivity (log) Labor productivity (log)
(1) (2) (3) (4) (5) (6)

log(PE)
0.372*** -0.244*** -0.840*** -0.0518 -0.407*** -1.086***
(0.047) (0.072) (0.107) (0.045) (0.087) (0.104)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 435681 435681 435681 435681 435681 435681
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.97*** 0.06*** - 0.97*** 0.06***
First stage SE - 0.005 0.003 - 0.005 0.003
F-stat (Kleib.-Paap) - 44590.885 295.125 - 44590.885 295.125
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. The main difference is that the sample is restricted to manufacturing plants that do not use coal
directly.
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Table A.16: Electricity prices and electricity productivity by industry groups

(a) Electricity prices and electricity productivity (Chemicals, food, machinery))

Chemicals Food Machinery
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
0.139** -0.426*** -0.762*** 0.608*** 0.108 -1.636*** 0.215*** -0.640*** -1.300***
(0.064) (0.086) (0.104) (0.073) (0.168) (0.447) (0.066) (0.093) (0.137)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 76574 76574 76574 92467 92467 92467 91156 91156 91156
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. - 0.98*** 0.08*** - 0.90*** 0.04*** - 1.01*** 0.07***
First stage SE - 0.007 0.003 - 0.014 0.003 - 0.006 0.004
F-stat (Kleib.-Paap) - 17808.538 528.030 - 3940.605 105.141 - 24275.472 341.090
SE clustered by Plant Plant Plant Plant Plant Plant Plant Plant Plant
No. of first clusters 27000 27000 27000 31608 31608 31608 29361 29361 29361
SE clustered by State-year State-year State-year State-year State-year State-year State-year State-year State-year
No. of second clusters 472 472 472 500 500 500 440 440 440

(b) Electricity prices and electricity productivity (Metals and minerals, textiles, wood and paper)

Metals and minerals Textiles Wood and Paper
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
0.486*** 0.108 0.283 0.403*** -0.138 -1.013*** 0.357*** -0.224** -0.695***
(0.053) (0.104) (0.197) (0.076) (0.158) (0.266) (0.066) (0.096) (0.137)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 102815 102815 102815 68878 68878 68878 38786 38786 38786
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. - 0.96*** 0.05*** - 0.99*** 0.07*** - 0.98*** 0.06***
First stage SE - 0.009 0.004 - 0.013 0.005 - 0.009 0.004
F-stat (Kleib.-Paap) - 10644.302 175.524 - 5408.459 196.045 - 12000.421 261.732
SE clustered by Plant Plant Plant Plant Plant Plant Plant Plant Plant
No. of first clusters 39326 39326 39326 21780 21780 21780 14084 14084 14084
SE clustered by State-year State-year State-year State-year State-year State-year State-year State-year State-year
No. of second clusters 486 486 486 438 438 438 499 499 499

Notes: See Table 2 for notes. The main difference is that regressions are run individually by industry groups.
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Table A.17: Electricity prices and labor productivity by industry groups

(a) Electricity prices and labor productivity (Chemicals, food, machinery))

Chemicals Food Machinery
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
-0.286*** -0.680*** -1.141*** 0.454*** 0.650*** -1.461*** -0.134** -0.673*** -1.235***
(0.053) (0.074) (0.100) (0.074) (0.198) (0.354) (0.059) (0.101) (0.124)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 76574 76574 76574 92467 92467 92467 91156 91156 91156
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. - 0.98*** 0.08*** - 0.90*** 0.04*** - 1.01*** 0.07***
First stage SE - 0.007 0.003 - 0.014 0.003 - 0.006 0.004
F-stat (Kleib.-Paap) - 17808.538 528.030 - 3940.605 105.141 - 24275.472 341.090
SE clustered by Plant Plant Plant Plant Plant Plant Plant Plant Plant
No. of first clusters 27000 27000 27000 31608 31608 31608 29361 29361 29361
SE clustered by State-year State-year State-year State-year State-year State-year State-year State-year State-year
No. of second clusters 472 472 472 500 500 500 440 440 440

(b) Electricity prices and labor productivity (Metals and minerals, textiles, wood and paper)

Metals and minerals Textiles Wood and Paper
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
-0.142*** -0.443*** -1.480*** -0.106 -0.543** 0.00768 0.174*** -0.0804 -0.645***
(0.052) (0.109) (0.167) (0.100) (0.229) (0.398) (0.060) (0.101) (0.146)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 102815 102815 102815 68878 68878 68878 38786 38786 38786
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. - 0.96*** 0.05*** - 0.99*** 0.07*** - 0.98*** 0.06***
First stage SE - 0.009 0.004 - 0.013 0.005 - 0.009 0.004
F-stat (Kleib.-Paap) - 10644.302 175.524 - 5408.459 196.045 - 12000.421 261.732
SE clustered by Plant Plant Plant Plant Plant Plant Plant Plant Plant
No. of first clusters 39326 39326 39326 21780 21780 21780 14084 14084 14084
SE clustered by State-year State-year State-year State-year State-year State-year State-year State-year State-year
No. of second clusters 486 486 486 438 438 438 499 499 499

Notes: See Table 2 for notes. The main difference is that regressions are run individually by industry groups.

Table A.18: Electricity prices and electricity productivity in high price periods

Electricity productivity (log) Labor productivity (log)
(1) (2) (3) (4) (5) (6)

log(PE)
0.471*** 0.00766 -0.737*** -0.0670 -0.430*** -1.066***
(0.061) (0.094) (0.168) (0.057) (0.105) (0.149)

log(PE) · 1(year < 2006)
-0.217** -0.531*** -0.0874 0.0796 0.0884 0.00701
(0.084) (0.128) (0.193) (0.086) (0.170) (0.197)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 485342 485342 485342 485342 485342 485342
Ind by region by year FE Yes Yes Yes Yes Yes Yes
First stage coef. 1/1 - 0.96*** 0.06*** - 0.96*** 0.06***
First stage SE 1/1 - 0.006 0.005 - 0.006 0.005
First stage coef. 1/2 - 0.03*** 0.01 - 0.03*** 0.01
First stage SE 1/2 - 0.009 0.007 - 0.009 0.007
First stage coef. 2/1 - -0.00 0.00 - -0.00 0.00
First stage SE 2/1 - 0.000 0.000 - 0.000 0.000
First stage coef. 2/2 - 0.99*** 0.06*** - 0.99*** 0.06***
First stage SE 2/2 - 0.007 0.005 - 0.007 0.005
F-stat (Kleibergen-Paap) - 11025.104 68.072 - 11025.104 68.072
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. Themain difference is that the independent variables are the logged electricity price and an interaction
with a dummy that is one for all years before 2006. Instruments are interacted in the same way. The first stage statistics refer to
variable 1 and corresponding instrument 1 etc. Note that mainly the corresponding instruments shift the variables (i.e. 1/1 and
2/2).
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Table A.19: Electricity prices and electricity productivity: using both IVs

Electricity productivity (log) Labor productivity (log)
OLS IVA & IV B IV C & IV B OLS IVA & IV B IV C & IV B

(1) (2) (3) (4) (5) (6)

log(PE)
0.365*** -0.256*** -0.288*** -0.0282 -0.410*** -0.448***
(0.044) (0.068) (0.069) (0.043) (0.083) (0.085)

IV 1 - IV A IV C - IV A IV C

IV 2 - IV B IV B - IV B IV B

Observations 485342 485342 444428 485342 485342 444428
Ind by region by year FE Yes Yes Yes Yes Yes Yes
State FE No No No No No No
Plant FE No No No No No No
State trends No No No No No No
State by year FE No No No No No No
First stage coef. 1/1 - 0.94*** 0.94*** - 0.94*** 0.94***
First stage SE 1/1 - 0.007 0.008 - 0.007 0.008
First stage coef. 1/2 - 0.00*** 0.00*** - 0.00*** 0.00***
First stage SE 1/2 - 0.001 0.001 - 0.001 0.001
F-stat (Kleibergen-Paap) - 23377.854 20445.636 - 23377.854 20445.636
Anderson-Rubin F - 0.000 0.000 - 0.000 0.000
J-statistic - 26.10 28.70 - 39.97 37.98
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. The main difference is that both instruments are used simultaneously. The Sargan-Hansen J statistic
is reported. The difference in the instrument is consistent with heterogeneous LATEs.

Table A.20: Electricity prices and productivity (TFP): alternative methodologies

log(TFP) OP log(TFP) LP log(TFP) ACF
OLS IV A IV B OLS IV A IV B OLS IV A IV B

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
-0.00735*** -0.0273*** -0.0387*** -0.000566 -0.0168*** -0.0321*** -0.00414** -0.00761*** -0.0233***
(0.002) (0.004) (0.005) (0.002) (0.004) (0.007) (0.002) (0.003) (0.006)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 378824 378824 378824 477697 477697 477697 477697 477697 477697
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
First stage coef. - 0.98*** 0.06*** - 0.97*** 0.06*** - 0.97*** 0.06***
First stage SE - 0.004 0.003 - 0.005 0.003 - 0.005 0.003
F-stat (Kleib.-Paap) - 51023.623 390.549 - 44391.045 297.573 - 44391.045 297.573
Two-way clustered SE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. Different methods to recover TFP are used, and TFP used as dependent variable. OP refers to Olley
and Pakes (1996), LP refers to Levinsohn and Petrin (2003) and ACF refers to Ackerberg, Caves and Frazer (2015).

Table A.21: Electricity prices and electricity productivity: clustering at district and region year

Electricity productivity (log) Labor productivity (log)
(1) (2) (3) (4) (5) (6)

log(PE)
0.340*** -0.265* -0.819*** -0.0563 -0.441* -1.084***
(0.117) (0.154) (0.218) (0.126) (0.242) (0.229)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 444428 444428 444428 444428 444428 444428
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.98*** 0.06*** - 0.98*** 0.06***
First stage SE - 0.018 0.010 - 0.018 0.010
F-stat (Kleib.-Paap) - 3059.943 38.841 - 3059.943 38.841
SE clustered by District District District District District District
No. of first clusters 541 541 541 541 541 541
SE clustered by Region-year Region-year Region-year Region-year Region-year Region-year
No. of second clusters 96 96 96 96 96 96

Notes: See Table 2 for notes. The main difference is that the standard errors are clustered at a higher level, at the district level and
the region-year level.
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Table A.22: Controlling for product and input mix specific input and output price indices

Electricity productivity (log) Labor productivity
OLS IV A IV B OLS IV A IV B

(1) (2) (3) (4) (5) (6)

log(PE)
0.400*** -0.132* -0.737*** -0.0569 -0.405*** -1.072***
(0.047) (0.070) (0.114) (0.046) (0.086) (0.110)

Output price index (log) 0.0263*** 0.0263*** 0.0264*** 0.0312*** 0.0312*** 0.0313***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Input price index (log) -0.0121*** -0.0119*** -0.0117*** 0.0144*** 0.0145*** 0.0148***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 425458 425458 425458 425458 425458 425458
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.97*** 0.06*** - 0.97*** 0.06***
First stage SE - 0.005 0.004 - 0.005 0.004
F-stat (Kleib.-Paap) - 41171.284 249.307 - 41171.284 249.307
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: Dependent variables are indicated at the top. Additional control variables are included compared to Table 2 as indicated.
The output price index is constructed at the plant by year level by assigning to each produced product the national median
product level price from the ASI data, and then aggregating across products produced within each plant using sales shares. The
input price index is constructed at the plant by year level by assigning to each input product the national median input level price
from the ASI data, and then aggregating across inputs used within a plant using expenditure shares. See Table 2 for additional
notes.

Table A.23: Electricity prices, product scope, and electric machinery equipment

Number of products (log) Share electric equipment
OLS IV A IV B OLS IV A IV B

(1) (2) (3) (4) (5) (6)

log(PE)
0.0455*** -0.00295 -0.0968*** -0.00283*** -0.00717*** -0.0143***
(0.012) (0.023) (0.036) (0.001) (0.002) (0.002)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 484482 484482 484482 485338 485338 485338
Ind-region-year FE Yes Yes Yes Yes Yes Yes
First stage coef. - 0.97*** 0.06*** - 0.97*** 0.06***
First stage SE - 0.005 0.003 - 0.005 0.003
F-stat (Kleib.-Paap) - 43049.885 296.748 - 35167.892 340.075
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. Dependent variables are different as indicated.

Table A.24: FDI liberalized industries in 2006

Manufacture of rubber tyres and tubes n.e.c.
Manufacture of essential oils; modification by chemical processes of oils and fats (e.g. by oxidation, polymerization etc.)
Manufacture of various other chemical products
Manufacture of rubber tyres and tubes for cycles and cycle-rickshaws
Manufacture of distilled, potable, alcoholic beverages such as whisky, brandy, gin, ’mixed drinks’ etc.
Coffee curing, roasting, grinding blending etc. and manufacturing of coffee products
Retreading of tyres; replacing or rebuilding of tread on used pneumatic tyres
Manufacture of chemical elements and compounds doped for use in electronics
Manufacture of country liquor
Manufacture of matches
Manufacture of rubber plates, sheets, strips, rods, tubes, pipes, hoses and profile -shapes etc.
Distilling, rectifying and blending of spirits
Manufacture of bidi
Manufacture of catechu(katha) and chewing lime
Stemming and redrying of tobacco
Manufacture of other rubber products n.e.c.
Manufacture of rubber contraceptives
Manufacture of other tobacco products including chewing tobacco n.e.c.
Manufacture of pan masala and related products.

Notes: The table lists the industries that were liberalized for FDI in 2006.
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Table A.25: Electricity prices and high baseline machinery to labor ratio

Electricity productivity (log) Output (log)
OLS IV A IV B OLS IV A IV B

(1) (2) (3) (4) (5) (6)

log(PE)
0.231*** -0.362*** -1.014*** 0.142** -0.203* -0.429**
(0.053) (0.065) (0.118) (0.071) (0.121) (0.174)

log(PE)× abovemed
0.117*** 0.155*** 0.569*** 0.0475 0.191*** 0.973***
(0.036) (0.044) (0.124) (0.063) (0.071) (0.185)

OLS/IV OLS IV A IV B OLS IV A IV B

Observations 217773 217773 217773 217773 217773 217773
Ind-region-year FE Yes Yes Yes Yes Yes Yes
F-stat (Kleib.-Paap) - 24458.057 49.961 - 24458.057 49.961
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. This table contains the interactions with an indicator of whether the plant was above the median in
the machinery capital to labor ratio in the previous period (“abovemed”). Since spells of data are required, the sample size is
lower. The interactions with treated industries are appropriately instrumented with interactions with IV A and IV B as indicated.
The baseline variable “abovemed” is included but not reported.

Table A.26: Electricity prices and FDI-liberalized industries

Electricity productivity (log) Labor productivity (log) Output (log)
OLS IV A OLS IV A OLS IV A

(1) (2) (3) (4) (5) (6)

log(PE)
0.278*** -0.504*** -0.0213 -0.528*** 0.0236 -1.293***
(0.060) (0.087) (0.065) (0.144) (0.106) (0.439)

log(PE)× treated
-0.273** -0.686** 0.391*** 0.220 1.059*** 0.570
(0.123) (0.269) (0.113) (0.206) (0.181) (0.353)

log(PE)× post
0.180** 0.477*** -0.0672 0.0193 -0.285* -0.299
(0.083) (0.123) (0.084) (0.179) (0.145) (0.590)

log(PE) ×
treated× post

0.448** 1.052*** -0.121 -0.484* 0.192 0.233
(0.203) (0.382) (0.172) (0.281) (0.216) (0.619)

OLS/IV OLS IV A OLS IV A OLS IV A

Observations 485342 485342 485342 485342 485342 485342
Ind-region-year FE Yes Yes Yes Yes Yes Yes
F-stat (Kleib.-Paap) - 476.538 - 476.538 - 476.538
Two-way clustered SE Yes Yes Yes Yes Yes Yes

Notes: See Table 2 for notes. This table contains the interactions with indicators for treated industries liberalized for FDI in 2006
(treated) and post-2006 (post). The interactions with treated industries are appropriately instrumented with interactions with
IV A. Due to multiple endogenous variables, the F-stat for IV B is low and results are not reported due to weak IV bias.

Table A.27: Coal prices and revenues, costs, and TFP

Revenues (mil. |) Total costs (mil. |) TFP (log) (Wooldridge, 2009)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PC)
-20.09** -21.31 -2.026 -14.44** -29.82 3.729 -0.000544 -0.0198 -0.0306
(8.002) (85.610) (128.414) (6.592) (70.932) (103.369) (0.002) (0.013) (0.020)

OLS/IV OLS IV E IV F OLS IV E IV F OLS IV E IV F

Observations 44965 44965 44965 44965 44965 44965 44582 44582 44582

Notes: See Table 8a for notes.
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A.15 Using product fixed effects or nation-wide average product electricity
intensities

To test whether it is the product mix that drives the results of higher electricity productivity, I first include
additional product fixed effects (6145 products). For each plant-year observation, the dummy for a
particular product is one if the plant produces this product in this year.98 The results are shown in Columns
1-3 of Table A.28, and are similar to the baseline results in Table 2. Importantly, this implies that the
results are not driven by changes in product mix but indeed by product technology. Note that I only use
observations until 2009, as the product identification system changed in 2010.

Next, instead of examining plant level electricity productivities as outcome, I use constant product level
electricity intensities following Abeberese (2017). Note that electricity intensity is simply the inverse of
electricity productivity. For each product code, I calculate the average nation-wide electricity intensity in
2000. For each plant I apply these constant nation-wide intensities to their evolving product mix, calculating
the simple average of electricity intensities of their products, as well as the average weighted by the sales
share of each product.99 Crucially, as a result, these outcomes ignore any changes in electricity productivity
of products through technology, and any heterogeneity across time and across plants, which is, however, a
feature of the data and variation I capture in the main text (see Figure 4). Columns 4-9 in Table A.28 show
the results using these average electricity intensities of the product mix. There is no significant relationship
in the OLS or the IV regressions, which demonstrates that accounting for heterogeneity and changes in
electricity productivity across plants and time are key for capturing the relationship between electricity
prices and productivity, and that results are not driven by changes in the product mix.

Finally, the last result may seem at odds with the headline result in Table 3 of Abeberese (2017), who
shows the opposite results, i.e. lower prices increase electricity intensity of the product mix, which would
correspond to a decrease in electricity productivity (there are no results about electricity productivity per
se). I first replicate the results using the same specification and replication archive from Abeberese (2017),
as well as the corresponding shorter sample from 2000/01 to 2007/08.100 Table A.29 shows the results.
There are three different dependent variables corresponding to Panel B, C and D of Table 3 in Abeberese
(2017) respectively. The first four columns use the dummy for switching to a less electricity-intensive
five-digit industry, the second four columns are the log of the simple average productivity intensity of the
product mix, and the last four columns are the log of the weighted average productivity intensity of the
product mix, all constructed using the replication code. The specification in the paper includes firm fixed
effects and uneven columns include additional controls, corresponding to Columns 5 and 6 of Table 3 of
Abeberese (2017) respectively.

The number of observations (72,987 and 107,891) are close to her reported number of observations
(73,387 and 108,402).101 The reported coefficients and standard errors in Abeberese (2017) are in the first
row and almost identical replicated coefficients and standard errors in the second row. All of these are,

98This is the extensive margin of switching products, but it can also be shown using weights between zero and one that replace
the binary product dummies with continuous product indicators that correspond to the share of a particular product in sales per
plant-year, capturing both extensive and intensive margin product mix changes.

99Again focusing on the sample up until 2009 as product definitions changed thereafter.
100I thank Ama Baafra Abeberese for correspondence and sharing the industry crosswalk used for this exercise.
101The small difference likely arises from updates to the ASI data versions, where I am using a more recent version. With the

exception of the ASI raw data, I use all other data and deflators from her replication package. I can almost exactly replicate all
summary statistic.

A-50



Table A.28: Product FE, or average product electricity intensity using nation-wide product averages

Electricity productivity (log) Simple avg. product elec. int. (log) Weigh. avg. prod. elec. int. (log)
OLS IV A IV B OLS IV A IV B OLS IV A IV B

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(PE)
0.310*** -0.387*** -0.672*** -0.0111 0.000471 0.0878 -0.0141 -0.0140 0.0777
(0.047) (0.068) (0.096) (0.024) (0.039) (0.062) (0.024) (0.039) (0.064)

OLS/IV OLS IV A IV B OLS IV A IV B OLS IV A IV B

Observations 342659 342659 342659 215151 215151 215151 215124 215124 215124
Ind-region-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Product FE Yes Yes Yes No No No No No No
F-stat (Kleib.-Paap) - 32270.752 244.033 - 36700.369 194.976 - 36693.911 194.962
Two-way clustered SE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The dependent variable is indicated at the top. Columns 1-3 include product fixed effects. See Table 2 for further notes.

however, only significant due to a coding issue. The region by year fixed effects are only partially included,
due to being pre-generated in the replication code and how Stata generates fixed effects.102 As Columns
3-4, 7-8, and 11-12 show, all the relationships turn insignificant, and sometimes the coefficients change sign,
once the fixed effects are included as intended in Abeberese (2017). Importantly, this is entirely consistent
with my findings in Table A.28 that there is no decrease in electricity productivity coming from the product
mix i.e. from what firms produce.

102This error is generated by the Stata command xi i.region*i.t (line 796) to generate the fixed effects, which should instead be xi
i.region*i.t, noomit, as otherwise Stata also expects the uninteracted region and time fixed effects to be separately included in the
regression, which they are not.
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Table A.29: Comparison to Table 3 of Abeberese (2017): Including partially omitted fixed effects

Dummy for switching to less electricity-intensive Simple avg. product elec. int. (log) Weighted avg. product elec. int. (log)
Partial omission No omission Partial omission No omission
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

log(PE) [Reported] 1.462** 1.510* - - -0.859*** -0.975*** - - -0.788*** -0.906*** - -
(0.673) (0.767) (0.279) (0.324) (0.301) (0.327)

log(PE)
1.561** 1.616** -0.119 -0.405 -0.873*** -0.985*** 0.210 -0.126 -0.810** -0.925*** -0.398 -0.575
(0.675) (0.781) (0.650) (0.719) (0.300) (0.342) (0.605) (0.536) (0.322) (0.346) (0.595) (0.586)

Region1_Time2 0.0472** 0.0563** -0.0236 -0.0131 0.00593 0.0121
(0.021) (0.024) (0.024) (0.023) (0.025) (0.025)

Region1_Time3 0.0900** 0.103** -0.0372 -0.0219 0.00136 0.00842
(0.041) (0.044) (0.038) (0.032) (0.038) (0.034)

Region1_Time4 0.0827** 0.0958** -0.0497 -0.0306 0.0190 0.0264
(0.041) (0.044) (0.047) (0.041) (0.048) (0.045)

Region1_Time5 0.123*** 0.136*** -0.0706* -0.0493 -0.0160 -0.00666
(0.034) (0.035) (0.043) (0.036) (0.043) (0.040)

Region1_Time6 -0.0107 -0.000343 -0.0784*** -0.0626** -0.0411 -0.0339
(0.025) (0.027) (0.029) (0.026) (0.031) (0.030)

Region1_Time7 0.00972 0.00631 -0.0676*** -0.0690*** -0.0644*** -0.0659***
(0.007) (0.008) (0.017) (0.019) (0.018) (0.019)

Region2_Time2 -0.0632 -0.0637 0.00826 0.0220 0.0341 0.0384* 0.00362 0.0150 0.0351 0.0378* 0.0235 0.0293
(0.047) (0.050) (0.033) (0.036) (0.021) (0.021) (0.026) (0.024) (0.022) (0.023) (0.026) (0.026)

Region2_Time3 -0.0253 -0.0258 0.0712* 0.0931** 0.0687*** 0.0830*** 0.0204 0.0438 0.0716*** 0.0815*** 0.0533* 0.0661**
(0.051) (0.056) (0.040) (0.045) (0.020) (0.022) (0.032) (0.030) (0.021) (0.023) (0.031) (0.032)

Region2_Time4 -0.0615 -0.0612 0.0724 0.102* 0.0648** 0.0836*** -0.0147 0.0205 0.0626** 0.0753** 0.0324 0.0512
(0.061) (0.068) (0.054) (0.061) (0.027) (0.030) (0.048) (0.044) (0.030) (0.033) (0.048) (0.049)

Region2_Time5 -0.0575 -0.0570 0.101 0.139* 0.104*** 0.134*** 0.000208 0.0496 0.107*** 0.128*** 0.0682 0.0951
(0.070) (0.080) (0.067) (0.077) (0.033) (0.039) (0.059) (0.055) (0.037) (0.041) (0.059) (0.062)

Region2_Time6 -0.158*** -0.153*** -0.0559 -0.0268 0.0452** 0.0722** -0.0214 0.0184 0.0385 0.0545* 0.0132 0.0347
(0.046) (0.051) (0.043) (0.050) (0.023) (0.030) (0.039) (0.040) (0.025) (0.030) (0.038) (0.042)

Region2_Time7 -0.0599** -0.0525 -0.0251 -0.00879 -0.00322 0.0168 -0.0195 0.00382 -0.00745 0.00136 -0.0137 -0.00109
(0.030) (0.034) (0.016) (0.019) (0.020) (0.023) (0.017) (0.021) (0.026) (0.030) (0.025) (0.028)

Region3_Time2 -0.0835** -0.0841* -0.00971 0.00674 0.0372 0.0491* -0.00942 0.0109 0.0245 0.0334 0.00679 0.0178
(0.040) (0.044) (0.031) (0.035) (0.025) (0.027) (0.031) (0.029) (0.031) (0.032) (0.037) (0.038)

Region3_Time3 -0.107* -0.107* 0.0269 0.0564 0.0442 0.0656* -0.0450 -0.00669 0.0364 0.0524 0.00246 0.0232
(0.055) (0.063) (0.055) (0.063) (0.031) (0.034) (0.050) (0.045) (0.034) (0.037) (0.052) (0.053)

Region3_Time4 -0.109 -0.116 0.0764 0.108 0.0867** 0.104** -0.0299 0.00980 0.0720* 0.0885** 0.0276 0.0492
(0.079) (0.091) (0.075) (0.083) (0.036) (0.041) (0.064) (0.058) (0.039) (0.042) (0.065) (0.065)

Region3_Time5 -0.0663 -0.0770 0.110 0.136* 0.0640 0.0752 -0.0705 -0.0334 0.0634 0.0787 0.0122 0.0323
(0.073) (0.086) (0.070) (0.077) (0.041) (0.048) (0.075) (0.068) (0.045) (0.050) (0.076) (0.076)

Region3_Time6 -0.189*** -0.197*** -0.0475 -0.0231 0.0549 0.0692 -0.0430 -0.0114 0.0395 0.0548 0.00224 0.0198
(0.059) (0.071) (0.057) (0.063) (0.044) (0.049) (0.061) (0.058) (0.044) (0.048) (0.061) (0.062)

Region3_Time7 -0.104*** -0.107** -0.0180 -0.00370 0.0252 0.0293 -0.0326 -0.0160 0.0103 0.0149 -0.0117 -0.00313
(0.037) (0.042) (0.035) (0.039) (0.030) (0.034) (0.040) (0.039) (0.031) (0.033) (0.040) (0.041)

Region4_Time2 0.00626 0.00667 0.00590 0.00895 0.00307 0.00921 0.00342 0.00804 -0.00573 -0.00173 -0.00560 -0.00268
(0.024) (0.026) (0.013) (0.016) (0.031) (0.032) (0.025) (0.026) (0.027) (0.028) (0.025) (0.025)

Region4_Time3 0.0325 0.0334 0.0319** 0.0381** -0.0101 0.00170 -0.00468 0.00315 -0.00369 0.00386 -0.00162 0.00349
(0.023) (0.024) (0.014) (0.016) (0.029) (0.030) (0.021) (0.022) (0.030) (0.031) (0.026) (0.028)

Region4_Time4 0.0804*** 0.0799*** 0.0481* 0.0478* -0.000657 0.00914 0.00875 0.0127 -0.00535 0.00233 -0.00177 0.00158
(0.025) (0.025) (0.025) (0.024) (0.046) (0.045) (0.035) (0.035) (0.039) (0.040) (0.035) (0.035)

Region4_Time5 0.102** 0.0980** 0.0560*** 0.0496** -0.0314 -0.0269 -0.00860 -0.0135 -0.0281 -0.0225 -0.0194 -0.0206
(0.046) (0.046) (0.021) (0.021) (0.041) (0.046) (0.024) (0.031) (0.034) (0.038) (0.028) (0.033)

Region4_Time6 0.00531 0.00138 -0.0377** -0.0405** -0.0180 -0.00608 -0.00582 -0.00262 -0.0161 -0.00507 -0.0114 -0.00783
(0.032) (0.031) (0.018) (0.019) (0.029) (0.034) (0.019) (0.023) (0.023) (0.027) (0.019) (0.023)

Region4_Time7 -0.0140 -0.0142 -0.0197*** -0.0238** -0.0320 -0.0386 -0.0252 -0.0318 -0.0147 -0.0194 -0.0121 -0.0161
(0.020) (0.022) (0.007) (0.009) (0.026) (0.028) (0.018) (0.021) (0.022) (0.025) (0.020) (0.022)

Region5_Time2 -0.0967*** -0.0984*** -0.0267 -0.0115 0.0243 0.0338 -0.00749 0.00721 0.0357* 0.0431** 0.0236 0.0319
(0.032) (0.038) (0.029) (0.033) (0.024) (0.023) (0.029) (0.027) (0.020) (0.021) (0.025) (0.025)

Region5_Time3 -0.0306 -0.0339 0.0372 0.0518 0.0273 0.0377 -0.0139 0.00278 0.0332* 0.0426** 0.0176 0.0271
(0.031) (0.038) (0.028) (0.033) (0.025) (0.024) (0.031) (0.029) (0.019) (0.020) (0.024) (0.025)

Region5_Time4 -0.0288 -0.0315 0.0413 0.0600 0.0194 0.0359* -0.0173 0.00318 0.0425** 0.0555*** 0.0285 0.0405
(0.033) (0.041) (0.030) (0.037) (0.019) (0.020) (0.027) (0.026) (0.017) (0.019) (0.024) (0.025)

Region5_Time5 -0.0393 -0.0433 0.0571 0.0762* 0.0371* 0.0476* -0.0253 -0.00361 0.0554** 0.0655** 0.0317 0.0437
(0.042) (0.049) (0.037) (0.043) (0.022) (0.026) (0.038) (0.034) (0.022) (0.026) (0.035) (0.035)

Region5_Time6 -0.116*** -0.123** -0.0249 -0.00898 -0.0103 -0.00355 -0.0649* -0.0492 0.0128 0.0218 -0.00791 0.00100
(0.037) (0.048) (0.036) (0.040) (0.021) (0.023) (0.034) (0.030) (0.025) (0.026) (0.035) (0.034)

Region5_Time7 -0.0453** -0.0473** -0.00386 -0.000347 -0.0000711 -0.00412 -0.0256 -0.0229 0.00799 0.00644 -0.00171 -0.000839
(0.019) (0.021) (0.017) (0.017) (0.017) (0.017) (0.022) (0.019) (0.020) (0.021) (0.023) (0.022)

Region6_Time2 -0.0725** -0.0721** -0.00559 0.00963 -0.0597*** -0.0529** -0.0654*** -0.0578*** 0.00865 0.0121 0.00648 0.0106
(0.031) (0.034) (0.028) (0.032) (0.022) (0.024) (0.018) (0.019) (0.020) (0.021) (0.017) (0.018)

Region6_Time3 -0.0825 -0.0993 0.0426 0.0446 0.0458* 0.0204 -0.00628 -0.0190 0.0402* 0.0315 0.0204 0.0127
(0.053) (0.065) (0.050) (0.052) (0.026) (0.037) (0.034) (0.036) (0.022) (0.032) (0.032) (0.034)

Region6_Time4 -0.177* -0.194* 0.0538 0.0776 0.0599 0.0483 -0.0660 -0.0500 0.0874** 0.0895* 0.0396 0.0472
(0.093) (0.111) (0.090) (0.096) (0.041) (0.051) (0.073) (0.066) (0.041) (0.047) (0.070) (0.068)

Region6_Time5 -0.212* -0.228* 0.0592 0.0937 0.0200 0.0167 -0.126 -0.0982 0.0689 0.0760 0.0133 0.0275
(0.110) (0.129) (0.105) (0.114) (0.042) (0.051) (0.082) (0.073) (0.045) (0.051) (0.081) (0.079)

Region6_Time6 -0.235** -0.248** 0.00184 0.0345 0.0484 0.0499 -0.0852 -0.0553 0.0640 0.0725 0.0132 0.0286
(0.096) (0.112) (0.092) (0.100) (0.042) (0.049) (0.078) (0.069) (0.045) (0.049) (0.077) (0.075)

Region6_Time7 -0.139** -0.147** 0.00255 0.0228 0.0426 0.0450 -0.0406 -0.0206 0.0578* 0.0638* 0.0261 0.0365
(0.057) (0.067) (0.055) (0.060) (0.030) (0.033) (0.049) (0.044) (0.030) (0.033) (0.048) (0.047)

Observations 72987 72987 72987 72987 107891 107891 107891 107891 107891 107891 107891 107891
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State trends Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes No Yes No Yes

Notes: These regressions follow the methodology and replication package of Abeberese (2017). Standard errors are clustered at
the state by year level. Columns 3-4, 7-8, and 11-12 show the change in results without the partial omission of region by year fixed
effects.
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A.16 Pass-through elasticities and incidence on consumers over time for
aggregated industries

Figure A.31: The distribution of pass-through elasticities
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Notes: The figure plots the cumulative distribution function of the pass-through elasticities (d log(P )/d log(MC)). The pass-
through elasticities vary at the 4-digit industry level: there are 121 different pass-through elasticities. The pass-through elasticities
are the coefficient on a regression of log prices on log marginal costs at the plant level for each 4-digit industry separately. Prices
are calculated as average prices for the different products sold at the firm level, weighted by the quantity sold of each product.
Marginal costs are recovered from the estimated markups and the average prices. The marginal costs in the regressions are
instrumented with IV A and IV B , and regressions are weighted by the sampling weights. Therefore, there are two coefficients
per pass-through elasticity per industry. The reported pass-through elasticities are weighted averages, for each pair of coefficients,
where the weights are the t-statistics from the IV regression. Here are two example regressions for two different 4-digit industries
of log prices on log marginal costs with different IVs:

Manufacture of:
Grain mill products Structural non-refractory clay

and ceramic products
log(MC) 0.997*** 0.730***

(0.0130) (0.0555)
OLS/IV IV A IV B

Observations 21812 6208
Region-year FE Yes Yes
F-stat (Kleib.-Paap) 35.65 28.98
SE clustered by Plant Plant
No. of first clusters 11707 3577
SE clustered by State-year State-year
No. of second clusters 435 220

Notes above table.
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Figure A.32: Share of incidence on consumers from electricity price changes
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Notes: The figure plots the median share of incidence on consumers Ishare from electricity price changes for each year within
each industry. The 25th and 75th percentiles are plotted as well. The industries are broad: chemicals includes rubber and plastics,
machinery includes metal products, and textiles includes leather.
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A.17 Consumer welfare changes accounting for non-final demand and for
financing through residential tariff increases

Consumer surplus changes accounting for non-final demand: The degree to which industries sell to
consumers (final demand) varies. To account for this, I use the 2007-08 input-output tables from the
Central Statistics Office (2012) that also contain information of the share of each industry’s output going to
final demand. These IO industry categories are slightly coarser (58 industries) than 4-digit (133 industries).
I manually create a crosswalk to map the 4-digit industries to the 58 IO industries. Recall incidence and
incidence shares at the plant level are a function of estimated parameters ρMC , L, and ϵD that vary at
industry or plant level:

I(ρMC , L, ϵD) = dCS/dPS (A.16)

Ishare(ρMC , L, ϵD) = dCS/(dCS + dPS) = I/(1 + I) (A.17)

To calculate change in total consumer surplus, I use the observed share of output by IO industries going
to final demand (sIOind).103 I first take the median estimated consumer incidence within each IO industry
(IIOind). I then combine this with the portion of output going to final demand in each IO industry and the
estimated change in total producer surplus by industry dPSIOind based on the sampling frame and the
profit semi-elasticity from Table 4a. Change in total consumer surplus dCS is the sum over IO industries:

dCS =
∑
IOind

dPSIOind · sIOind · IIOind(ρMC , L, ϵD) (A.18)

Change in total consumer surplus is US$ 34.4 billion. The adjustment taking into account final demand
only is important, as the unadjusted figure would amount to US$ 64 billion.104 As a robustness check,
I also estimate profit semi-elasticities by IO industry to construct dPSIOind, instead of using the overall
semi-elasticity from Table 4a. This could in principle increase or decrease dCS, depending on whether
producers with a higher share going to final demand have higher or lower profit semi-elasticities. The
results are similar with a total adjusted consumer surplus of US$ 29.8 billion.

103Change in producer surplus is change in profits, irrespective of whether output is going to final demand.
104To calculate change in total unadjusted consumer surplus dCS, I set sIOind to 1 and use median incidence I across all plants.
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Figure A.33: Changes in consumer surplus from residential electricity tariff changes
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Notes: The figure depicts the schematic of a simple demand curve for residential electricity. P1 and P2 denote the price increase,
and AC constant average cost of electricity supply.

Financing through residential tariff increases: If the electricity price reduction for industry is financed
entirely through increased rates for residential users, consumers have consumer surplus reductions from
paying higher tariffs directly. The deficit for utilities from lower industrial prices amounts to US$ 3.53
billion as shown in Section V.E. I next calculate the welfare losses for residential consumers if this deficit is
financed through tariff increases in the residential sector.

Figure A.33 depicts a simple demand curve for residential electricity with prevailing prices P1 and
electricity purchased Q1. To finance the deficit, utilities increase residential rates to P2 which generates
additional revenueB, forgone salesE+G, and lower costsG since less electricity is sold at higher residential
rates, assuming constant average cost of supply AC. Overall the utility makes additional profits B − E

from this residential rate increase. The corresponding loss in consumer surplus is B + C.
To quantify these changes, I am using residential P1 = 4.9US cents per kWh andAC = 6.9US cents per

kWh from the Planning Commission (2001-2002); Ministry of Power (2002-2015), and Q1 = 125.447 TWh
residential electricity consumption from the Central Statistics Office (2016), all averaged across the sample
period.105 I use an elasticity of demand for the Indian residential electricity sector of -0.41 (average between
urban and rural) from Table A.8 in Mahadevan (2023). This allows me to solve a system of equations for
the new prices and quantities given by:

Elasticity of residential demand =
(Q2 −Q1) ∗ P1

(P2 − P1) ∗Q1
= −0.41 (A.19)

Required additional profit = B − E = (P2 − P1) ∗Q2 − (P1 −AC) ∗ (Q1 −Q2) = 3.5 billion (A.20)

The solution is P2 = 8.0 cents per kWh, which implies a required 63% increase in residential utility
tariffs to finance the reduction in industrial tariffs. The resulting loss in consumer surplus in the residential

105Using residential prices and cost of supply values from different fixed years rather than averages does not change the
resulting change in consumer surplus much.
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sector is US$ 3.4 billion, which amounts to overall net gains for consumers of US$31 billion.

A.18 Details on calculating aggregate effects on CO2 emissions
I combine regression estimates with fuel use data and emission factors to calculate the effect on CO2

emissions. The first step is to calculate the annual baseline CO2 emission in the manufacturing ASI micro
data from electricity, coal and oil averaged across 1998-2000:

Electricity: For electricity, I use the reported net consumption (adjusted for self generation and sale) in
kWh and turn it into CO2 emissions by taking the average emissions per kWh produced in the electricity
generating sector (0.84 tCO2/MWh according to Central Electricity Authority (2006)).
Coal: For coal, I use the reported quantity in ton and turn it into CO2 emissions by taking (i) the net
calorific value per ton for Indian manufacturing (6350 kcal/kg according to Minsitry of Coal (2012)) (ii)
and the average CO2 emissions of 94.6 tCO2 for coal use in industries according to the IPCC (2006).
Oil: For oil, only expenditure is available in 1998-2000. In 1996, however, there is detailed information
on the quantities and types of oil used. I turn the quantities (liters) into energy units using IEA (2013)
for the different oil types. I turn the energy units into CO2 emissions using the IPCC (2006) tables for
manufacturing industries. From the total CO2 emissions from oil as well as the expenditure on oil (with
real prices) in 1996, I take the ratio to calculate the CO2 emissions per | spent and apply this ratio to
1998-2000 to calculate the emissions from oil use.

I multiply all observations by the sampling multipliers to estimate the annual aggregate CO2 emissions
averaged across 1998-2000 from electricity (56.8Mt), coal (65.9Mt) and oil (11.8Mt), which are 134.5Mt
combined. I omitted gas use as it is only responsible for a fraction of the CO2 emissions (0.03Mt in 1996). In
what follows, I assume that the emission intensity of a unit of electricity use, coal use or oil use is constant
over the period 1998 to 2013.

The next step is to use regression estimates to calculate the impact of the electricity price decreases. I
always use the average of the two elasticities obtained with IV A and IV B . Specifically, I use the elasticities
in Columns 5-6 in Table 3 to calculate the impact of a 48% decrease in electricity prices on electricity
consumption and therefore emissions. I combine these elasticities with those from a regression106 of the
logged ratio of electricity use to coal use on electricity prices to calculate the effect on coal use and therefore
emissions from coal. I do something similar to calculate increased emissions from oil use, however, I rely
on oil expenditure rather than quantities as for coal.107 With these steps I obtain the estimates of Column 1
in Table 7.

The third step is to calculate the emission increases when switching off the substitution between fuels
or the electricity productivity effect. To make these scenarios comparable I condition on reaching the
same output gains. I switch off fuel substitution by requiring that the electricity price decline has no effect
on fuel use ratios. That is, there is no saving of coal and oil use such that they need to increase by the
same percentage as electricity use as if they are Leontief. I switch off the electricity productivity effect by
requiring that electricity use increases by the same percentage as output increases in the baseline scenario,
but maintaining the fuel substitution effects through changes in fuel ratios. Finally, in the last column of

106The average elasticity is -0.369.
107The average elasticity of the electricity to oil ratio is -0.688.
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Table 7 I switch off both substitution and electricity productivity effects.

A.19 Holm-Bonferroni q-values for multiple hypothesis testing
Table A.30 applies the Holm (1979) Bonferroni correction to the p-values to adjust for multiple hypothesis
testing.

Table A.30: Holm (1979) Bonferroni correction for multiple hypotheses testing

OLS IV A IV B

Coef. p-value q-value Coef. p-value q-value Coef. p-value q-value
(adj. pval) (adj. pval) (adj. pval)

Independent variable: log(electricity price)
Electricity productivity (log) 0.365 9.0e-16*** 2.1e-14*** -0.239 6.8e-04*** 0.0034*** -0.777 5.2e-13*** 6.3e-12***
Labor productivity (log) -0.028 0.514 1 -0.389 5.7e-06*** 4.6e-05*** -1.063 9.9e-23*** 1.6e-21***
Output (log) -0.027 0.715 1 -0.743 2.7e-07*** 3.0e-06*** -1.600 3.0e-23*** 5.2e-22***
Electricity consumption (log) -0.385 3.1e-09*** 6.8e-08*** -0.478 0.0021*** 0.0083*** -0.797 1.2e-07*** 5.8e-07***
Employees (log) 0.012 0.771 1 -0.339 1.1e-05*** 7.6e-05*** -0.518 1.3e-10*** 1.3e-09***
Profits -5.037 9.5e-04*** 0.0164** -20.470 6.1e-10*** 8.5e-09*** -22.034 5.7e-08*** 3.4e-07***
Total revenues -30.407 6.5e-04*** 0.0124** -132.317 5.5e-11*** 8.7e-10*** -139.505 1.1e-10*** 1.3e-09***
Total variable costs -24.247 0.0011*** 0.0176** -109.058 1.1e-10*** 1.6e-09*** -114.396 1.4e-10*** 1.3e-09***
Ratio machinery to employees (log) -0.160 0.0138** 0.124 -0.627 5.3e-08*** 6.4e-07*** -1.517 8.3e-22*** 1.2e-20***
Machinery to electricity ratio (log) 0.259 1.3e-06*** 2.7e-05*** -0.467 7.0e-10*** 9.1e-09*** -1.178 1.2e-19*** 1.7e-18***
Employment to electricity ratio (log) 0.380 1.2e-18*** 2.8e-17*** 0.122 0.186 0.186 0.283 0.0062*** 0.0124**
Investment in machinery (IHS) 0.158 0.439 1 -0.852 0.0295** 0.059* -2.890 1.5e-10*** 1.3e-09***
Ratio electricity to coal quantity -10.188 0.0011*** 0.0176** -17.623 0.0025*** 0.0083*** -22.088 0.0751* 0.0751*
Other fuels’ share in output 0.004 9.1e-04*** 0.0164** 0.013 1.3e-11*** 2.2e-10*** 0.023 5.0e-16*** 6.5e-15***
Average wage per worker (log) 0.031 0.0266** 0.213 -0.142 4.6e-07*** 4.6e-06*** -0.177 1.8e-07*** 7.2e-07***
TFP (log) -0.007 0.0031*** 0.0431** -0.016 5.0e-06*** 4.5e-05*** -0.033 2.9e-07*** 8.6e-07***
Price marginal cost markup log(µ) -0.018 0.0036*** 0.0445** -0.040 4.0e-04*** 0.0024*** -0.106 3.2e-08*** 2.3e-07***

Independent variable: log(coal price)
Coal productivity (log) 0.848 0*** 0*** 1.484 1.7e-15*** 1.5e-14*** 1.617 1.8e-13*** 1.6e-12***
Labor productivity (log) 0.056 0.0053*** 0.0586* -0.025 0.849 1 0.300 0.12 0.723
Profits -5.940 3.0e-04*** 0.0059*** -6.315 0.675 1 -7.393 0.775 1
Output (log) 0.091 0.0034*** 0.0445** -0.311 0.21 1 -0.135 0.695 1
Coal consumption (log) -0.757 0*** 0*** -1.851 3.9e-11*** 3.1e-10*** -1.799 3.6e-06*** 2.9e-05***
Employees (log) 0.033 0.112 0.672 -0.320 0.0981* 0.687 -0.491 0.0517* 0.362
Total revenues -20.092 0.0124** 0.124 -21.315 0.803 1 -2.026 0.987 1
Total variable costs -14.435 0.0291** 0.213 -29.825 0.674 1 3.729 0.971 1
TFP (log) -0.001 0.764 1 -0.020 0.124 0.747 -0.031 0.128 0.723

Notes: The table contains the coefficients and p-values from the original regressions in the main text. The q-values are the adjusted
p-values for multiple hypothesis testing using the procedure outlined in Holm (1979). The correction procedures are separately
applied by model (OLS, IV A, IV B) and by independent variable log(electricity price) and log(coal price).
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