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Abstract

Influenza and air pollution each pose significant health riskswith global economic consequences.
Their shared etiological pathways present a case of compounding health risk via interacting exter-
nalities. Using instrumental variables based on changing wind direction, we show increased levels
of contemporaneous pollution increase influenza hospitalizations. We exploit random variation in
effectiveness of the influenza vaccine as an additional instrument to show vaccine protection neu-
tralizes this relationship. Thus, pollution control and vaccination campaigns jointly provide greater
returns than those implied by addressing either in isolation. We show the importance of this con-
sideration in addressing observed gaps in influenza incidence by race.
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Influenza (flu) and air pollution are significant public health risks that impact nations around the
world. The flu causes an estimated 3-5 million severe cases per year, and nearly half a million deaths
(Lambert and Fauci, 2010; Iuliano et al., 2018). Air pollution causes 4.5 million annual deaths (Cohen
et al., 2017), with annual economic costs estimated to exceed $US 800 billion in the U.S. alone (Putri
et al., 2018; Tschofen, Azevedo and Muller, 2019). While public health policies to address these issues
are often considered in isolation, both share common etiological pathways through which they harm
human health.

Interactions between the flu and pollution are an illustrative economic case of compounding risk
from interacting externalities. Influenza is an infectious disease whereby the actions of one infected
individual impose negative externalities on others by increasing risk of infection, while air pollution
is a negative externality of economic activity. Our analysis demonstrates that policies to address these
distinct externalities have significant interactive effects: the flu vaccine can protect against certain harms
from air pollution, and reduced levels of air pollution lessen the harmful effects of influenza exposure.
Thus, the seemingly disparate policy actions of pollution control and expanded vaccinationmay jointly
provide greater returns than when studied in isolation.

We begin our analysis by exploring the relationship between air pollution and influenza. Expo-
sure to air pollution can affect influenza severity (Jaspers et al., 2005; Lee et al., 2014) and, to a lesser
degree, its spread (Chen et al., 2010). We extend the cross-sectional epidemiological literature1 to es-
tablish a causal relationship between air pollution and flu cases. We use patient-level administrative
data on inpatient hospitalizations from 2007-2017 across 21 U.S. states, which allows us to focus on
cases with a definitive influenza diagnosis.2 We address the identification challenge that vaccine take-
up and pollution exposure are often endogenously determined by using a dual instrumental variables
approach. We first estimate econometric models with spatial and temporal fixed effects to control for
numerous unobservable factors, and then build on the pioneering work of (Deryugina et al., 2019) by
using plausibly exogenous variation in wind directions as an instrument for pollution. We find higher
pollution levels significantly increase flu inpatient hospitalizations; a one-standard-deviation increase
in the monthly Air Quality Index (10.9-unit increase in our data) amounts to approximately 35.7%
additional flu-related inpatient hospitalizations in the U.S. during influenza season. Compared to the
effect of air pollution on all respiratory hospitalizations, our findings suggest influenza accounts for
around 18% of all air pollution-induced respiratory inpatient hospitalizations.

Next, we explore whether influenza vaccine protection, which we define as a combination of vac-

1See, for example, Brauer et al. (2002),Wong et al. (2009), Chen et al. (2010), Liang et al. (2014) and the important economic
history paper byClay, Lewis and Severnini (2018). In a study of the Spanish flu in 1918, Clay, Lewis and Severnini (2018) show
cities with higher coal-fired power generating capacity saw higher mortality rates, potentially through exposure to higher air
pollution.

2Estimation based simply on physician encounters is more difficult, as influenza testing is not conducted systematically,
and reporting of positive cases is not mandatory for this patient population.
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cine take-up and effectiveness, moderates the estimated relationship above. As vaccine take-up can
be endogenous across both time and location, we instrument for vaccine protection using vaccine ef-
fectiveness weighted by influenza-susceptibility (in addition to using our instrument for pollution).
Effectiveness of the flu vaccine varies from year to year: producers forecast viral strain match months
ahead of time, and antigenic drift or shift induces random deviations in realized match quality.3 This
makes the random draw of the viral match orthogonal to unobserved determinants of health, allowing
us to identify a causal relationship between the vaccine and health harms from pollution. The orthog-
onality of vaccine effectiveness also offers an additional test that pollution has a causal effect on flu
admissions. If a vaccine designed specifically to protect against the flu diminishes the impact of pollu-
tion on influenza hospital admissions, then it must be the case that pollution contributes to influenza
hospitalizations. Whenwe include an interaction between air pollution and vaccine protection, we find
that the flu vaccine offers significant protection from influenza-related costs of pollution.4 Vaccine pro-
tection levels close to the average across time in our sample fully neutralize the relationship between
pollution and additional flu hospitalizations.

Given the unequal burden of both flu and pollution exposure across society, we also explore results
by race and ethnicity. Both of our main findings – that air pollution increases flu hospitalizations and
vaccine protectionmoderates this relationship – are consistent across these dimensions. Combinedwith
evidence of significant differences in flu incidence and severity by race (e.g. Quinn et al., 2011), our re-
sults suggest that the well-established differences in ambient pollution concentrations across racial and
ethnic groups (e.g. Banzhaf, Ma and Timmins, 2019; Colmer et al., 2020; Currie, Voorheis and Walker,
2020) serve as an important mechanism driving disparities in influenza outcomes across such groups.
Moreover, since flu vaccines protect against some pollution-induced harms, our results imply that the
private and external benefits from vaccines is considerably higher in communities disproportionately
exposed to poor air quality. Our source of exogenous variation in vulnerability to pollution through
vaccine effectiveness also contributes to the literature on the distribution of environmental damages
that depends not only on exposure but also vulnerability (Hsiang et al., 2019; Deryugina et al., 2021).

An important feature of our context is that the spread of influenza and pollution are externalities.
As externalities, they justify government intervention in the form of policies, such as increased vaccine
take-up and improved air quality.5 The interaction of the two suggests that the seemingly disparate pol-
icy actions of pollution control and vaccination campaigns jointly provide greater returns than those
implied by addressing either in isolation. A back of the envelope calculation suggests a 10% (3.5 AQI

3Other papers using similar variation include Ward (2014) and White (2021).
4Access to health care may ameliorate impacts of adverse environmental conditions more generally. Mullins and White

(2020) show that better access to acute care can help protect against health harms from extreme temperature.
5A similar logic applies to themore difficult task of improving vaccine effectiveness. In that case, policies aremore likely to

utilize the standard push and pull mechanisms used to overcome the underinvestment problem that arises due to the public
good nature of scientific knowledge (Kremer and Williams, 2010).
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points) reduction in the AQI in a historically ineffective vaccine year (11% vaccine take-up adjusted for
effectiveness) would avert 16.6% of all influenza-associated hospitalizations across the U.S. Meanwhile
a 10% improvement in vaccine take-up at the average vaccine effectiveness (or, equivalently, a 10% im-
provement in vaccine effectiveness at the average vaccine take-up) in a historically polluted year (38.2
AQI) would avert 34.6% of pollution-driven influenza hospitalizations. The optimal mix of these poli-
cies will depend on relative costs as well as the ‘spillover’ benefits eachmay generate beyond influenza.

The paper proceeds as follows. We begin by describing potential biological mechanisms and our
data, and presentwhy it is particularlywell-suited to addressing the question of interacting externalities
(Section I). We then discuss our econometric model, and describe in detail the various instruments we
use to address issues of endogeneity and measurement error (Section II). After we present our main
results and explore variations in our model assumptions, we discuss the implications of our findings,
both in the context of our analysis and the larger question of social welfare maximization (Section III),
before we conclude (Section IV).

I. Background and Data

A. Potential biological mechanisms

The primary channel through which air pollution could affect influenza hospitalizations is increasing
severity of influenza. Like smoking (Han et al., 2019), air pollution can impair the respiratory func-
tioning of patients, e.g., by damaging the respiratory epithelium, thereby facilitating the progression of
influenza virus beyond the epithelial barrier into the lungs (Diamond, Legarda and Ryan, 2000; Jaspers
et al., 2005; Ciencewicki and Jaspers, 2007; Rivas-Santiago et al., 2015). Existing medical research finds
exposing in vitro respiratory epithelial cells to air pollution increases susceptibility and penetration of
influenza (Jaspers et al., 2005), and experimental exposure of mice to air pollution before influenza
infections increases morbidity and mortality (Hahon et al., 1985; Lee et al., 2014).

There is also some suggestive evidence that air pollution could affect influenza hospitalizations
through modest increases in the spread of influenza. Like humidity and temperature (Lowen et al.,
2007; Shaman and Kohn, 2009; Shaman et al., 2010; Ijaz et al., 1985; Casanova et al., 2010), air pollution
particles could extend the airborne survival of viruses outside the body (Ijaz et al., 1985; Tellier, 2009;
Chen et al., 2010; Khare andMarr, 2015; Lou et al., 2017;Wolkoff, 2018) and thus increase the probability
of disease transmission.

B. Data

We combine data from multiple sources on health outcomes, pollution concentrations, vaccine infor-
mation and weather variables.
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Inpatient hospitalizations: Our primary health outcome is inpatient hospitalizations for influenza.
We use patient-level data on inpatient hospitalizations from the Health Care and Utilization Project
(HCUP, 2018b). The HCUP data covers the universe of hospital admissions in the reporting states.
While Medicare data, an alternative popular data source, covers the entire U.S., the advantage of the
HCUP data is that it covers all age groups, not only the elderly. We focus on influenza cases by us-
ing patient level information on diagnosed diseases per International Classification of Diseases (ICD)
codes.6 We limit analysis to data from 2007 to 2017, for which we also have detailed vaccine effective-
ness data available. This gives us an unbalanced panel of 21 U.S. states, with an average of 5.5 years
of observations per state (see Table A.1 in Appendix A.1 for details on data availability by state and
year). Figure A.1 in the Appendix shows that the HCUP data is broadly representative of U.S. data
by comparing distributions of several socio-demographic variables across counties in our HCUP data
with distributions across all U.S. counties.

We define our outcome as the count of inpatient admissions per county-year-month where the ICD
code indicates influenza.7 Given the presence of primary and secondary diagnosis codes, we conduct
analyses using three possible classifications of flu admissions: (i) cases where the only diagnosis is
influenza (most restrictive); (ii) cases where any diagnosis is influenza (least restrictive); and (iii)
cases where the primary diagnosis is influenza. The third option reflects a middle ground which we
use as our baseline outcome.

We focus on the influenza season, which theU.S. Centers for Disease Control and Prevention (CDC)
defines as October to March, and explore results extending the season in Appendix A.3. Figure 1a
shows the seasonality of inpatient hospitalizations in our data, which matches closely with general
CDC-reported influenza-like illnesses (see Table A.2 in Appendix A.1). Based on month of admission
and patient zip code, we aggregate hospitalization data to the county-year-month level and assign a
zero value to counties in months with no reported influenza admission, conditional on reporting data
in the given year.8 During the influenza season, 54%of county-year-months have no reported influenza-
related hospital admissions in the HCUP data, and our results are robust to inclusion or exclusion of
zero valued county-year-months. To compare ourmain results with themore general effect of air pollu-
tion on any respiratory hospitalization (including influenza), we also construct a variable that contains
the count of inpatient hospitalizations where the primary diagnosis is any respiratory diagnosis.9 Fi-

6We exclude patients whose zip code is from a different state than the hospital in which they are treated.
7We use the Clinical Classifications Software (CCS) from the Agency for Healthcare Research and Quality (AHRQ) to

classify relevant influenza ICD codes. These are all 5-digit ICD codes grouped under the following 3-digit ICD-9-CM codes:
487, 488; and, for the period fromOctober 2015when the systemwas changed to ICD-10-CM, the following 3-digit ICD-10-CM
codes: J09, J10, J11.

8Put another way, we only impute zeros for counties and year-months in states that report data in that given year but have
zero influenza hospitalizations in a given month. We use the crosswalk from zip codes to counties from the U.S. Department
of Housing and Urban Development (Din and Wilson, 2020).

9These are all 5-digit ICD codes grouped under the following 2-digit ICD-9-CM codes: 46, 47, 48, 49, 50, 51; and the
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nally, for a falsification test we use primary ICD codes associated with osteoarthritis as an outcome
variable, which is unlikely to be affected by air quality and influenza.10

Air quality: As our measure of pollution, we begin with the U.S. Environmental Protection Agency’s
(EPA, 2020) Air Quality Index (AQI) at the county-day level, whichwe aggregate to county-by-year-by-
month to match hospitalization outcomes.11 We focus on the AQI as a summary measure of overall air
quality, based on the primary criteria pollutants specified in the Clean Air Act.12 We do so as the high
degree of correlation between several individual pollutants makes it challenging to separately identify
the effect of each pollutant independently. We note that most of the “forcing” pollutant that drives
variation in the AQI in our setting is PM2.5.

Weather, winddirections and inversions: To addressweather as a confounder, weusemonthlyweather
averages from Xia et al. (2012); Mocko and NASA/GSFC/HSL (2012), including temperature, specific
humidity, vertical and horizontal wind speed, and precipitation at the 0.125 by 0.125 degree level, all
aggregated up to the county-by-year-by-month level.

To construct our main instrument for pollution, we construct wind direction for a county-year-
month by taking the average horizontal (ui) and vertical (vi) wind components from the monthly raw
data and calculating the average angle thewind is blowing fromasWDIRi = 180/π arctan 2(−ui,−vi).13

Temperature inversions can also influence ground-level pollution levels (Arceo, Hanna and Oliva,
2016), which allows us to use inversions as an additional pollution instrument. To calculate inversions,
we use daily three-dimensional temperature averages between midnight and 6AM at each location on
each day from GMAO (2015), regridded to the 0.25 by 0.25 degree level. We use the difference in
temperature between the two pressure levels closest to the surface at each location, and average this
difference up to the county-day level. We then calculate the share of days with inversions in a county-
year-month as the share of days when the difference between the layer further away from the surface
and the layer closest to the surface is positive, i.e., the temperature rises with altitude. We calculate the
average strength of inversion in a county-year-month as the average difference in temperature between
the two altitude levels on the days where inversions are present.

following 2-digit ICD-10-CM code: J0, J1, J2, J3, J4, J5, J6, J7, J8, J9.
10Osteoarthritis consists of all 5-digit ICD codes grouped under the following 3-digit ICD-9-CM codes: 715, V134; and the

following 3-digit ICD-10-CM code: M15, M16, M17, M18, M19. We also show effects for all disease groupings as additional
robustness checks in the Appendix.

11The EPA pre-aggregates data to the daily county level in the case of multiple monitors per county. For missing county-
year-months, we take the average value of the adjacent counties in the same month. We winsorize the AQI at the top and
bottom 1% for the main analysis, and show robust results to both data cleaning choices in Appendix A.3.

12The AQI captures pollution from particulate matter (PM2.5 or PM10), sulfur dioxide (SO2), carbon monoxide (CO),
nitrogen dioxide (NO2) and ozone (O3). See Appendix A.1 for descriptive statistics. The EPA provides further details on
AQI calculation in EPA (2018).

13We calculate wind speed for our control variables asWSPEEDi =
√

u2
i + v2i .
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Figure 1: Descriptive figures on influenza inpatient hospitalizations and vaccine take-up and effective-
ness
Notes: Panel (a) shows the average count of influenza inpatient hospitalizations per county-month in the HCUP (2018b) data. Panel (b)
shows the age group shares of influenza inpatient admissions, as well as age group-specific vaccine take-up, both pooled across states and
time. Panel (c) plots (raw) reported vaccine effectiveness for each age group over influenza seasons (with the exception of 08/09 where
no data are available). The thick black line plots our weighted measure of overall vaccine effectiveness. Panel (c) plots vaccine protection
averaged across states as the thick line. The bands illustrate the variation within each season across states by plotting the states with the
maximum and minimum vaccine protection in each season.

Vaccine take-up and effectiveness: We obtain average vaccine take-up rates (V R) by state, season, and
age group or racial group fromCDC (2008, 2009, 2015, 2020); Lu et al. (2013); Schiller and Euler (2009).
Figure 1b shows that on average, vaccine take-up is highest among those 65 years and older or those
8 years and younger. Figure A.4a in Appendix A.1 shows temporal variation in vaccine take-up rates
by age group and Figure A.4b by race. Figure A.4c shows spatial variation by taking a cross-section of
vaccine take-up rates among those 65 years and older across different states in a given influenza season,
in this case 2009/2010. The figures illustrate that the variation in vaccine take-up is larger across age
groups than across racial groups, across time or across space.

We obtain measures of vaccine effectiveness by influenza season and age group, V Eraw, from the
studies underlying CDC estimates (CDC, 2019), available beginning in the 2007/2008 season (Belongia
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et al., 2011; Griffin et al., 2011; Treanor et al., 2012; Ohmit et al., 2014; McLean et al., 2015; Gaglani et al.,
2016; Zimmerman et al., 2016; Jackson et al., 2017; Flannery et al., 2019; Rolfes et al., 2019; Flannery et al.,
2020) with the exception of the 2008/2009 season.14 These studies measure vaccine effectiveness as the
vaccination-induced percentage reduction in the odds of testing positive for influenza conditional on
having influenza-like symptoms. One can interpret vaccine effectiveness as the approximate share of
vaccinated people who do not test positive but would have absent the vaccine.15

Figure 1c plots age-specific vaccine effectiveness against influenza season, showing variation both
across seasons and age groups. Across seasons, the match between circulating viral strains and the
vaccines based on forecasts is imperfect and varies due to antigenic drift. Within a season, the match
can be of different quality for different age groups due to “original antigenic sin” (Francis, 1960); the
first influenza strain to which the immune system is exposed imprints immunological memory with
that specific strain, such that different generations with different antigenic imprints respond differently
to new vaccines and strains within years.

Constructing vaccine protection: The share of people protected by the vaccine in each season and state
is a combination of take-up rate V R and age group-weighted vaccine effectiveness V E. As an example,
for a group with homogeneous effects from exposure, if 50% of people are vaccinated, but the vaccine
is only 30% effective, the effective vaccine protection (V P ) is the same as when only 30% of people are
vaccinated but the vaccine is 50% effective. For groups with heterogeneous vulnerability, aggregate
hospitalizations also depend on whether those individuals that are more vulnerable than others have
a higher take-up rate or vaccine effectiveness. An 80-year old without a vaccine, for example, is much
more likely to be hospitalized with influenza than a 30-year old without a vaccine. Figure 1b shows
hospitalization incidence is highest for two age groups: 65-years and older and 8-years and younger.16

To construct a population-level measure of vaccine protection that accounts for such differences in vul-
nerability, we weight age-specific vaccine take-up rates and vaccine effectiveness by influenza hospital-
ization shares of each age group:

V Pcs =
1∑

a

(
HSa

) ∑
a

V Eraw
sa × V Rcsa ×HSa (1)

where c denotes counties (V Rcsa varies at the state level, but we index by counties for simpler nota-
tion in the following sections), s denotes influenza seasons, and a denotes age groups. Hospitalization
weightsHSa are a simple average across influenza seasons s, i.e.,HSa = 1

S

∑
sHSsa, and the first term

14The CDCmeasures vaccine effectiveness across influenza seasons rather than calendar years, as seasons overlap calendar
years (e.g., October-December for year y and January-March for year y + 1.

15The odds ratio is approximately the relative risk due to a small number of influenza positive cases (Zhang and Kai, 1998).
16We construct groups with these age cutoffs because they coincide with the common age cutoffs in vaccine effectiveness

studies.
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1∑
a(HSa)

ensures that the age weights sum to one, such that overall hospitalizations do not affect our
values of V Pcs. We plot V Pcs averaged across states in Figure 1d, along with the V Pcs of the state with
the highest and lowest V Pcs in each influenza season. The minimum of V Pcs is 0.08 and the maximum
is 0.33.

Since V P is constant within the season, vaccination rates V Rcsa that differ across states solely drive
cross-sectional spatial variation in V Pcs. The sources of temporal variation in V Pcs are both vaccination
rates V Rcsa and vaccine effectiveness V Eraw

sa which vary across influenza seasons. Equation (1) shows
that a 10% increase in V Pcs can either be the result of a 10% increase in vaccine rates in all age groups
or a 10% increase in vaccine effectiveness in all age groups (or some combination of both effects). For
our analysis of heterogeneity across different age groups, we only use vaccination rates and vaccine
effectiveness for the relevant age groups in constructing V Pcs. For heterogeneity analysis across differ-
ent racial groups, we use our overall measure of vaccine protection scaled by the ratio of race specific
take-up in a season to overall vaccine take-up in a season.

Mortality and emergency department (ED) visits: Although our primary focus is on inpatient hospi-
talizations, we also extend our analysis to consider influenza-related emergency department visits and
mortality. Data on visits to emergency departments is fromHCUP (2018a), and has overlapping spatial
coverage with our main inpatient data. Individual level mortality data fromNCHS (2019) covers every
county in the U.S. and includes deaths that happen inside or outside of hospitals. For both ED visits
and mortality, we count every hospitalization or death with influenza as primary cause as above, and
aggregate to the county-by-year-by-month level.

Socio-demographics: We use employment counts at the county-by-year-by-month level from the Bu-
reau of Labor Statistics (2021) as an additional control in robustness checks. Our analysis of policy
implications utilizes county population data by race from the 2010 U.S. Census (U.S. Census Bureau,
2020) and county median income data from Chetty et al. (2018).

II. Empirical Strategy

Given the nature of our outcome variables, we estimate count models as our primary specification,
though we also estimate linear models as a specification check. We estimate the relationship between
the count of influenza-related inpatient hospitalizationsHcym and the lagged air quality indexAQIcym−1

at the county c by year y by calendar monthm level using the following conditional exponential mean
function (consistent with a Poisson count data model):

E[Hcym|AQIcym−1,Xcym, γcsy, µym] = exp(βAQIcym−1 +X′
cymδ1 +X′

cym−1δ2 + γcsy + µym). (2)
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We lag the AQI one month to capture exposure to air pollution before hospital admission, and control
for a wide variety of both regional and temporal factors. Our preferred specification includes county-
by-season-by-year (γcsy) and year-by-month fixed effects (µym). Since each influenza season s spans
October through March and overlaps calendar years y and y + 1, the county-by-season-by-year fixed
effects (γcsy) are tantamount to county-by-quarter-by-year fixed effects.17 While county-by-quarter-
by-year fixed effects capture the bulk of climatic differences across counties, we also include contem-
poraneous weather controls Xcym and lagged weather controls Xcym−1 to address the link between
both influenza andweather (temperature and humidity can influence influenza transmission rates) and
weather and pollution (different climatic conditions can lead to different levels of air quality) within
county-quarter-years.18 Note that our outcome variable is the count of influenza hospitalizations, but
inclusion of our fixed effects in Equation (2) ensures our estimates are equivalent to recovering the
effect on hospitalization rates per capita.19

County-by-season-by-year (or county-by-quarter-by-year) effects γcsy control for differences in un-
observed confounders that influence pollution exposure and health outcomes across counties sepa-
rately for every quarter-by-year, such as demographics, socio-economic factors, or health care access
and protocols. This also addresses a possible concern due to potential variation in random diagnostic
influenza testing in hospitals that could mask true influenza rates. Our fixed effects absorb potential
bias from discrepancy between actual and observed hospitalizations as long as the ratio between them
is constant within county-quarter-years and/or year-months.20 Year-by-month fixed effects control for
seasonality and general monthly trends within each year in both influenza and pollution. For exam-
ple, two common lung irritants included in the AQI, particulate matter and carbon monoxide, peak in
winter months much like influenza admissions; year-by-month fixed effects capture such seasonality.
In robustness checks, we examine models using alternative fixed effects specifications.

Given the included fixed effects, two remaining threats to identification are unobserved confound-
ingwithin each county-by-quarter-by-year cell andmeasurement error in pollution assignment. For ex-

17The county-by-season-by-year fixed effects (γcsy) are equivalent to including county-by-year and county-by-season fixed
effects separately.

18This includes information on temperature, specific humidity, precipitation, and wind speed. Temperature and humidity
have been shown to affect both virus survival (Lowen et al., 2007; Shaman and Kohn, 2009; Shaman et al., 2010; Casanova
et al., 2010; Harper, 1961) and air pollution (Ijaz et al., 1985; Lou et al., 2017; Greenburg et al., 1967). In our baseline model we
include five quintile bins for temperature (C), five quintile bins of specific humidity, and linear terms for precipitation and
wind speed, all of which include contemporaneous and lagged versions.

19Influenza hospitalizations rates Hrates
cym and counts Hcym relate in the following way: Hrates

cym = Hcym/Popcsy ,
where Popcsy is county population in each county-season-year cell. We can multiply both sides of Equation (2) by
exp(log(1/Popcsy)) such that our estimation recovers the effect on Hrates

cym as dependent variable, and the fixed effects ab-
sorb exp(log(1/Popcsy)).

20Suppose actual (unobserved) influenza hospitalizations Hactual
cym and measured diagnosed influenza hospitalizations

Hcym relate in the following way: Hactual
cym = Hcym × Rcsy × Rym, where Rcsy × Rym captures arbitrary discrepancy be-

tween actual and observed hospitalizations. If we insert this relationship in Equation (2), we can multiply both sides by
exp(log(Rcsy)+ log(Rym)) such that our estimation recovers the effect on the unobservedHactual

cym as dependent variable, and
the fixed effects absorb exp(log(Rcsy) + log(Rym)).
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ample, increased economic activity and interaction between people at the local level could drive both air
pollution and influenza infections. We control for lagged employment at the county-by-year-by-month
level in our regressions as one approach, but this may not fully capture this relationship. Measurement
error may arise because of the sparse nature of pollution monitors. To address these issues, our main
strategy is to employ instrumental variables for air quality.

A. Instrumenting for air quality

We take an approach conceptually akin to that of Deryugina et al. (2019) by exploiting changes in wind
direction as an instrument for the AQI. The idea behind the instrument is that wind blowing from a
particular direction moves around the pollution internal to the county but also brings in external pol-
lution. Appendix Figure A.5 provides an illustration using Suffolk County, which contains the city of
Boston, as an example. The polar plot indicates that monthly AQI is much higher when prevailing
winds are blowing from the South-West, which is the direction of major polluting sources along the
Eastern seaboard. The AQI is, however, much lower when prevailing winds are blowing from the East,
which brings in cleaner air from the ocean. We are not using these values directly as our instrument
for air pollution, as individuals may sort based on prevailing wind patterns. Instead, we use monthly
changes in wind directions as our source of variation that shifts pollution, net of average pollution in
the county. For example, if prevailing winds change from South-West to East in Boston, our instru-
ment would shift pollution down for that particular month, net of average pollution levels in Boston
in that year-quarter, conditional on our fixed effects and controls. The identifying assumption is that,
conditional on our weather controls and fixed effects, wind direction affects influenza hospitalizations
only through its effect on the AQI, but does not have a direct effect on hospitalizations. Those exoge-
nously determined changes in wind direction (conditional on wind speed, other weather controls and
the various fixed effects) result in changes in pollution levels in a neighborhood that are likely to be
uncorrelated with local determinants of pollution.

While we borrow the premise of this design from Deryugina et al. (2019), we modify the precise
construction of the instruments. Specifically, Deryugina et al. (2019) construct instruments (ZD

i ) by
using dummy variables for wind direction bins WDIRq

i (e.g., WDIRNW
i for when wind is blowing

from the North-West for observation i belonging to a particular county in a particular point in time)
interacted with geographical region level indicators Gc: ZD

i =
∑

c

∑
q WDIRq

i ×Gc. One challenge in
constructing this set of instruments is the choice of geographical granularity for Gc. On the one hand,
if Gc are large regions including multiple counties, a particular wind direction requires that pollution
shifts in the same direction and to the same degree for all counties in the same groupGc. Counties just
North or just South of an urban center, however, are likely to receive the pollution shock when wind
blows from the opposite direction, rather than from the same direction. Similarly, a county South of a
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large urban center, and a county South of a small urban center, should receive a pollution shock when
wind is blowing from the North, but the size of the pollution shock likely differs. On the other hand,
if Gc are small entities, e.g., counties themselves, each county is allowed to have different pollution
shocks in different sizes from different wind directions, but the set of instruments grows larger than
the number of panels or countiesNc. This can lead to computational difficulties and inefficient standard
errors.21 Deryugina et al. (2019) balance this trade-off by selecting the granularity of Gc based on a k-
means cluster algorithm, which generates groups that include nine counties on average.

We instead solve this trade-off by using a different approach that allows full flexibility in howwind
directions shift pollution in different counties (i.e.,Gc at the county level), while dramatically reducing
the number of instruments as well. Instead of interacting wind direction bins with county indicators,
we transform the values in the wind direction dummies to capture both the sign and size of pollution
shocks from changes in wind direction for each county. We do this in two steps. First, we create a new
variable ˜AQIqc which is pollution in county c averaged over the entire sample when wind is blowing
from direction q in county c, demeaned by the average pollution level in county c:

˜AQIqc =
1∑
i∈qc

∑
i∈qc

AQIqci − 1∑
i∈c

∑
i∈c

AQIi (3)

We then use ˜AQIqc to generate a set of instruments Zq
i , where each instrument corresponds to a

particular wind direction (e.g., ZNW
i ), and the values of Zq

i are populated by ˜AQIqc if a particular
observation i belongs to county c and the wind in this particular year-month in this county is blowing
from q:

Zq
i =


˜AQIqc ifWDIRq

i = q and i ∈ c,

0 otherwise
(4)

This generatesNq instruments instead ofNq×Nc instruments. Zq
i also addresses the two restrictions

that arise when pooling multiple counties into groups. First, a single coefficient on a particular wind
direction bin (e.g., the coefficient for ZNW

i ) accounts for different signs of pollution shocks for different
counties from the same wind direction. For example, a county South-East of a major urban center
is likely to have a positive value in ZNW

i , whereas a county North-West of the major urban center is
likely to have a negative value in ZNW

i . Therefore the coefficient for ZNW
i can shift pollution for the

two counties into different directions. Second, a single coefficient on a particular wind direction bin

21Optimal (two-step) GMM with a clustered weighting matrix at the county level is infeasible, for example, because the
number of instruments is larger than the number of clusters.
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also accounts for different sizes of pollution shocks. For example, a county South-East of a large urban
center may experience larger pollution shocks when wind blows from the North-West than a county
South-East of a small urban center. Since the average size of pollution shocks is captured in ZNW

i , the
same coefficient on ZNW

i can shift pollution to a different extent in different counties.
We design the instruments Zq

i to capture pollution shocks that occur from changes in wind direc-
tion. Since we usewind-induced pollution shocks averaged across the entire sample when constructing
Zq

i , we do not capture individual events that generate pollution shocks that only occur in a particular
year-month in a particular county, which could be problematic since they may also correlate with in-
fluenza cases.22 We also control for changes in weather that might affect influenza hospitalizations
directly and correlate with changes in wind direction, such as temperature, humidity, precipitation or
wind speed. Finally, since we use a one-month lagged AQI as our variable of interest, we use a one-
month lagged wind direction instrument to form our moment conditions.

For our baseline model, we use the four quadrants as wind direction bins, but have also performed
robustness checks with alternative numbers of wind direction bins. We estimate our instrumented
model with a Poisson GMM-IV procedure that accounts for fixed effects through quasi-mean differ-
encing, and construct moment conditions with our set of instruments. Note that the non-instrumented
PoissonGMMestimates are numerically equivalent to a Poisson Pseudo-MaximumLikelihood (PPML)
estimator.23 We cluster standard errors at the county level to allow for arbitrary heteroskedasticity and
serial correlation. For our linear specification, we use the corresponding Linear GMM-IV procedure
that is numerically equivalent to standard linear GMM optimization. We provide econometric details
in Appendix A.2.

As an expansion, we include further instruments for AQI based on thermal inversions (Arceo,
Hanna and Oliva, 2016). Typically, air is colder the farther from the earth’s surface. Thermal inver-
sions appear when a warm air layer moves above a cold air layer, reducing air cycling and generating
stagnant air conditions. While inversions do not directly affect health (conditional on temperature),
they trap pollutants closer to the ground, leading to increases in pollution concentrations.24 We use the
share of days with inversions and the average strength of inversions at the county-year-month level.
We then interact both variables with a scaling variable that is the average county AQI across the entire
sample. This allows inversions in more pollution-intensive regions (e.g., large urban centers) to shift
pollution more than in less pollution-intensive regions (e.g., rural counties).

22Identification does not use prevailing wind direction, which would not change across time and, as Deryugina et al. (2019)
note, could lead to sorting or strategic placement of pollutionmonitors. Instead, our instrument usesmonth-to-month changes
in wind patterns in a given county by year by quarter cell, which should not affect sorting or monitor placement.

23We show the PPML (Correia, Guimarães and Zylkin, 2019) estimates in the Appendix. The PPML point estimates are
consistent as long as the conditional mean is correctly specified, irrespective of the distribution of the outcome or errors
(Gourieroux et al., 1984). The PPML estimator performs well with a large number of zeros and over- or under-dispersion in
the data (Silva and Tenreyro, 2006, 2011).

24We use inversions between midnight and 6AM to limit potential confounding through behavioral responses.
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While our PoissonGMM-IV fixed effects estimation does not have an explicit first stage regression as
in two-stage least squares estimations, we can approximate a first stage by running a linear regression
of AQI on our instruments and controls. Table A.3 in Appendix A.3 shows that our wind instruments
shift pollution with a Kleibergen-Paap F-stat of 176.8 (Column 1).25 Inversions also shift pollution,
however, the Kleibergen-Paap F-stat is lower at 8.6 when including inversions alone (Column 4), and
91 when including wind direction and inversion instruments simultaneously (Column 7).26 For this
reason, our preferred specification relies solely on the instruments based on wind direction, though we
also show results with both sets of instruments.

B. Vaccines

To estimate the impact of vaccine protection (V Pcs) on the pollution-hospitalization relationship, we
modify Equation 1 to include an interaction term AQIcym−1 × V Pcs, noting that the base effect V Pcs is
absorbed in the fixed effects γcsy:

E[Hcym|AQIcym−1, V Pcs,Xcym, γcsy, µym]

= exp(β1AQIcym−1 + β2 (AQIcym−1 × V Pcs) +X′
cymδ1 +X′

cym−1δ2 + γcsy + µym) (5)

Several econometric challenges exist in evaluating how the influenza vaccine alters the effect of
pollution on influenza. Recall vaccine protection V Pcs is a composite measure of vaccine take-up and
effectiveness. Individuals may reduce avoidance behavior if vaccinated, or be more likely to get the
vaccine in seasons with more reported influenza cases, both of which attenuate the raw effect of the
vaccine. Selection bias in vaccine take-up may also pose a problem if the most susceptible or most
cautious are more likely to seek out vaccines. To address these issues, we instrument for potentially
endogenous vaccine protection (V Pcs) using exogenous vaccine effectiveness (V Es). Our identifying
variation exploits the natural variation in vaccine effectiveness, determined by the random variations
in the quality of the match between the influenza vaccine and the viral strain in circulation.27 Note
that at the time of vaccination, which is usually early in the influenza season, it is not yet known how
effective the vaccine will turn out over the course of the season. Therefore, vaccine take-up should
generally not be affected by vaccine effectiveness. We confirm this empirically by regressing take-up on

25Note that all wind direction bins have a positive coefficient, because the values of the instrument are negative when a
particular wind direction tends to blow in clean air for a particular county. The coefficients should converge to one as the
sample size grows, either through the number of years of number of counties. Table A.4 shows this pattern in a Monte Carlo
simulation of the approximated first stage regression.

26Note that the sum of the two coefficients, the coefficient on the interaction between share of inversion dayswith the county
average AQI (AQI) and the coefficient on share of inversion days, is positive at the average ofAQI(34.7), and the same holds
for the strength of inversions.

27See also Ward (2014) and White (2021) who, however, calculate vaccine effectiveness based on the names of the viral
strains in the vaccine and in circulation, which in contrast to our measure, do not take into account variations in vaccine
effectiveness across age groups and imperfectly map into clinical measures of effectiveness.
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effectiveness separately for our five age groups and find no statistically significant association in any of
the five regressions, with estimated implied elasticities close to zero (see Appendix Table A.5).

Effectiveness based on antigenic drift is, in principle, orthogonal to unobserved determinants of
health in a given year. This provides insights into how vaccines affect the pollution-induced spread
of influenza and provides a test of the causal effects of pollution on influenza. If vaccines moderate
the effect of pollution on influenza, it must be that pollution causally relates to influenza hospitaliza-
tions, though we cannot distinguish between whether the vaccine is: (i) reducing the probability any
pollution-harmed individual is exposed to the flu due to external benefits from vaccination of others,
or (ii) changing the probability that a pollution-harmed individual contracts a severe case of flu when
exposed.

To generate an overall measure of vaccine effectiveness (V Es) to instrument for V Pcs, we construct
a weighted average of time-varying age specific raw vaccine effectiveness (V Eraw

sa , which Figure 1c
shows). The weights for age groups are time-invariant and capture the age groups where vaccine ef-
fectiveness matters relatively more: those with a greater tendency of hospitalization and those with
higher vaccine take-up rates. Figure 1b shows these weights and that both hospitalization incidence
and vaccination rates are highest for those 65-years and older and 8-years and younger, the two most
vulnerable groups in our sample. Our measure of vaccine effectiveness is:

V Es =
1∑

a

(
V Ra ×HSa

) ∑
a

V Eraw
sa × V Ra ×HSa, (6)

where vaccine take-up rate weights V Ra and hospitalization shares HSa are simple averages across
influenza seasons s, e.g. V Ra = 1

S

∑
s V Rsa, and the first term 1∑

a(V Ra×HSa)
ensures that the age

weights sum to one such that overall vaccine take-up or hospitalizations do not affect our values of
vaccine effectiveness. As we use time-averaged hospitalization shares and vaccination rates, vaccine
effectiveness is the only source of temporal variation in our instrument.28 Figure 1c shows our final
measure of weighted vaccine effectiveness ranges between 0.17 and 0.51 during our study period.

By defining vaccine protection as a combination of vaccine effectiveness and vaccine take-up, we
interpret β2 as a change in either component, suggesting policy can focus on either measure. This helps
maintain a direct policy implication of our results — while random variation in vaccine effectiveness
provides a compelling identification strategy, policy efforts to improve it are met with limited success.
Vaccine take-up rates, however, may be more amenable to policy intervention through efforts to reduce

28A potential threat to the exclusion criteria for our instrument occurs if shocks that increase the spread of influenza (e.g.,
a sporting event associated with a local team as in Stoecker, Sanders and Barreca (2016)), also increase influenza mutation
rates and thus weaken vaccine effectiveness. This concern is likely limited, as recent research suggests that randommutations
during vaccine production, not from virus spread itself, drives mismatch of vaccines and strains in circulation. For discussion
of this research, see Cohen (2017).
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Table 1: The effect of air pollution on severe influenza cases

Influenza is Influenza is Influenza is
primary ICD code any ICD code only ICD code

Panel A: Poisson GMM
(1) (2) (3) (4) (5) (6)

AQI 0.0076 0.034 0.0082 0.031 0.014 0.037
(0.0024) (0.0076) (0.0024) (0.0070) (0.0058) (0.020)

AQI X VP -0.14 -0.12 -0.13
(0.036) (0.032) (0.10)

Panel B: Poisson GMM-IV
(1) (2) (3) (4) (5) (6)

AQI 0.028 0.11 0.021 0.088 0.043 0.11
(0.0074) (0.026) (0.0069) (0.024) (0.017) (0.049)

AQI X VP -0.53 -0.41 -0.49
(0.16) (0.14) (0.32)

Observations 17668 17668 20013 20013 3954 3954
Mean of outcome 6.04 6.04 11.05 11.05 0.81 0.81
Mean of AQI 35.27 35.27 35.06 35.06 38.07 38.07
Mean of VP - 0.21 - 0.21 - 0.2
Mean of VE - 0.36 - 0.36 - 0.35

Notes: The dependent variable in Columns 1-2 is the count of inpatient hospital admissions with influenza as primary diagnosis within a
county-year-month. The dependent variable in Columns 3-4 is the count of inpatient hospital admissions with influenza as any (primary
or secondary) diagnosis within a county-year-month. The dependent variable in Columns 5-6 is the count of inpatient hospital admissions
with influenza as only diagnosis within a county-year-month. We limit analysis to the influenza intensive months of October throughMarch
and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine
protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from
a Poisson GMM estimation with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather
controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind
speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI
means worse air quality. The Columns in Panel B use our instruments based on wind direction instead of the AQI to generate moment
conditions, and even-numbered Columns additionally use our VE instrument instead of VP to form moment conditions. The number of
included observations can vary across different outcomes due to fixed effects and varied counts in each county-year-month cell. Standard
errors in parentheses are clustered at the county level.

the costs of obtaining a vaccine or promote its benefits. With this policy lens inmind,wediscuss changes
in β2 as the effect of a relative increase in vaccine take-up rates.

To estimate Equation (5), we use the same Poisson GMM-IV fixed effects estimator as for Equation
(2)withwinddirection instruments for theAQI. Themoment conditions for our interaction termAQI×

V P use the interaction of wind direction instruments with our V E instrument. Table A.3 in Appendix
A.3 shows that our wind instruments interacted with V E shift the interaction term with a Kleibergen-
Paap F-stat of 35.3 (Column 3).

III. Results and Discussion

A. Influenza Hospitalizations

Table 1 shows estimates from our Poisson GMM estimations. Coefficients represent the AQI semi-
elasticity of the count of inpatient hospitalizations with primary diagnosis influenza within a county-
year-month, or an approximate percentage change in inpatient counts per unit of AQI when estimates
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(a) Low vaccine protection
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(b) High vaccine protection

Figure 2: Air quality and vaccine protection
Notes: Panels (a) and (b) show binned scatterplots with 30 bins and a linear regression on the underlying data. Each shows the correlation
net of county-by-season-by-year andmonth fixed effects aswell asweather controls, where the vertical axis shows the residuals from a Poisson
regression and the horizontal axis the residuals from a linear regression without instruments. The panels show the relationship for below
(a) and above (b) median vaccine protection in the sample.

are sufficiently small. Estimates from Column 1 in Panel A correspond to Equation 2, without using
any instruments, and imply a 1-unit increase in the monthly AQI associates with a 0.76% increase in
influenza inpatient admissions. Column 1 in Panel B shows that the estimate is larger when using
instruments for the AQI based on wind direction. Given that the non-instrumented estimates contain
county-by-quarter-by-year fixed effects, they likely control for many potential sources of confounding,
such as residential sorting or economic activity. Much of the remaining bias in the non-instrumented
estimates is likely due tomeasurement error. If this error is classical, estimates will be biased to the null,
and the IV approach will generate larger (absolute) estimates. Our larger IV estimates are consistent
with this, as well as the patterns found in Deryugina et al. (2019).29 Specifically, our IV approach finds
that a 1-unit increase in themonthlyAQI results in a 2.8% increase in influenza inpatient admissions. To
put this estimate into a national context, a one-standard-deviation increase in AQI (10.9-unit increase in
our data) amounts to approximately 27,182 (35.7%) additional inpatient hospitalizations for a 6-month
influenza season in the U.S.30

To explore the moderating role of the influenza vaccine, Figure 2 shows the regression-adjusted

29The p-value ofHansen’s J-statistic of overidentifying restrictions in Column 1 in Panel A is 0.53, sowe cannot reject validity
of the model.

30Weuse the 10.9-unit increase and the coefficient 0.028 for the relative increase exp(0.028∗10.9)−1 = 0.3569, andmultiply
it by the average inpatient admissions per county-year-month (4.04), the total number of US county equivalents according
to the US Census Bureau (3142) (United States Census Bureau, 2018) and by the 6 months within a influenza season. Note
that we are using average admissions across our pre-estimation sample of summary statistics from Table A.2 (4.04), which
is lower than the average reported in the estimation sample in Table 1 (6.04), since a count model drops counties with zero
valued outcomes within the level of the fixed effect. This only counts cases with primary diagnosis influenza, making this
estimate of absolute numbers a lower bound. Using hospitalization with any influenza diagnosis (Column 3) doubles the
additional predicted cases because the base of hospital admissions is much larger.
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relationship between AQI and influenza admissions separately in a sample with low vaccine protection
in Panel (a) and high vaccine protection in Panel (b). We determine each group using amedian vaccine
protection (0.21) sample split. The relationship between air quality and admissions rates is positively
sloped in Panel (a), indicating that theAQI affects flu admissionswhen the vaccine is a bad strainmatch
and/or vaccine take-up is low. When vaccine protection is high, however, this relationship flattens
almost completely, as Panel (b) shows, suggesting an effective vaccine with sufficient take-up nullifies
the relationship between pollution and the flu. This does not imply a high vaccine protection eliminates
all influenza hospitalizations or all pollution-related respiratory hospitalizations. Rather, sufficiently
high vaccine effectiveness and take-up eliminate those flu hospitalizations directly attributable to the
negative shock of pollution.

To test for the moderating role of vaccine protection, we present estimates of Equation (5) using
our Poisson GMM framework in Table 1. Column 2 in Panel A shows the estimates without using in-
struments, and Column 2 in Panel B uses our instruments based on wind direction for the AQI, and
our vaccine effectiveness instrument (VE) interacted with the wind direction instruments for the inter-
action term of AQI and vaccine protection (VP). The instrumented estimates are larger than the non-
instrumented estimates by around the same factor as for the non-interacted results in Column 1 in Panel
A and B. Vaccine protection substantially moderates pollution-driven influenza cases. Our negative in-
teraction coefficient in Column 2 in Panel B implies that a vaccine protection of 21%, which coincides
with the average vaccine protection in our sample (the maximum is 33%), nullifies the link between air
pollution and influenza hospitalizations. This supports prior evidence of thresholds in influenza vacci-
nation where the positive external benefits are large enough to almost eliminate influenza spread even
at incomplete vaccination take-up and effectiveness (Boulier, Datta and Goldfarb, 2007;Ward, 2014). In
seasons with poor viral match of the vaccine (see Figure 1c), vaccine protection is substantially lower
(see Figure 1d). To compensate for a drop in vaccine effectiveness from the median (0.39) to the 25th
percentile (0.32), vaccine take-up would need to increase by 18% across all age groups. Table A.6 in
Appendix A.3 provides reduced form results where we include vaccine effectiveness directly instead
of instrumenting for vaccine protection.

In our baseline specifications in Columns 1 and 2, we include only cases where the primary diag-
nosis is influenza, thus ignoring occurrences of influenza in secondary diagnoses. This likely misses
some influenza-related hospitalizations, but is arguably more robust to over-counting cases that might
arise by including patients who suffer from different health conditions triggered by air pollution (e.g.,
asthma) and then happen to be tested for influenza upon hospital admission due to health protocols. To
show robustness to different counting strategies, Columns 3 and 4 repeat our analysis counting patients
that have any (primary or secondary) influenza diagnosis. This yields an average number of influenza
admissions per county-year-month in our estimation sample that is roughly double (11.05) compared
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Table 2: Heterogeneity by age and race

Panel A: By age (Poisson GMM-IV)
≤ 8 years 9-64 years ≥ 65 years

(1) (2) (3) (4) (5) (6)
AQI 0.034 0.13 0.032 -0.039 0.0050 0.037

(0.0093) (0.051) (0.0080) (0.054) (0.013) (0.014)
AQI X VP -0.34 0.45 -0.33

(0.16) (0.34) (0.15)
Observations 10593 10593 13984 13984 13619 13619
Mean of outcome 1.89 1.89 2.76 2.76 3.51 3.51
Mean of AQI 36.51 36.51 35.7 35.7 35.5 35.5
Mean of VP - 0.31 - 0.16 - 0.2
Mean of VE - 0.48 - 0.4 - 0.3

Panel B: By race (Poisson GMM-IV)
Black/Hispanic White
(1) (2) (3) (4)

AQI 0.024 0.086 0.040 0.13
(0.012) (0.035) (0.0070) (0.023)

AQI X VP -0.43 -0.56
(0.20) (0.13)

Observations 7740 7740 15553 15553
Mean of outcome 3.27 3.27 4.17 4.17
Mean of AQI 37.5 37.5 35.46 35.46
Mean of VP - 0.21 - 0.23
Mean of VE - 0.36 - 0.37

Notes: The dependent variable is the count of inpatient hospital admissions with influenza as primary diagnosis within a county-year-
month. The Columns indicate which age (Panel A) or race (Panel B) subgroups are counted in the dependent variable. We limit analysis
to the influenza intensive months of October through March and our sample spans 2007-2017 with the exception of October 2008 to March
2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is
measured between 0 (low) and 1 (high). We only use the vaccine take-up rates and raw vaccine effectiveness for the age groups indicated in
each Column in Panel A. For the results by racial groups in Panel B, we use our VP scaled by the ratio of race specific to overall vaccine take-up
by season. The results are from Poisson GMM-IV estimations with county-by-season-by-year fixed effects and year-by-month dummies as
well as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear
terms for precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is
lagged one month and a higher AQI means worse air quality. The results use our instruments based on wind direction instead of the AQI to
generate moment conditions, and even-numbered Columns additionally use our VE instrument instead of VP to form moment conditions.
The number of included observations can vary across different outcomes due to fixed effects and varied counts in each county-year-month
cell. Standard errors in parentheses are clustered at the county level.

to our baseline approach (6.04). The estimated coefficients, which again reflect semi-elasticities, are
close to baseline results both for the level effect of AQI as well as the interaction with vaccine effective-
ness. In Columns 5 and 6, we use a more restrictive condition by counting hospital admissions where
the only diagnosis is influenza. This reduces the average count of admissions per county-year-month to
0.81 (the majority of influenza hospital admissions have further influenza-induced complications, e.g.,
pneumonia). The estimated coefficients are again comparable to our baseline estimates, though with
larger standard errors given the considerable drop in sample size due to more cells with zero counts.

Table 2 explores heterogeneity by age and race using our Poisson GMM-IV specifications (we show
non-instrumented results in Table A.7 in Appendix A.3).31 Columns 1 through 6 in Panel A show

31For our regressions with age-specific outcomes in Table 2, we only use the vaccine take-up rate and raw vaccine effec-
tiveness data of the corresponding age groups for constructing our overall measure of vaccine protection (VP) and vaccine
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results for three distinct age groups: up to age 8, age 9 through 64, and age of at least 65 years, where the
first and last reflect the more vulnerable groups.32 Patterns across the youngest and oldest groups are
similar to each other and consistent with our main results. The interaction with vaccine protection for
the middle age group, however, is imprecise and positive. A positive point estimate on the interaction
term implies that vaccines do not help reduce influenza hospitalizations due to air pollution, but can
still reduce influenza hospitalizations not driven by air pollution. The confidence intervals are large,
however, and overlap with the confidence intervals of the other age groups, so we draw little inference
from this age group estimate.

Estimates are similar across racial and ethnic groups (Blacks/Hispanics andWhites in Columns 1 to
4 in Panel B), with overlapping confidence intervals.33 Combining these results with well-established
racial and ethnic differences in pollution exposure (Banzhaf, Ma and Timmins, 2019; Colmer et al.,
2020; Currie, Voorheis andWalker, 2020)may help explain the higher influenza burdens experienced by
those communities (e.g. Quinn et al., 2011). As such, our results suggest that air quality control could
be an additional policy lever to help reduce severe influenza cases among these vulnerable groups,
particularly within those communities in which vaccine access is limited and reluctance to receive the
vaccine is particularly high.34

Althoughwe focus primarily on inpatient hospital admissions for influenza, Table 3 shows estimates
of the effect of air pollution and vaccines on two alternative outcomes: emergency department (ED)
visits and mortality. ED visits may pick up less severe cases of the flu, though visiting the ED can be
plagued by selection concerns since they are more likely to serve as a source of primary care for groups
with limited access to health care (Finkelstein et al., 2012). Despite the fact that our data on ED visits
has slightly different geographical and temporal coverage than the data for inpatient hospitalizations,
the estimates are close to our main results. In Columns 5 to 8 we instead look at influenza deaths,
which are less frequent than inpatient hospitalizations but also less subject to selection concerns.35 The
estimates for mortality also show a similar pattern to our main results. Together, these suggest that air
pollution, and the protective role of vaccines, each affect a wide range of flu case severity.

In Table 4 we perform three further tests. First, Columns 1 and 2 explore robustness to functional
form by using a linear mean function, closer to standard OLS, in place of the exponential mean function

effectiveness (VE). We show means of VP and VE for each regression at the bottom of the table. We note that vaccines have
private and external benefits, so vaccine take-up of any one group generates positive spillovers to other groups.

32We define these age splits based on the age splits available in the vaccine effectiveness measures.
33We adjust vaccine protection by the seasonal ratio of vaccine take-up of the particular ethnic group to overall vaccine

take-up, which results in a slightly higher mean of VP for Whites, as reported in the bottom of the table.
34These benefits are in addition to any improvements in pollution-related health not associatedwith influenza. See Deryug-

ina et al. (2021) for a discussion of policy targeting regarding polluted areas and vulnerable people.
35Since the data on mortality covers the entire U.S., these results also improve the representativeness of our main findings.

The estimation sample size reported in the table is only slightly higher than for ourmain results because themortality outcome
has more zeros resulting in more observations being dropped by the count model.
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Table 3: The effect of air pollution and vaccines on emergency department visits and mortality

ED visits Mortality
Poisson GMM Poisson GMM-IV Poisson GMM Poisson GMM-IV
(1) (2) (3) (4) (5) (6) (7) (8)

AQI 0.018 0.059 0.038 0.11 0.011 0.028 0.0014 0.053
(0.0027) (0.010) (0.0071) (0.019) (0.0023) (0.0073) (0.0080) (0.029)

AQI X VP -0.22 -0.43 -0.088 -0.30
(0.047) (0.11) (0.036) (0.15)

Observations 10049 10049 10049 10049 23126 23126 23126 23126
Mean of outcome 38.4 38.4 38.4 38.4 0.96 0.96 0.96 0.96
Mean of AQI 35.3 35.3 35.3 35.3 37.41 37.41 37.41 37.41
Mean of VP - 0.21 - 0.21 - 0.2 - 0.2
Mean of VE - 0.37 - 0.37 - 0.35 - 0.35

Notes: The dependent variable is the count of emergency department visits (in Columns 1 to 4) or the count of deaths (in Columns 5 to 6),
all with influenza as primary diagnosis within a county-year-month. We limit analysis to the influenza intensive months of October through
March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available.
Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low) and 1 (high). We only
use the vaccine take-up rates and raw vaccine effectiveness for the age groups indicated in each Column. For the results by racial groups,
we use our VP scaled by the ratio of race specific to overall vaccine take-up by season. The results are from Poisson GMM-IV estimations
with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather controls consist of five bins of
temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables are
based on county-year-month averages. The air quality index (AQI) is lagged onemonth and a higherAQImeansworse air quality. The results
are from a Poisson GMM estimation with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls.
Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation
and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a
higher AQI means worse air quality. The Columns indicating “GMM-IV” use our instruments based on wind direction instead of the AQI to
generate moment conditions, and even-numbered Columns additionally use our VE instrument instead of VP to form moment conditions.
The number of included observations can vary across different outcomes due to fixed effects and varied counts in each county-year-month
cell. Standard errors in parentheses are clustered at the county level.

consistent with a Poisson count model. Columns 1 and 2 in Panel A show a linear GMMmodel without
instruments (OLS), for a linear version of Columns 1 and 2 in Panel A of Table 1. Columns 1 and
2 in Panel B show the IV as a linear version of Columns 1 and 2 in Panel B of Table 1 . As in our
baseline Poisson GMM model, the IV estimates in Panel B are around three times larger than those in
Panel B. Since the point estimates now reflect level effects, we divide by the mean of the dependent
variable to obtain percent effects that are more readily comparable to the estimates from the count
model. Doing so, the linear estimate in Column 1 in Panel B of 0.18 translates to a 3% effect, which
is very close to the estimate of 2.8% using the count model. Vaccine protection is also comparable in
magnitude. In Appendix Table A.8, we show equivalence of our Poisson GMM estimator (without
instruments) with a Poisson Pseudo-Maximum Likelihood estimator, and we estimate a linear model
using the inverse hyperbolic sine (IHS) of hospitalizations as our outcome. The estimates using the
IHS are similar to semi-elasticities (but, unlike the log function, allow for zeros) and can therefore be
more directly compared with our baseline Poisson GMM estimates. The effect of 0.02 in Column 7 in
Appendix Table A.8 is close to our baseline effect of 0.028 in Table 1. Together, these results suggest that
our estimates are largely insensitive to the functional form choice of our dependent variable.

Second, we ask how the effect of air pollution on influenza hospitalization compares to the effect on
any respiratory hospitalization (including influenza) in Columns 3 and 4. Here we continue to use the
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Table 4: Linear specification, all respiratory hospitalizations, and osteoarthritis as falsification test

Influenza All respiratory
hospitalizations hospitalizations Osteoarthritis

Panel A: No instruments
Linear GMM Linear GMM Poisson GMM
(1) (2) (3) (4) (5) (6)

AQI 0.063 0.19 0.17 0.014 -0.00054 0.00019
(0.025) (0.073) (0.067) (0.16) (0.00027) (0.00084)

AQI X VP -0.61 0.72 -0.0034
(0.28) (0.69) (0.0041)

Panel B: With instruments
Linear GMM-IV Linear GMM-IV Poisson GMM-IV
(1) (2) (3) (4) (5) (6)

AQI 0.18 0.51 0.50 0.33 -0.0016 0.00069
(0.058) (0.16) (0.29) (0.38) (0.0014) (0.0029)

AQI X VP -1.88 -1.32 -0.015
(0.79) (2.17) (0.015)

Observations 17668 17668 24596 24596 24255 24255
Mean of outcome 6.04 6.04 141.32 141.32 43.51 43.51
Mean of AQI 35.27 35.27 34.52 34.52 34.54 34.54
Mean of VP - 0.21 - 0.21 - 0.21
Mean of VE - 0.36 - 0.37 - 0.37

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis in Columns 1 and 2, the count
of inpatient hospitalizations with any respiratory primary diagnosis in Columns 3 and 4, and the count of inpatient hospitalizations with
osteoarthritis as primary diagnosis in Columns 5 and 6, all at the county-year-month level. We limit analysis to the influenza intensivemonths
of October through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness
data is not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low) and
1 (high). The results are from a Linear GMM estimation in Columns 1 to 4 and from a Poisson GMM estimation in Columns 5 and 6, all
with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather controls consist of five bins of
temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables are
based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air quality. Panel B
uses our instruments based on wind direction instead of the AQI to generate moment conditions, and even-numbered Columns additionally
use our VE instrument instead of VP to form moment conditions. The number of included observations can vary across different outcomes
due to fixed effects and varied counts in each county-year-month cell. Standard errors in parentheses are clustered at the county level.

linear models from Columns 1 and 2, which has the benefit of making direct level effect comparisons,
unlike the Poisson model, which provides relative percentage effects. As indicated in Table 4, the mean
of hospitalizationswith any respiratory hospitalization per county-year-month (141.32) is much higher
than for influenza hospitalizations alone (6.04). Panel A shows the effect on all respiratory hospitaliza-
tions without instruments and Panel B with instruments.36 The absolute effect of a one-unit increase
of the AQI on influenza hospitalizations (0.18, Column 1 in Panel B) is roughly one-third of the size of
the effect on all respiratory hospitalizations (0.5, Column 3 in Panel B).37 Assuming that outside of in-
fluenza season the effect on all respiratory hospitalizations remains the same, but the effect on influenza
hospitalizations drops to zero, influenza hospitalizations due to air pollution accounts for roughly 18%
of all respiratory hospitalizations due to air pollution. This suggests that the increased incidence of in-

36A negative but noisy interaction effect on all respiratory hospitalizations in Column 4 in Panel B is consistent with our
vaccine effects, as the majority of hospitalizations for respiratory diseases are unrelated to influenza (e.g., asthma).

37This is further corroborated when comparing the effect of air pollution on influenza with all other diagnoses groupings
in Appendix Figure A.6.
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fluenza accounts for a sizeable share of the health harms from air pollution. It also implies that greater
vaccine strain matches and increased take-up rates can reduce a sizeable share of hospitalizations from
air pollution.

Third, as a general specification test for our model, we perform a falsification test by repeating our
analysis using an outcome we do not expect to be related to pollution or vaccines. We choose to narrow
our focus to osteoarthritis, which is unlikely to be related to short-term variation in pollution. Our
Poisson GMM-IV results in Column 5 and 6 in Panel B of Table 4 indicate precise zero coefficients on the
effect of AQI and the interactionwith vaccine protection, lending support to ourmodel specification. As
amore comprehensive test, Appendix FiguresA.6, A.7 andA.8 showour PoissonGMM-IV estimates for
all ICD disease groupings separately, as long as there are sufficient number of cases in those diseases.38

Compared to all other disease outcomes, we find that influenza hospitalizations aremost affected by the
AQI in relative terms.39 The vast majority of disease outcomes is associated with a precise zero effect,
similar to osteoarthritis. There are some diagnoses where we find that AQI increases hospitalizations
(Figure A.6), such as acute bronchitis, perinatal conditions (often includes respiratory conditions), or
diabetes (known to increase influenza risk (Allard et al., 2010)). Adjusting for the familywise error rate
for multiple hypothesis testing renders all results insignificant, except those for our influenza outcome.

As an expansion to our wind instrumental variables, we explore an additional source of variation
by using inversions in Appendix Table A.9. In Columns 1 and 2 we use only inversions (without using
instruments based onwind direction). The coefficients are similar as in ourmain results in Table 1, with
overlapping confidence intervals. We next use both the inversion and wind based sets of instruments
in Columns 3 and 4, again with estimates close to our main results.40 These patterns lend support to
the validity of our model design, and demonstrate that our IV estimates are not a unique feature of our
measure of wind direction in the first stage.

Finally, TableA.10 inAppendixA.3 explores further robustness of ourmainPoissonGMM-IV results
to changes in control variables, calculation of AQI, or including off-seasonal cases. In Columns 1 and 2,
we replace our county-by-season-by-year fixed effects with coarser county-by-influenza season effects.
In Columns 3 and 4 we drop all weather controls. In Columns 5 and 6 we use the full controls and
additionally include lagged employment at the county-year-month level to control for economic activity
at our level of analysis. In Columns 7 and 8 we do not winsorize the AQI, and in Columns 9 and 10

38We focus on disease groupings that have at least half as many occurances as influenza. This implies a threshold mean
of at least 3.02 in our outcome variable, half the mean of our influenza outcome (6.04). Including additional low occurrence
diseases confirms the pattern shown in the figures.

39Note that our estimate is in relative terms due to the exponential mean function. It is possible that the estimate in absolute
terms is higher for other diseases, such as acute bronchitis, due to higher baseline prevalence.

40The test of overidentifying restrictions is rejected at the 5% level, both when using inversion instruments alone and when
using inversions and wind instruments jointly. The test for overidentifying restrictions is passed only with instruments based
on wind direction alone as in our main results. This together with the lower first stage F-stat for inversion instruments drives
using soley wind direction instruments as main results.
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we do not spatially interpolate the AQI. In Columns 11 and 12 we additionally include all county-year-
month cells with positive influenza hospitalization cases. The estimates remain similar to our main
estimates.

B. Medical Costs

Given the above effects, we calculate the additional hospital costs and charges attributable to pollution-
associated influenza to assess the costs generated by air pollution and the role of vaccine protection in
mitigating those costs.41 Weuse hospital costs as the dependent variable in Table 5, showing only results
using instruments, with non-instrumented results presented in Appendix Table A.11, and results using
hospital charges instead of costs in Appendix Table A.12. Column 1 in Panel A indicates that a one-unit
increase in the AQI corresponds to a $US 1,595 increase in hospital costs from hospitalizations with
primary diagnosis influenza. This implies that a one-standard-deviation decrease in AQI (10.9 points)
reduces hospitalization costs by $US 328 million per influenza season across the entire U.S. Column 2
in Panel A shows the interaction effect with vaccine protection, and Columns 1 and 2 in Panel B use a
Poisson model instead of a linear model. Since the effect is a relative effect in Panel B, the estimates are
reassuringly close to our estimates in Columns 1 and 2 in Panel B in Table 1 where we use the count of
hospitalizations as outcome.42

We can use the results in Column 2 in Panel A to further illustrate our main results in terms of addi-
tional hospital costs. When VP is high (maximum is 0.33), an increase in AQI has no noticeable impact
on flu-specific hospitalization costs due to the protective nature of the vaccine. In contrast, when VP is
low, even small changes in the AQI generate large increases in additional influenza-specific hospital-
ization costs. Going from an AQI of 40 to 50 (both of which are well below US regulatory standards)
generates roughly 455 million $US in additional influenza inpatient hospitalization costs at a vaccine
protection of 0.086, the minimum in our sample.43 Conversely, when air quality is high (AQI<20), a
drop inVPgenerates little additional pollution-driven influenza hospitalization costs (though influenza
cases that are not pollution driven still might be greatly affected). On the other hand, when air quality
approaches an AQI of 70 (which is still relatively clean by WHO standards), VP is highly impactful. In
particular, a drop in vaccine protection from its median (0.21) to the 25th percentile (0.16), generates
around 166 million $US in additional pollution-driven influenza costs when AQI is at the low end of

41We use deflated hospital charges with base year 2018, and combine them with the HCUP (2018b) provided Cost-to-
Charge Ratios to convert them into hospital costs. Hospital charges are around $US 29 thousand per patient per influenza
diagnosed inpatient hospitalization, but actual costs to hospitals are lower at around $US 8 thousand per patient (Appendix
Table A.2). Further, these estimates ignore indirect costs to patients, such as forgone earnings.

42Note that we have an equally high share of zeros regardless of whether we use hospital costs or count of hospitalizations
as our outcome measure. The better fit of an exponential (Poisson) model to data with large shares of zeros may explain why
the Poisson based estimates in Panel B are slightly more precise than those based on the linear model in Panel A.

43Calculated as 10 · (3117− 0.08 · 8794) = 24, 135 $US per county-month, multiplied by 3142 counties and 6 months.
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Table 5: Total hospitalization costs, length of stay, and costs per day

Length of stay
Total costs in days Costs per day

Panel A: Linear GMM-IV
(1) (2) (3) (4) (5) (6)

AQI 1594.5 3117.3 0.017 0.070 15.3 20.2
(504.7) (1415.5) (0.017) (0.046) (7.34) (19.2)

AQI X VP -8794.1 -0.27 -21.1
(7227.4) (0.26) (110.8)

Panel B: Poisson GMM-IV
(1) (2) (3) (4) (5) (6)

AQI 0.024 0.097 0.0065 0.058 0.0078 0.023
(0.0086) (0.026) (0.0077) (0.021) (0.0065) (0.018)

AQI X VP -0.53 -0.32 -0.10
(0.17) (0.13) (0.11)

Observations 17754 17754 17783 17783 17754 17754
Mean of outcome 48011.49 48011.49 2.64 2.64 1238.3 1238.3
Mean of AQI 35.28 35.28 35.29 35.29 35.28 35.28
Mean of VP - 0.21 - 0.21 - 0.21
Mean of VE - 0.36 - 0.36 - 0.36

Notes: The dependent variable are hospital costs for inpatient hospitalizations with influenza as primary diagnosis, length of stay in days,
or costs per day. We limit analysis to the influenza intensive months of October through March and our sample spans 2007-2017 with
the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by
hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a Linear GMM estimation
in Panel A and from a Poisson GMM estimation in Panel B, all with county-by-season-by-year fixed effects and year-by-month dummies as
well as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear
terms for precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is
lagged one month and a higher AQI means worse air quality. All results use our instruments based on wind direction instead of the AQI to
generate moment conditions, and even-numbered Columns additionally use our VE instrument instead of VP to form moment conditions.
Standard errors in parentheses are clustered at the county level.

our sample range and around 580 million $US at the high end of the pollution range.44

We also decompose the effect on total costs into two of its three components, the effect on length
of stay in days (Columns 3 and 4 of Table 5) and costs per day (Columns 5 and 6).45 Examining these
two outcomes may also help to shed some light on whether pollution is likely to increase severity or
spread of flu. Our results show a positive but statistically insignificant increase in length of stay, and a
statistically significant increase in costs per day. We interpret these results as supporting the idea that
pollution leads to more intense cases of the flu, i.e., it increases severity. We note, however, that we
cannot properly disentangle the spread versus severity story, as we only observe the joint outcome of
likelihood of hospitalization, and not the two separate components (the likelihood of catching the flu
or the likelihood of hospitalization conditional on catching the flu).46

A back of the envelope calculation based on realizations within our dataset may help place our esti-
mates in a more useful context. Our results suggest that a 10% (3.5 AQI points) reduction in the AQI in

44Calculated as 20 · (0.05 · 8794) = 8, 794 and 70 · (0.05 · 8794) = 30, 779, both multiplied by 3142 counties and 6 months.
45The third component is the number of hospitalizations per county-month as in Table 4 in Columns 1 and 2 in Panel B.
46Admitting more marginally sick people, for example, could undermine this exercise.
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a historically bad vaccine effectiveness year (17%VE and 11%VP)would avert 12,607 (16.6%) hospital-
izations across the U.S. or $US 109 million in influenza medical costs.47 In contrast, a 10% improvement
in either vaccine take-up or vaccine effectiveness from average vaccine take-up or effectiveness in a
historically polluted year (38.2 AQI) would avert 26,378 (34.6%) of pollution driven influenza hospi-
talizations, or $US 211 million.

C. Policy Implications

Since the marginal benefit from improving either VP or air quality decreases in the level of the other
variable, vaccine and air quality policies can serve as substitutes in preventing pollution-induced in-
fluenza cases.48 The optimal mix of those policies will depend on their relative costs on the margin
as well as the ‘spillover’ impacts each may have on harms beyond influenza. It is also worth noting
that these policies can operate on different time scales adding an additional dimension to the trade-offs
across each policy. For example, reducing pollution emissions requires investments in capital equip-
ment and takes considerable time, but informational approaches that promote vaccine take-up can bear
fruit much more quickly. Regardless of the specifics, recognizing the interaction of these two policies
broadens the toolkit to address the harms from either one of them, and thus necessarily allows one to
obtain a given set of policy objectives at (weakly) lower costs.

The interaction of vaccine take-up and air quality policies also highlights new potential benefits
from improved targeting of either policy. Given the seasonality of the flu, air quality policies could be
time-varying.49 Given our finding that influenza hospitalizations account for a significant share of all
respiratory hospitalizations from pollution, more stringent air quality policies in influenzamonthsmay
be particularly impactful.50

Programs to promote vaccine take-up can also be targeted toward vulnerable communities based
on socio-demographic risk factors. Using time-averaged data on vaccine take-up by state and race, air
quality by county, and socio-demographic county characteristics onmedian household income and race
fromChetty et al. (2018) and theU.S. Census, we askwhat an increase of 10% in the overall vaccine take-
up average (a 4.6 percentage point increase) achieves when targeted at different types of counties.51

47We calculate averted medical costs by multiplying the number of averted hospitalizations by the average costs per in-
fluenza hospitalization (US$ 8 thousand).

48In the event that air quality improvements reduce the spread of the flu, the two policies may serve as complements rather
than substitutes under certain conditions. For example, if the reproductive rate of flu is above 1 even with vaccine protection,
but falls below 1 when combined with air quality policy, then the two policies may be complements. We thank Ben Olken for
raising this point.

49We thank Douglas Almond for raising this point.
50Seasonal air quality policies are not without precedent. For example, the NOx cap-and-trade program in the U.S. only

operates between May and September when ozone tends to be highest (Deschenes, Greenstone and Shapiro, 2017).
51We calculate the average vaccine take-up by county using vaccine take-up rates by race and white, Black, Hispanic, and

Asian population shares by county. Our calculations account for the joint statistical relationships between vaccine-take up,
race, pollution exposure, and income.
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Specifically, we examine differences between the top and bottom 1% of U.S. counties in terms of racial
population shares and median income, and use our estimated coefficients to compare the benefits of a
4.6 percentage point increase in vaccine take-up across these scenarios.52

Increasing vaccine take-up in a county with high versus low Black population shares reduces hos-
pitalizations and associated costs by 40.7% versus 26.8%. The difference is substantial, since pollution
exposure is higher and vaccine take-up lower in communities with higher shares of Black residents.
Interestingly, we find little difference in results when stratifying by income. Targeting a high income
versus a low income county reduces pollution-induced influenza hospitalizations and associated costs
by 36.4% versus 38.0%. Correlations in our data suggest that these effects are similar due to two off-
setting forces. High income counties tend to include major cities, which are more polluted than more
rural areas (increasing the benefits of vaccine-take up), but also have higher baseline vaccine take-up
rates (decreasing the benefits). To some degree, this supports the conjecture that air quality controls
and vaccine take-up can serve as substitutes.

IV. Conclusion

Using a rich, longitudinal dataset, we provide evidence that air pollution increases seasonal influenza
hospitalization rates, and that improved vaccine protection, either through high vaccine effectiveness or
vaccine take-up, greatly diminishes this relationship and reduces the social andmedical costs of poor air
quality. Our empirical strategy, based on instrumental variables usingwind direction and the stochastic
nature of vaccine effectiveness across influenza seasons, limits risks of confounding. Our results are
robust to numerous assumptions about functional form, omitted variables, alternative outcomes, and
falsification tests.

That policies to combat air quality can protect citizens from the most serious threats of influenza
is a new insight that offers an additional tool in the global battle against the flu. At the same time, it
appears that increased flu vaccination rates and improvements in flu vaccine strain matches can avert
some of the harms from pollution. As such, the returns to policies designed to address pollution and
infection externalities are inextricably connected, such that approaching either in isolation will be sub-
optimal from a social welfare perspective. Thus, optimal policy strategies can help decrease medical
spending, avoid lost productivity, and reduce loss of life. These returns may be particularly high in
dense urban centers around the world, and developing countries in particular, where population den-
sity and high levels of pollution (de Lataillade, Auvergne and Delannoy, 2009) increase the intensity
of these interactions.

Our insights regarding compounding risks from pollution and flu may extend to other viral respi-

52We use the median county AQI and vaccine-take up rate in the bottom and top 1% of counties.
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ratory illnesses with similar etiological pathways. For example research on the COVID-19 pandemic
suggests significant effects of pollution on COVID-19 cases and deaths (Wu et al., 2020; Isphording and
Pestel, 2021).53 While vaccine developments aid against such health threats, new strains and viruses
may emerge that diminish such protection. Our results suggest an additional possible policy direction,
whereby environmental controls serve as an investment to optimally manage the harms from new viral
threats if effective vaccines are not available, while also providing additional protection against more
established respiratory infections that may drain the healthcare system during times of crises.
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A.1 Additional Descriptive Statistics

Table A.1 contains states and years with available admission months and patient zip codes in the
(HCUP, 2018b) inpatient hospitalization data we use. Figure A.1 plots distributions of several socio-
demographic variables for the counties in our HCUP data and for all U.S. counties. The graphs show
similar distributions suggesting that the subset ofHCUP counties is broadly representative ofU.S. coun-
ties. Table A.2 contains summary statistics at the county-year-month level for inpatient hospital admis-
sions with a primary influenza diagnosis, associated hospital charges, and the average monthly AQI.
We use the standard deviation of the AQI during the influenza season (10.9), the average inpatient
hospitalization admissions (4.04) and cost (32 thousand US$) for the calculation of absolute effects
based on our Poisson GMM-IV estimates (implying 8 thousand US$ per patient). Hospital charges are
slightly higher than costs (117 thousand US$).

To further illustrate the influenza seasonality, we use data on the timing of national influenza-like
illnesses from the Centers for Disease Control and Prevention (CDC, 2020). Figure A.2 shows that the
seasonality of inpatient hospitalizations in our datamatches closelywith general influenza-like illnesses
reported by the CDC.

The AQI is based on multiple pollutants, but for each county-day, a single pollutant is the defining
pollutant of theAQI (EPA, 2018). FigureA.3 showswhich pollutants are themain defining pollutants of
the AQI during the influenza season fromOctober throughMarch for three different intervals covering
our sample. Particulate matter (PM2.5 and PM10) and ozone are the defining pollutants in the AQI for
the majority of cases in each time period.

A-1



Table A.1: Data coverage with available zip codes and admission months

Arizona 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Arkansas 2009
Colorado 2007,2008,2009,2010,2011,2012
Hawaii 2009
Iowa 2009
Kentucky 2007,2008,2009,2010,2011,2012,2013,2014
Maryland 2009,2010,2011,2012
Massachusetts 2007,2008,2009,2010,2011,2012,2013,2014
Michigan 2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Minnesota 2014,2015,2016
Nevada 2010,2011,2012,2013,2014,2015
New Jersey 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
New York 2007,2008,2009,2010,2011,2012,2013,2014,2015
North Carolina 2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Oregon 2008,2009
Rhode Island 2007,2008,2009,2010,2011,2012,2013,2014,2015
South Dakota 2009
Utah 2009
Vermont 2009
Washington 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Wisconsin 2009

Notes: The table shows the states and years with available admission month and patient zip code used in the analysis for influenza hospital-
izations.
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Figure A.1: Comparing distributions of HCUP counties and all U.S. counties
Notes: The graphs show the kernel densities of the indicated variables across counties, separately for counties that are part of our HCUP
sample, and all U.S. counties. All variables are taken from the 2010 U.S. Census and from Chetty et al. (2018) and correspond to year 2010,
except household income which corresponds to year 2000.

Table A.2: Summary statistics of influenza hospitalizations and air pollution (AQI)

Mean SD Min 5th p. 10th p. 25th p. 75th p. 90th p. 95th p. Max
Hospital admissions
per county per month

Oct-Mar 4.04 16.3 0 0 0 0 2 8 17 588
Apr-Sep 0.526 3.41 0 0 0 0 0 1 2 170

Hospital costs (th. USD)
per county per month

Oct-Mar 32.1 140 0 0 0 0 14.1 62.3 140 4995
Apr-Sep 4.38 30.3 0 0 0 0 0 5.9 17.2 1517

Hospital charges (th. USD)
per county per month

Oct-Mar 117 567 0 0 0 0 39.1 202 503 23729
Apr-Sep 16.7 124 0 0 0 0 0 18 57.5 6883

Average AQI across
county-months

Oct-Mar 34.5 10.9 7.14 16.3 21 28 40.6 47.3 52.9 72.4
Apr-Sep 42.9 14.1 11.3 17.8 23.5 35.2 50.2 59.7 67.6 84.8

Notes: The table shows summary statistics for influenza diagnosed inpatient hospital admissions, costs, and charges, and air pollution
measured by the AQI. We pool and report data separately by the influenza season of October through March and the off season of April
through September. The AQI statistics are based on the coverage of the hospitalization sample. The reported means in the regression tables
may diverge due to dropping of observations without variation in the outcome variable for estimation.
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Figure A.2: Influenza-like illnesses in U.S.
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Notes: The figure shows the distribution of recorded influenza-like illnesses from CDC (2020), which includes non-hospitalized cases. Data
are pooled across the U.S. spanning 1997-2019. Not all health providers report to the Influenza-Like Illness (ILI) Network, and the number
of providers reporting grew over time so total number of cases is a lower bound of true infection rates.

Figure A.3: Defining pollutants of the AQI
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Notes: The figure shows each pollutant’s share in days when it was the defining pollutant for calculating the AQI at the county-day level. The
shares in days are calculated for the three to four year periods as indicated and are based on the months of the influenza season (Oct-Mar).
The data on defining pollutants comes from (EPA, 2020).
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Figure A.4: Vaccine take-up rates over time and across states
Notes: Panel (a) shows vaccine take-up rates by age group averaged across states, and Panel (b) by race averaged across states. Panel (c)
shows vaccine take-up rates for age group 65 years and older in 2009/2010 for different states.

(a) Map of Suffolk County (Boston) (b) Polar plot for Suffolk County (Boston)

Figure A.5: Prevailing wind direction and air pollution: Suffolk County (Boston)
Notes: Panel (a) shows a map of Suffolk County (Boston) and surrounding areas, e.g. New York City to the South-West. Panel (b) shows
a calculated polar plot of monthly air pollution (AQI) levels, where a deeper red means higher pollution. The polar plot shows the average
pollution (color) when monthly prevailing winds blow from a particular direction (clockwise) and with a particular wind speed (outwards
for higher speeds).
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A.2 Econometric details

In this section we detail how we estimate our Poisson GMM-IV model with fixed effects. To simplify
notation, we index observations by i and collect all variables on the right hand side of Equation (2) into
Xi except the fixed effects γji at the county-by-year-by-month level j with total observations J =

∑
i∈j

per fixed effect cell. The conditional mean of hospitalization counts Hi is given by:

E[Hi|Xi, γ
j
i ] = g(Xiβ + γji ) = αj

i exp(Xiβ) (7)

where Xi are the AQI, control variables, as well as year by month dummies. In our baseline expo-
nentionalmean specificiation consistentwith a Poisson countmodel, the function g(.) is the exponential
function exp(.), such that we can rewrite g(Xiβ + γji ) = αj

i exp(Xiβ), where αj
i = g(γji ). In our linear

mean specification, the function g(.) is just a linear function, i.e. the argument itself. We use a general
methods of moments (GMM) estimator using standard moment conditions:

E[ϵi|Zi] = 0 (8)

whereZi are instruments and ϵi the errors. Note thatwedonot require any additional distributional
assumptions for consistency of β, only that the conditional mean function is correctly specified and that
our moment conditions hold. When our instruments Zi are the variables themselves (Xi), our GMM
estimator is numerically equivalent to a standard fixed effects Poisson Pseudo-Maximum Likelihood
(PPML) estimator.

We account for fixed effects γji by first defining H̄j
i = J−1

∑
i∈j Hi as the average count of hos-

pitalizations within a county-season-year cell j corresponding to the level of our county-year-season
fixed effect γji , i.e. averaging across months in each cell. Next, note that γji or αj

i does not vary across
observations i at the fixed effect level j, and therefore:

E[H̄j
i |Xi, γ

j
i ] = J−1

∑
i∈j

g(Xiβ + γji ) = J−1
∑
i∈j

αj
ig(Xiβ) = αj

iJ
−1

∑
i∈j

g(Xiβ) = αj
i ḡ

j
i (β) (9)

The last equality defines ḡji (β) = J−1
∑

i∈j g(Xiβ). The key insight is that:

αj
i ≡ g(γji ) = E

[
H̄j

i

ḡji (β)
|Xi, γ

j
i

]
(10)

Combining Equations (7), (8) and (10) yields an expression for the moment conditions that re-
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moves the fixed effect through quasi-mean differencing:

E[ϵi|Zi] = E[Hi − αj
ig(Xiβ)|Zi] = E

[
Hi −

H̄j
i

ḡji (β)
g(Xiβ)|Zi

]
= 0 (11)

Since ḡji (β) is a function of β, it needs to be recomputed in every iteration of the GMM algorithm.
Defining residuals as ϵ̂i, the empirical moment conditions are:

E[Z ′
iϵ̂i] = 0 (12)

Dropping subscripts, β minimizes the GMM objective function Q:

β = argmin
β

Q = (Z ′ϵ̂)′W (Z ′ϵ̂) (13)

where W = ( 1
NZ ′Z)−1 is a weighting matrix. We compute clustered standard errors using the

covariance matrix of β:

V COV (β) =
1

N
(G′WG)−1G′WSWG(G′WG)−1 (14)

where S = 1
N

∑
j

∑
i∈j(Z

′
iϵ̂i)(Z

′
iϵ̂i)

′ and G = 1
N

∑
iZ

′
i
∂ϵi
∂β′ . In our empirical application, we use a

fixed effect demeaned version of our instrumentmatrixZi tomatch the instruments that would be used
in a two stage least squares regression, which we denote Z̃i = Zi − J−1

∑
i∈j Zi.54 We use a two-step

optimal GMM procedure where we use S−1 from the first step as weighting matrix for the second step.
Finally, for robustness checks, we use a linear conditional mean function instead of an exponential

conditional mean function where Hi is either the count of hospitalizations or the inverse hyperbolic
sine (IHS) of hospitalizations counts:

E[Hi|Xi, γ
j
i ] = Xiβ + γji (15)

This changes themoment conditions in Equation (11) to a standardmean-differenced version for linear
GMM:

E[ϵi|Zi] = E
[
(Hi − H̄j

i )− (Xi −
¯
Xj

i )β|Zi

]
= 0 (16)

54In practices, it makes little difference whether we use Z̃i or Zi.

A-7



A.3 Additional tables

Table A.3: First stage results

Wind IVs Inversion IVs Wind + Inversion IVs
AQI AQI AQI X EVT AQI AQI AQI X EVT AQI AQI AQI X EVT
(1) (2) (3) (4) (5) (6) (7) (8) (9)

ZNE .47 .47 .011 .47 .45 .006
(.042) (.089) (.022) (.042) (.089) (.022)

ZSE .72 .83 .055 .72 .79 .047
(.035) (.09) (.015) (.035) (.09) (.015)

ZSW .5 .71 .013 .48 .68 .013
(.058) (.11) (.022) (.058) (.11) (.022)

ZNW .56 1.1 .11 .56 1.1 .11
(.066) (.17) (.026) (.066) (.17) (.026)

ZNE X VE .0045 .25 .025 .25
(.41) (.11) (.41) (.11)

ZSE X VE -.35 .25 -.26 .28
(.26) (.056) (.26) (.055)

ZSW X VE -.74 .25 -.69 .25
(.41) (.095) (.42) (.096)

ZNW X VE -1.7 -.071 -1.7 -.075
(.44) (.086) (.45) (.087)

InvDays X AQI
.54 1 .06 .47 .88 .045
(.13) (.3) (.063) (.12) (.26) (.061)

InvDays -15 -37 -3.1 -12 -31 -2.5
(4.6) (11) (2.2) (4.2) (9.2) (2.1)

InvStr X AQI
.021 .081 .0087 .018 .054 .0049
(.02) (.062) (.0095) (.018) (.05) (.0086)

InvStr -.55 -3 -.39 -.52 -2.2 -.28
(.71) (2.2) (.34) (.65) (1.8) (.3)

InvDays X AQI X VE -1.4 .095 -1.2 .11
(1) (.26) (.94) (.25)

InvDays X VE 66 1.9 54 1.1
(35) (8.7) (32) (8.5)

InvStr X AQI X VE -.16 -.013 -.097 -.0038
(.16) (.03) (.14) (.029)

InvStr X VE 6.6 .85 4.6 .54
(5.7) (1.1) (4.8) (1)

Observations 17668 17668 17668 17668 17668 17668 17668 17668 17668
F (K-P) 176.8 35.3 35.3 8.6 3.1 3.1 91 20.9 20.9
F (S-W) 176.8 93.2 73.9 8.6 8.7 8.0 91 48.1 38.6

Notes: The table showsfirst stage results by using linear regressions of the endogenous variables on our instruments, controls andfixed effects.
Columns (1), (4) and (7) show the results from our model with one endogenous variables (without interacting with V P ) in Equation (2).
The other Columns show first stage results from our model with two endogenous variables (with interacting with V P ) in Equation (5). The
dependent variables are the endogenous variables indicated at the top of the table. In Columns (1) to (3) we use our instruments based on
wind directions. In Columns (4) to (6) we use our instruments based on thermal inversions. In Columns (7) to (9) we use our both our
instruments based on wind directions and thermal inversions. We limit analysis to the influenza intensive months of October throughMarch
and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine
effectiveness is weighted by average vaccination rates and hospitalization shares across age groups and is measured between 0 (low) and 1
(high). The results are from a Ordinary Least Squares regression with county-by-season-by-year and year-by-month fixed effects as well as
weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for
precipitation and wind speed. All weather variables are based on county-year-month averages. Standard errors in parentheses are clustered
at the county level.
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Table A.4: Monte Carlo simulation on convergence of first stage coefficients to one

Bias of first stage coefficients
Number Number of counties
of years 25 50 100 200 500 1000 3000
4 86% 88% 53% 33% 12% 11% 5%
5 59% 36% 22% 15% 8% 4% 3%
6 42% 26% 17% 11% 9% 5% 3%
7 37% 17% 17% 7% 7% 5% 2%
8 28% 21% 12% 7% 5% 3% 2%
10 21% 15% 9% 6% 4% 3% 2%
15 16% 11% 6% 5% 3% 2% 1%
20 11% 9% 4% 3% 2% 2% 1%

Notes: The table shows a Monte Carlo simulation of the maximum bias in the first stage coefficients in the model with one endogenous
variables (without interacting with V P ) in Equation (2). The bias estimates are created by simulating a dataset with the number of years
and counties as indicated with 6 months per year. We populate the data randomly with AQI values, based on a normal distribution with
mean and variance of our original data, and winsorizing the maximum and minimum to the maximum and minimum from our original
AQI data. We randomly populate the data with wind direction bins from a uniform distribution from 1.1 to 4.1, which we then round to
the nearest integer, such that there are four bins and some wind direction bins WindDirBin occur more frequently (but randomly across the
entire sample). To generate some correlation between AQI and wind direction bins, we multiply the AQI with log(WindDirBin + 1.5) ×
(log(CountyIndicator + 2)/3) for the first half of the counties and with 1/ log(WindDirBin+ 1.5)× (log(CountyIndicator + 2)/3) for
the second half of counties. We then calculate the instrument as described in our paper, and run first stage regressions based on Equation
(2 omitting all control variables, except our fixed effects. We note the maximum percentage deviation from any of the coefficients of the
instruments in the first stage as (1/β − 1) × 100%. We repeat the simulation 20 times for each county-year configuration and show the
average of the maximum percentage deviation in the above table. The table shows that as either the number of counties, or the number of
years increases, the first stage coefficients converge to one. The exact size of the deviations are not directly comparable to our estimates, as
we are, for example, including control variables, but the convergence patterns should apply.

Table A.5: Vaccine effectiveness (VE) does not predict vaccination take-up rates (VR)

Age ≤ 8 years Age 9-17 years Age 18-49 years Age 50-64 years Age ≥ 65
(1) (2) (3) (4) (5)

VE -.035 -.12 .022 -.03 -.11
(.052) (.088) (.075) (.042) (.068)

Observations 10 10 10 10 10
Mean of VR 0.655 0.517 0.318 0.453 0.664
Mean of VE 0.497 0.452 0.398 0.383 0.303
Elasticity -0.023 -0.105 -0.017 -0.02 -0.027

Notes: The dependent variable is the average vaccine take up-rate (VR) by age group by influenza season. The independent variable is
vaccine effectiveness (VE) by age group. Regressions are simple OLS. Reported elasticises at the bottom are from a log-log specification
instead of a level-level specification. Robust standard errors are in parentheses.
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Table A.6: Reduced form using vaccine effectiveness (VE) directly

Poisson GMM Poisson GMM-IV
(1) (2) (3) (4)

AQI .0076 .035 .028 .099
(.0024) (.0078) (.0074) (.021)

AQI X VE -.082 -.28
(.022) (.079)

Observations 17668 17668 17668 17668
Mean of outcome 6.04 6.04 6.04 6.04
Mean of AQI 35.27 35.27 35.27 35.27
Mean of VE - 0.36 - 0.36

Notes: The dependent variable is the count of inpatient hospital admissionswith influenza as primary diagnosis within a county-year-month.
We limit analysis to the influenza intensive months of October throughMarch and our sample spans 2007-2017 with the exception of October
2008 to March 2009 where vaccine effectiveness data is not available. Instead of using vaccine protection (VP), we use vaccine effectiveness
(VE) directly. Vaccine effectiveness is weighted by average vaccination rates and hospitalization shares across age groups and is measured
between 0 (low) and 1 (high). The results are from a Poisson-GMM estimation with county-by-season-by-year fixed effects and year-by-
month dummies as well as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity
quintiles, and linear terms for precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality
index (AQI) is lagged one month and a higher AQI means worse air quality. The Columns indicating “GMM-IV” use our instruments based
on wind direction instead of the AQI to generate moment conditions, and in even-numbered Columns use the interaction between wind
direction instruments and vaccine effectiveness (VE). Standard errors in parentheses are clustered at the county level.

Table A.7: Heterogeneity by age and race (without instruments)

≤ 8y 9-64y ≥ 65y Black/Hispanic White
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AQI .0075 .015 .0096 .011 .0035 .025 .0087 .045 .0092 .034
(.0027) (.011) (.0032) (.0075) (.0025) (.0056) (.0041) (.013) (.0021) (.007)

AQI X VP -.025 -.0088 -.11 -.18 -.11
(.035) (.038) (.028) (.058) (.032)

Observations 10593 10593 13984 13984 13619 13619 7740 7740 15553 15553
Mean of outcome 1.89 1.89 2.76 2.76 3.51 3.51 3.27 3.27 4.17 4.17
Mean of AQI 36.51 36.51 35.7 35.7 35.5 35.5 37.5 37.5 35.46 35.46
Mean of VP - 0.31 - 0.16 - 0.2 - 0.21 - 0.23
Mean of VE - 0.48 - 0.4 - 0.3 - 0.36 - 0.37

Notes: The dependent variable is the count of inpatient hospital admissionswith influenza as primary diagnosis within a county-year-month.
TheColumns indicatewhich age or race subgroups are counted in the dependent variable. We limit analysis to the influenza intensivemonths
of October through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness
data is not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is measured between 0 (low)
and 1 (high). We only use the vaccine take-up rates and raw vaccine effectiveness for the age groups indicated in each Column. For the
results by racial groups, we use our VP scaled by the ratio of race specific to overall vaccine take-up by season. The results are from Poisson
GMM estimations without instruments with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls.
Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and
wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher
AQI means worse air quality. The number of included observations can vary across different outcomes due to fixed effects and varied counts
in each county-year-month cell. Standard errors in parentheses are clustered at the county level.
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Table A.8: Further robustness: PPML, and linear model with IHS of counts

Poisson GMM PPML OLS/Lin. GMM (IHS) Lin. GMM-IV (IHS)
(1) (2) (3) (4) (5) (6) (7) (8)

AQI .0076 .034 .0076 .034 .0043 .0094 .02 .038
(.0024) (.0076) (.0024) (.0076) (.0012) (.0039) (.0051) (.012)

AQI X VP -.14 -.14 -.024 -.11
(.036) (.036) (.017) (.066)

Observations 17668 17668 17668 17668 17668 17668 17668 17668
Mean of outcome 6.04 6.04 6.04 6.04 1.34 1.34 1.34 1.34
Mean of AQI 35.27 35.27 35.27 35.27 35.27 35.27 35.27 35.27
Mean of VP - 0.21 - 0.21 - 0.21 - 0.21
Mean of VE - 0.36 - 0.36 - 0.36 - 0.36

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis in Columns (1) to (4), and
the inverse hyperbolic sine (IHS) of the count of inpatient hospitalizations with influenza as primary diagnosis in Columns (5) to (8),
all at the county-year-month level. We limit analysis to the influenza intensive months of October through March and our sample spans
2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine protection (VP)
is weighted by hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a Poisson
GMM estimation in Columns 1 and 2, from a Poisson Pseudo-Maximum Likelihood (PPML) in Columns 3 and 4, and from a linear GMM
estimation in Columns (5) to (8), all with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls.
Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and
wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher
AQI means worse air quality. Columns 7 and 8 indicating “GMM-IV” use our instruments based on wind direction instead of the AQI to
generate moment conditions, and in Column 8 we additionally use our VE instrument instead of VP to form moment conditions. Standard
errors in parentheses are clustered at the county level.
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Figure A.6: Effect of AQI on various diseases (baseline AQI)
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Other perinatal conditions
Diabetes or abnormal glucose tol. compl. pregnancy; childbirth

Poisoning by psychotropic agents
Hypertension compl. pregnancy; childbirth and the puerperium

Poisoning by other medications and drugs
Other disorders of stomach and duodenum

Other diseases of kidney and ureters
Pleurisy; pneumothorax; pulmonary collapse
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Calculus of urinary tract
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Other complications of pregnancy
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Other complications of birth; puerperium affecting mother

Secondary malignancies
Other pregnancy and delivery including normal

Gastrointestinal hemorrhage
Cancer of colon

Diverticulosis and diverticulitis
Aspiration pneumonitis; food/vomitus

Malposition; malpresentation
Cancer of bronchus; lung

Heart valve disorders
Esophageal disorders

Other nervous system disorders
Other lower respiratory disease

Diseases of white blood cells
Previous C-section

Maintenance chemotherapy; radiotherapy
Menstrual disorders

Polyhydramnios and other problems of amniotic cavity
Other connective tissue disease

Acute and unspecified renal failure
Liveborn

Pulmonary heart disease
Prolonged pregnancy

Spondylosis; intervertebral disc disorders; other back problems
Headache; including migraine
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Chronic obstructive pulmonary disease and bronchiectasis
Appendicitis and other appendiceal conditions

Other endocrine disorders
Other injuries and conditions due to external causes

Biliary tract disease
Essential hypertension

Complication of device; implant or graft
Fluid and electrolyte disorders

Epilepsy; convulsions
Acute myocardial infarction
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Pathological fracture
Fracture of lower limb

Umbilical cord complication
Urinary tract infections

Peripheral and visceral atherosclerosis
Pneumonia (except that caused by TB or STI)

Hypertension with complications and secondary hypertension
OB-related trauma to perineum and vulva

Infective arthritis and osteomyelitis (except TB or STI)
Phlebitis; thrombophlebitis and thromboembolism

Osteoarthritis
Other gastrointestinal disorders

Coronary atherosclerosis and other heart disease
Other fractures

Syncope
Crushing injury or internal injury

Abdominal pain
Septicemia (except in labor)

Abdominal hernia
Skin and subcutaneous tissue infections

Fracture of neck of femur (hip)
Intestinal infection

Diabetes mellitus with complications
HIV infection

Viral infection
Congestive heart failure; nonhypertensive

Benign neoplasm of uterus
Intestinal obstruction without hernia

Noninfectious gastroenteritis
Peri-; endo-; and myocarditis; cardiomyopathy (except TB or STI)

Acute cerebrovascular disease
Complications of surgical procedures or medical care

Early or threatened labor
Respiratory failure; insufficiency; arrest (adult)

Fracture of upper limb
Transient cerebral ischemia

Conduction disorders
Other acquired deformities

Occlusion or stenosis of precerebral arteries
Other circulatory disease

Prolapse of female genital organs
Other liver diseases

Hemorrhage during pregnancy; abruptio placenta; plac. previa
Sickle cell anemia
Intracranial injury

Regional enteritis and ulcerative colitis
Other bone disease and musculoskeletal deformities

Aortic; peripheral; and visceral artery aneurysms
Cancer of prostate

-.04 -.03 -.02 -.01 0 .01 .02 .03 .04

Notes: The figure shows the estimates and confidence intervals of AQI using Equation (2) and several outcomes that have a primary diagnosis
as indicated. We use the Clinical Classifications Software (CCS) from the Agency for Healthcare Research and Quality (AHRQ) to classify
the relevant ICD code groupings (around 250 groups), and plot the results for all CCS groupings where the mean of the outcome is at least
3.02, half the mean of our influenza outcome (6.04), to ensure there are enough cases in our outcome. The p-values are not adjusted for the
family wise error rate. The associated q-values from a Holm-Bonferroni correction are all above 0.1 except for influenza as outcome.
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Figure A.7: Effect of AQI on various diseases (in interaction model)
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Abdominal pain
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Epilepsy; convulsions

Acute and unspecified renal failure
Pneumonia (except that caused by TB or STI)
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Liveborn
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Other injuries and conditions due to external causes

Acute cerebrovascular disease
Sickle cell anemia

Cancer of breast
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Congestive heart failure; nonhypertensive
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Maintenance chemotherapy; radiotherapy
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Septicemia (except in labor)
Fracture of lower limb
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OB-related trauma to perineum and vulva
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Skull and face fractures
Early or threatened labor

Poisoning by other medications and drugs
Diseases of white blood cells
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Intracranial injury
Abdominal hernia

Fracture of upper limb
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Aortic; peripheral; and visceral artery aneurysms

Prolonged pregnancy
Other pregnancy and delivery including normal

Crushing injury or internal injury
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Regional enteritis and ulcerative colitis
Occlusion or stenosis of precerebral arteries
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Cancer of prostate
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Other bone disease and musculoskeletal deformities
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Notes: The figure shows the estimates and confidence intervals of AQI using Equation (5) and several outcomes that have a primary diagnosis
as indicated. We use the Clinical Classifications Software (CCS) from the Agency for Healthcare Research and Quality (AHRQ) to classify
the relevant ICD code groupings (around 250 groups), and plot the results for all CCS groupings where the mean of the outcome is at least
3.02, half the mean of our influenza outcome (6.04), to ensure there are enough cases in our outcome. The p-values are not adjusted for the
family wise error rate. The associated q-values from a Holm-Bonferroni correction are all above 0.1 except for influenza as outcome.
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Figure A.8: Effect of AQIxVE on various diseases (in interaction model)
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Respiratory failure; insufficiency; arrest (adult)
Occlusion or stenosis of precerebral arteries

Diseases of white blood cells
Skull and face fractures

Prolonged pregnancy
Menstrual disorders

Crushing injury or internal injury
Other circulatory disease

Asthma
Essential hypertension

Other pregnancy and delivery including normal
Other bone disease and musculoskeletal deformities

Poisoning by other medications and drugs
Pulmonary heart disease

Noninfectious gastroenteritis
Fetal distress and abnormal forces of labor

Other acquired deformities
HIV infection

-.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0 .1 .2 .3

Notes: The figure shows the estimates and confidence intervals of the interaction termofAQI andVEusing Equation (5) and several outcomes
that have a primary diagnosis as indicated. We use the Clinical Classifications Software (CCS) from the Agency for Healthcare Research and
Quality (AHRQ) to classify the relevant ICD code groupings (around 250 groups), and plot the results for all CCS groupings where the
mean of the outcome is at least 3.02, half the mean of our influenza outcome (6.04), to ensure there are enough cases in our outcome. The
p-values are not adjusted for the family wise error rate. The associated q-values from a Holm-Bonferroni correction are all above 0.1 except
for influenza as outcome.
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Table A.9: Using instruments based on thermal inversions

Only inversions Wind and inversions
(1) (2) (3) (4)

AQI .012 .29 .029 .12
(.029) (.1) (.0076) (.022)

AQI X VP -1.4 -.6
(.44) (.12)

Observations 17668 17668 17668 17668
Mean of outcome 6.04 6.04 6.04 6.04
Mean of AQI 35.27 35.27 35.27 35.27
Mean of VP - 0.21 - 0.21
Mean of VE - 0.36 - 0.36

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis in Columns at the county-
year-month level. We limit analysis to the influenza intensive months of October through March and our sample spans 2007-2017 with
the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by
hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a Poisson GMM estimation
with county-by-season-by-year fixed effects and year-by-month dummies as well as weather controls. Weather controls consist of five bins
of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables
are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air quality. In
Columns 1 and 2 we use our instruments based on thermal inversions instead of the AQI to generate moment conditions, and in Columns 3
and 4 we additionally use our instruments based on wind direction. In even-numbered Columns we also use our VE instrument instead of
VP to form moment conditions. Standard errors in parentheses are clustered at the county level.
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Table A.10: Further robustness: Fixed effects, controls, AQI construction, and including off-seasonal
cases

Fewer FE No weather ctr. Incl. emp ctr. AQI not wins. AQI not interpol. Incl. off-seas. cases
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

AQI .025 .066 .015 .062 .028 .11 .028 .11 .02 .091 .011 .058
(.0065) (.018) (.008) (.021) (.0074) (.025) (.0073) (.025) (.0081) (.026) (.0066) (.016)

AQI X VP -.26 -.32 -.53 -.58 -.47 -.27
(.11) (.15) (.16) (.15) (.15) (.071)

Observations 21459 21459 17668 17668 17665 17665 17668 17668 8950 8950 21702 21702
Mean of outcome 4.98 4.98 6.04 6.04 6.04 6.04 6.04 6.04 9.83 9.83 5.5 5.5
Mean of AQI 35.05 35.05 35.27 35.27 35.27 35.27 35.43 35.43 36.26 36.26 36.61 36.61
Mean of VP - 0.21 - 0.21 - 0.21 - 0.21 - 0.21 - 0.21
Mean of VE - 0.37 - 0.36 - 0.36 - 0.36 - 0.37 - 0.37

Notes: The dependent variable is the count of inpatient hospitalizations with influenza as primary diagnosis at the county-year-month level.
We limit analysis to the influenza intensivemonths of October throughMarch, except in Columns 11 and 12where we also include all county-
year-month cellswith influenza cases betweenApril and September. Our sample spans 2007-2017with the exception ofOctober 2008 toMarch
2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by hospitalization shares across age groups and is
measured between 0 (low) and 1 (high). The results are from a Poisson GMM estimation with county-by-season-by-year fixed effects (except
Columns 1 and 2) and year-by-month dummies as well as weather controls (except Columns 3 and 4). Weather controls consist of five bins
of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables
are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air quality. In
Columns 1 and 2, we include coarser fixed effects at the county-season level instead of at the county-season-year level. In Columns 3 and
4 we drop all weather controls. In Columns 5 and 6 we additionally include lagged employment counts at the county-year-month level. In
Columns 7 and 8 we construct our AQI variable without winsorization at the top and bottom 1%. In Columns 9 and 10 we do not spatially
interpolate, i.e. do not take the average value of the adjacent counties in the same month if the AQI is missing for certain county-year-month
cells. All results use our instruments based on wind direction instead of the AQI to generate moment conditions, and in even-numbered
Columns additionally use our VE instrument instead of VP to form moment conditions. The number of included observations can vary
across different outcomes due to fixed effects and varied counts in each county-year-month cell. Standard errors in parentheses are clustered
at the county level.

Table A.11: Total hospitalization costs, length of stay, and costs per day (no instruments)

Total costs Length of stay in days Costs per day
Linear GMM Poisson GMM Linear GMM Poisson GMM Linear GMM Poisson GMM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

AQI 443 1334 .0037 .033 .0066 .011 .0028 .006 3.8 2.7 .0019 .0017
(210) (614) (.0025) (.0085) (.0049) (.017) (.0021) (.0063) (1.9) (5.5) (.0017) (.0048)

AQI X VP -4304 -.15 -.023 -.015 5.2 .001
(2528) (.042) (.084) (.03) (26) (.023)

Observations 17754 17754 17754 17754 17783 17783 17783 17783 17754 17754 17754 17754
Mean of outcome 48011 48011 48011 48011 2.64 2.64 2.64 2.64 1238.3 1238.3 1238.3 1238.3
Mean of AQI 35.28 35.28 35.28 35.28 35.29 35.29 35.29 35.29 35.28 35.28 35.28 35.28
Mean of VP - 0.21 - 0.21 - 0.21 - 0.21 - 0.21 - 0.21
Mean of VE - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36

Notes: The dependent variable are hospital costs for inpatient hospitalizations with influenza as primary diagnosis, length of stay in days,
or costs per day. We limit analysis to the influenza intensive months of October through March and our sample spans 2007-2017 with
the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by
hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a Linear GMM estimation
and from a Poisson GMM estimation as indicated, all with county-by-season-by-year fixed effects and year-by-month dummies as well as
weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for
precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one
month and a higher AQI means worse air quality. All results are based on moment conditions without using any instruments. Standard
errors in parentheses are clustered at the county level.
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Table A.12: Total hospitalization charges

Total charges
Linear GMM Poisson GMM Linear GMM-IV Poisson GMM-IV
(1) (2) (3) (4) (5) (6) (7) (8)

AQI 1517 4906 .0035 .035 5049 10704 .024 .12
(839) (2289) (.0025) (.0094) (1646) (4701) (.0093) (.028)

AQI X VP -16386 -.16 -31769 -.63
(8991) (.045) (25069) (.18)

Observations 17754 17754 17754 17754 17754 17754 17754 17754
Mean of outcome 174095 174095 174095 174095 174095 174095 174095 174095
Mean of AQI 35.28 35.28 35.28 35.28 35.28 35.28 35.28 35.28
Mean of VP - 0.21 - 0.21 - 0.21 - 0.21
Mean of VE - 0.36 - 0.36 - 0.36 - 0.36

Notes: The dependent variable are hospital charges for inpatient hospitalizations with influenza as primary diagnosis, length of stay in
days, or charges per day. We limit analysis to the influenza intensive months of October through March and our sample spans 2007-2017
with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine protection (VP) is weighted by
hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a Linear GMM estimation
and from a Poisson GMM estimation as indicated, all with county-by-season-by-year fixed effects and year-by-month dummies as well as
weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for
precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one
month and a higher AQI means worse air quality. Columns indicating “GMM-IV” use our instruments based on wind direction instead of
the AQI and our VE instrument instead of VP to generate moment conditions. Standard errors in parentheses are clustered at the county
level.
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