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Abstract1

A key strategy for agriculture to adapt to climate change is by switching crops2

and relocating crop production. We develop an approach to estimate the economic3

potential of crop reallocation using a Bayesian hierarchical model of yields. We apply4

the model to six crops in the United States, and show that it outperforms traditional5

empirical models under cross-validation. The fitted model parameters provide evidence6

of considerable existing climate adaptation across counties. If crop locations are held7

constant in the future, total agriculture profits for the six crops will drop by 31% for8

the temperature patterns of 2070 under RCP 8.5. When crop lands are reallocated9

to avoid yield decreases and take advantage of yield increases, half of these losses10

are avoided (16% loss), but 57% of counties are allocated crops different from those11

currently planted. Our results provide a framework for identifying crop adaptation12

opportunities, but suggest limits to their potential.13
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1 Introduction14

Extreme temperatures under climate change are predicted to reduce average yields for several15

of the United States’ major crops [1, 2, 3, 4]. However, these impacts can vary across space,16

with some areas showing benefits from increases in moderate temperatures and increased17

evapotranspiration under irrigation [5, 6]. As climate shifts, these changes in productivity18

will drive farmers to change crops and move into new areas [7]. Understanding the extent of19

these regional changes in agricultural productivity and how they influence future cropping20

decisions is a central question for the impacts of climate change on agriculture [8, 9]. Crop21

shifting may be able to attenuate climate impacts, but the potential benefits depend on the22

distribution of impacts, the total availability of productive land, and costs of switching crops.23

In this paper, we explore the potential redistribution of six crops in the United States24

as an adaptation to climate change. We approach the crop shifting problem as a spatial25

optimization problem to maximize profits, following Polasky et al. [10] and Devineni and26

Perveen [11]. Our key innovation consists of providing a new empirical approach which27

better supports this form of crop shifting analysis, by providing estimates of the potential28

for crops as they move into new areas.29

Empirical agricultural crop models use variation in weather to explain yearly variation in30

crop yields [5, 12, 13]. Local agricultural management decisions are detailed and dynamic in31

a way that is unavailable to scientists working at large spatial scales. Econometric techniques32

allow these unobserved differences between regions to be accounted for with local baselines.33

However, these techniques have two consequences that undermine their ability to model the34

crop shifting process. First, they can model changes in yields, but not yield levels, since35

this information is factored out with region-specific baselines. As a result, crop productivity36

in regions that are not observed growing the crop cannot be determined. Second, they37

have a resolution-variance trade-off, whereby interactions terms that allow the relationship38

between weather and yield to vary by region necessarily reduce the precision of the estimated39

relationship within each region and may lead to over-fitting.40

In this paper, we develop a Bayesian approach which addresses both of these challenges.41

As with econometric models, yields are predicted with a log-linear model, with terms for42

the non-linear effect of temperatures, crop water deficits, and a linear technology trend. In43

our model, the parameters of the model are allowed to vary for each high-resolution region,44

represented here with US counties. To constrain this regional variation in parameters and45

predict parameters in new regions, the expected values of each region’s coefficients and of46

the regional intercept are modeled as a linear combination of a set of spatial covariates47

in an hierarchical Bayesian model [14, 15]. The method allows “partial pooling”, whereby48

the degree to which regions are pooled to estimate a single national set of parameters is49

determined by the data: if the data support idiosyncratic regional differences in temperature50

sensitivity, for example, very little pooling between regions will be used and the parameters51

for each region will be estimated separately. The covariates used to predict variation in the52

sensitivity to weather are the annual mean temperature, isothermality (diurnal range divided53



by annual temperature range), temperature seasonality (standard deviation over months),54

annual precipitation, precipitation seasonality (coefficient of variation across months), and55

irrigation fraction by crop. Both the region-specific weather coefficients and the model of56

how those coefficients vary over space are estimated simultaneously. In comparison to a57

least-squares regression approach, the hierarchical Bayesian approach is more efficient than58

a two-stage estimation process and allows more regional variation than an regression model59

with interacted coefficients. Using the resulting model, we forecast yield losses for all six60

crops studied, when applied to current cropping patterns. We use the modeled yields for61

crops outside of their historical growing regions to estimate the potential for crop-switching62

to mitigate these losses. In aggregate, agricultural losses for the crops we study can be63

reduced by half, but some regions become unsuitable for any of the crops.64

2 Results65

2.1 Spatial variation in climate sensitivity66

We fit the Bayesian yield model to yield observations for United States counties from 194967

to 2009 for six crops: barley, corn, cotton, soybeans, rice, and wheat. The covariate model68

is used to predict weather response functions and yields in new locations for each crop. The69

coefficients for extreme degree-days, a key driver behind climate impacts, are shown in figure70

1 (others are in Supplementary Figures 10-15).71

The spatial patterns for the effects of extreme temperatures vary by crop. Corn and cotton72

show less sensitivity to extreme temperatures in the southern US, reflecting adaptation in73

seed varieties and farming practices to minimize losses. For wheat and barley, adaptation74

is dependent upon water availability, with higher sensitivity in dry regions. We find that75

a fairly low degree of partial pooling was applied, so that the estimated parameters for76

the county-specific models vary considerably. The 95% range of the estimated coefficients77

on extreme temperatures is 2 (rice) to 12 (cotton) times the standard error of the average78

coefficient. Much of the variation in coefficients is explained by county mean temperature,79

suggesting existing adaptation to higher temperatures. The portion of the variation in crop80

yield sensitivity to extreme temperatures that is explained by mean temperature varies from81

8% for soybeans to 63% for cotton. Finally, coefficients vary slowly across space, showing82

spatial correlations up to 2000 km (see Supplementary Note 7).83

2.2 Comparison of crop modeling approaches84

To validate the crop models, we compare the coefficients of determination (unadjusted R2)85

for each crop to the results of a series of panel econometric regressions, mapping out the range86

between the model used in Schlenker and Roberts [5] and a regression-based equivalent to87
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Figure 1: The effect of extreme degree-days on yields, across counties and crops.
The displayed coefficients are for the effect of a 1 standard deviation change in extreme
degree-days (EDDs) on log yield, interpretable as the fractional effect on yields. The response
to extreme temperatures is predicted even in areas where the crop is not currently grown.
Each crop has a different growing season and extreme degree-day cut-off, so that model
coefficients are normalized by a different standard deviation per crop (240 EDDs / SD for
barley, 65 for corn, 40 for cotton, 63 for rice, 64 for soybeans, and 82 for wheat). County
outline color indicates the confidence level (solid black outline: >95% of posterior draws
have the same sign; thin white outline: <67% of posterior draws have the same sign).
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our analysis using covariate interactions. Since we are interested in the ability of the model88

to predict future years, we also perform cross-validation, by fitting the model to data from89

1949 to 1994 and evaluating it on yields during 1995 - 2009. These results are shown in table90

1.91

Applied to data from all years, the Bayesian model performs similarly to the most flexible92

ordinary least squares (OLS) models with linearly varying coefficients. However, these same93

OLS models are prone to over-fitting, and show large decreases in their R2 under cross-94

validation. OLS models with constant coefficients across all counties perform better under95

cross-validation. While the Bayesian models also show reduced predictive capacity under96

cross-validation, they out-perform all OLS models for three of the crops. In all cases, they97

have a greater R2 than similarly flexible OLS models. This is due to the idiosyncratic98

differences between coefficients in different counties that are permitted in the Bayesian model.99

2.3 Shifting cultivation under climate change100

Next, we use the Bayesian model to identify the optimal cultivation patterns now and in the101

future. We use the yield model with constant error variance (table 1, column 6) to limit the102

variance in unobserved counties. Since cultivation costs and prices vary across the United103

States, we use profit (local price times predicted yield, minus management costs) in USD104

acre−1 to determine the best crop. Costs and prices are from USDA Economic Research105

Service [16] for 2010, adjusted when necessary to make the locally optimal crop according to106

profits match the most widely planted observed crop. Since we do not account for alternative107

uses of land, we constrain the crops to only be cultivated in the future in areas currently108

used for at least one of the six crops. Changes in future crop production can also result in109

general equilibrium effects on prices [9]. Here, we avoid significant price changes by limiting110

the total land used by each crop to not exceed current nation-wide totals.111

Applied to current climate, crops are grown in characteristic temperature ranges, as shown112

in figure 2 (top). Barley and wheat are mainly grown in cooler counties, while cotton is113

grown in the warmest areas. However, these suitability envelopes are not exclusive, with114

some barley and (winter) wheat grown at higher temperatures. Although the optimization115

is calibrated to prefer the crop currently most planted in each county, 16% [14 - 18%] (ranges116

in brackets display the 95% credible interval throughout) of counties do experience changes117

under the optimization, as secondary crops are replaced with the optimal crop, and then118

these secondary crops are shifted to other counties. This results in a 13% [8 - 37%] increase119

in total profits (see figure 3, Supplementary Figure 29). The largest changes result from120

swaps between soybean and corn, which are commonly grown in rotation (excluding corn-121

soy swaps, 5% [4 - 6%] of counties show changes).122

We then use a suite of CMIP5 models to project these changes in optimal crops forward123

under RCP 8.5, and report outcomes in 2050 and 2070 including both climate and statistical124

uncertainty (figure 2, Supplementary Note 16 and Supplementary Tables 13-15). Corn retains125
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Model specifications
OLS 1 OLS 2 OLS 3 OLS 4 Bayes 1 Bayes 2

Intercepts: Uniform County Interacted County Partial Partial
Coefficients: Uniform Uniform Interacted Interacted Partial Partial
Error variance: Uniform Uniform Uniform Uniform County Uniform

R2 by model: Estimated and evaluated on all years
OLS 1 OLS 2 OLS 3 OLS 4 Bayes 1 Bayes 2

Barley 0.36 0.71 0.57 0.75 0.74 0.75
Corn 0.48 0.76 0.65 0.78 0.81 0.82
Cotton 0.32 0.64 0.55 0.70 0.68 0.69
Rice 0.75 0.84 0.81 0.84 0.85 0.85
Soybeans 0.47 0.72 0.65 0.76 0.78 0.79
Wheat 0.42 0.71 0.56 0.73 0.76 0.76

R2 by model: Estimated on 1949 - 1994, evaluated on 1995 - 2009
OLS 1 OLS 2 OLS 3 OLS 4 Bayes 1 Bayes 2

Barley -0.11 0.43 0.20 0.45 0.48 0.46
Corn -0.09 0.20 0.07 -1.05 0.27 0.17
Cotton 0.07 0.31 0.14 -37.50 0.21 0.12
Rice 0.20 0.37 0.12 -1.59 0.19 0.14
Soybeans 0.26 0.47 0.39 -16.27 0.53 0.48
Wheat 0.16 0.49 0.31 0.47 0.51 0.50

Table 1: Comparison of the predictive power of OLS and Bayesian yield models.
Table cells show R2 by crop and model specification, using all data (top) and under cross-
validation on 1995 - 2009 (bottom). The first four columns are ordinary least squares (OLS)
specifications, variously including region-specific intercepts and covariate interactions. The
last two columns are for the Bayesian model, with partially pooled intercepts and coefficients,
either allowing each county to have a different variance (Bayes 1) or constraining all to have

the same variance (Bayes 2). In all cases, R2 = 1 −
∑

(yi−ŷi)2∑
(yi−ȳi) , where yi is the observed log

yield for county-year i. ŷi is the point estimate for OLS and the posterior prediction for
the mean MCMC parameter draw for the Bayesian model, and ȳi is the average across all
observations of yi.
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Figure 2: Optimized crop patterns for each period across temperature and space.
Periods are shown on different rows, and the distribution across temperature is shown on
the left and across space on the right. When plotted as a distribution across temperature,
the climatic annual mean temperature of each county is used, and the distribution is across
counties. Unused (grey) regions are used where none of the six crops are planted at baseline
or where total profits are maximized by leaving land fallow later in the century.
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its enormous area (by construction, so long as corn profits are positive), but becomes less126

concentrated in the Midwest. Soybeans show a gradual movement north, replacing spring127

wheat and barley. The wheat lands of the Great Plains see a gradual hollowing-out, while128

winter wheat moves up from the south along the Mississippi. Cotton is grown at higher129

latitudes, becoming the dominant crop in southern California. At the same time, lands in130

the southern US that are not profitable for any crop expand. These tend to be at the higher131

end of the temperature distribution, and account for 5% of the included land area by 2070.132

We do not observe a uniform movement to higher latitudes, because of regional variation in133

climate and the constraint against crops moving into new areas (see Supplementary Note 17134

and Supplementary Figures 30-31).135

2.4 Economic outcomes of adaptation136

Figure 3 (top) shows the amount of switching between crops to maximize profits. Large137

portions of corn and soybean cultivation continue to swap in 2050, but changes from 2050 to138

2070 are more minor. By 2070, 53% [39 - 67%] of counties experience crop switching (36%139

[21 - 51%] excluding corn-soy swaps.140

A comparison of the effects of optimization on profits is shown in figure 3 (bottom). In the141

absence of optimization, total estimated profits fall from $45.7 [$44 - 52] billion to $35.8142

[$24 - 50] billion in 2050 and $31.4 [$19 - 48] billion in 2070, a 31% decrease [59%↓ - 5%↑].143

With optimization, profits in 2010 were predicted to be able to increase to $51.8 [$49 - 63]144

billion. However, they fall below current profits by 2050 and by 2070, even with further145

optimization, they fall to $38.6 [$28 - 54] billion, still 16% below [38%↓ - 18%↑] observed146

levels. Relative to the profits of optimally reallocated crops in the current period, percentage147

losses from climate change are greater, 26% below [45%↓ - 4%↑] the peak.148

Behind these profits are both increases and decreases in individual crop production. Produc-149

tion is predicted to be able to increase for most crops under current conditions and optimal150

planting, ranging from small decreases for soy (2% [4 - 1%]) to large production increases151

for barley (26% [11 - 44%]). By 2070, however, decreases in total production are shown for152

barley (9% [22%↓ - 4%↑]), corn (37% [74%↓ - 10%↑]), rice (2% [30%↓ - 37%↑]), and soybeans153

(6% [16%↓ - 5%↑]) relative to observed production. These are offset by increases from cotton154

(73% [20% - 192%]) and wheat (2% [26%↓ - 28%↑]). These results do not extrapolate the155

historical trend in crop yields into the future, to isolate the relative role of climate change (we156

explore this in Supplementary Notes 18-19, Supplementary Tables 16-18, and Supplementary157

Figures 31-34).158

In the default model, we assume that there are no additional barriers or frictions involved159

switching crops, and explore the effects of imposing a range of crop switching costs in Sup-160

plementary Note 20 and Supplementary Figure 35. Switching costs of $180 / acre reduce161

reallocation changes by half, against average cultivation costs between $123 / acre (barley)162

and $499 / acre (rice). As switching costs increase, optimal losses converge to the losses163
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Figure 3: Adaptation outcomes accounting for crop shifting. (Top) The portion of
area allocated to each crop, under the optimization, in percent labeled boxes. Flows between
the allocations show the portion of area previously allocated to the crop on the left, and
flowing into its new allocation on the right. The difference between observed and optimized
crop allocations (first transition) is due to replacing secondary crops with primary crops.
(Bottom) Profits under observed and optimized crop allocations for the current climate
(first box), 2050, and 2070. The first bar in each columns gives estimates of profits without
relocation of crops, and the second bar is with optimization. The bars show mean profits
across posterior draw Monte Carlo optimizations and the error ranges show 95% credible
intervals.
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without crop reallocation. Since optimal profits in 2050 are below current profits, losses will164

persist under any level of switching costs.165

3 Discussion166

Agriculture is one of the most exposed sectors to the impacts of climate change, and adap-167

tation through irrigation investments, agricultural research, and new management practices168

can require decades of planning. A better understanding of the potential for adaptation is169

needed for farmers and policy-makers to make long-term decisions. We show that adaptation170

through the movement of crops can reduce climate change losses, but it does not eliminate171

them.172

We have focused here on the expected losses to agricultural production, but several other di-173

mensions of impacts are embedded in these numbers. Nation-wide average deceases in yields174

are likely to emerge through more years of unforeseen crop failures, and through regional175

devastation. The crop switching actions projected in this paper would cause disruptions176

to farmers, food supplies, and environmental habitats. Even if crops are mobile, farmers177

may not be. In particular, farmers who work on the 5% of cultivated land that becomes178

economically untenable under our model will need to identify new crops or land uses outside179

the scope of this study.180

Our empirical model only captures adaptation practices currently employed to respond to181

within-year shocks of high temperatures. Future work is needed to explicitly account for182

the potential and limits of irrigation expansion, long-term investment in adaptation, and183

to distinguish the benefits of CO2 fertilization from the long-term trend. While we con-184

sider multiple sources of uncertainty in the outcomes, we do not account for risk aversion,185

unexpected weather shocks, or the multi-year consequences of crop failures.186

Our optimization approach assumes perfect knowledge of crop weather responses and that187

observed weather will correspond to expected climate. As such, our results should be con-188

sidered a frontier of possibility, assuming that crop yields respond to temperatures in the189

future as they have in the past. The cropping patterns shown in our current and future190

results should not be taken as recommendations, since many details at the field and farmer191

level are not included.192

Our results show considerable potential from crop switching to avoid some of the damages193

from climate change. These opportunities are driven both by differences in how temperatures194

may change in different regions as well as differences in the sensitivity of crops to higher195

temperatures. However, the remaining losses imply that crop switching is not a panacea196

and that new seed varieties and new adaptation practices are needed to support farmers and197

meet the food demands of the future.198
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Methods199

Climate and crop data200

County-level yield data [17] and weather data [18] cover the contiguous US for 1949 - 2009.201

Annual crop water deficit indices are calculated as in [19], and growing degree-days and202

extreme degree-days are calculated as in [5]. County-level constant covariates used in the203

multilevel model consist of annual mean temperature, isothermality (diurnal range divided204

by annual temperature range), temperature seasonality (standard deviation over months),205

annual precipitation, precipitation seasonality (coefficient of variation across months), all206

from [20], and irrigation fraction by crop, from [21]. Additional details are in Supplementary207

Tables 1-2 and Supplementary Notes 1-2.208

Multilevel Bayesian crop model209

We fit a Bayesian model which represents log-yields as a linear model of crop water deficits,
growing and extreme degree days, and a linear trend. The coefficients of this model are
allowed to vary by county, with an expected value for each county-specific coefficient equal
to a linear model of the six county-level constant covariates listed above. That is, for each
crop,

log(Yit) ∼ N(αi + β1
i t+ β2

i CDIit + β3
i GDDit + β4

i EDDit, σ
2
i )

αi ∼ N(a0 +

#covar∑
j=1

b0
jcovarij, σ

2
α)

βki ∼ N(ak +

#covar∑
j=1

bkj covarij, σ
2
βk)

where Yit is the yield in county i in year t, CDIit is the water deficit predictor, GDDit is210

growing degree-days, EDDit is extreme degree-days, and covarij is the value of covariate j for211

county i. All other parameters are fit in the model. Additional details are in Supplementary212

Note 3 and model validation is shown in Supplementary Notes 4-5, Supplementary Tables213

3-4, and Supplementary Figures 1-9. Additional fitted results are shown in Supplementary214

Notes 6-7, Supplementary Tables 5-7, and Supplementary Figures 16-20.215

Comparison to OLS models216

The predictive power of the Bayesian model is compared to multiple least-squares (OLS)217

regressions. The regression terms are combinations from the following Intercepts and Coef-218

ficients columns, according to the table header in table 1:219
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Intercepts Coefficients

log(Yit) =



Uniform
α

County
αi

Interacted

α0 +
∑#covar

j=1 αjcovarij

+



Uniform
β1

0t+ β2
0CDIit + β3

0GDDit + β4
0EDDit

Interacted
β1

0t+ β2
0CDIit + β3

0GDDit + β4
0EDDit

+
∑#covar

j=1 β1
j covarijt+ β2

j covarijCDIit
+β3

j covarijGDDit + β4
j covarijEDDit

+ εit

Under cross-validation, both the Bayesian and OLS models are fit only to data prior to220

1995, and the R2 value is computed only on data from 1995 to 2009. Additional details221

are in Supplementary Note 8 and Supplementary Tables 8-9. Extensions to the model are222

described in Supplementary Notes 9-10, Supplementary Tables 10-11, and Supplementary223

Figures 21-24.224

Land use optimization model225

Optimized land use is projected using a linear optimization model, which determines the
profit-maximizing distribution of crops under the yields estimated by the Bayesian model.
The optimization problem is,

max
{Aict}

∑
c

∑
i

(
picŶict − oic

)
Aict

for the area of crop c in county i and period t given by Aict and the price pic and cultivation
costs aic are drawn from [16] for 2010. The optimization is performed separately for each draw
from the posterior estimate of yield, Ŷict. Yields are adjusted to account for the irrigation
capacity of the destination county. The optimization is constrained such that,∑

c

Aict ≤
∑
c

Āic ∀i No additional land is appropriated to farming in any county.∑
i

Aict ≤
∑
i

Āic ∀c No additional land is appropriated to any crop.

where Āic is the area used by crop c in county i in 2010.226

When the optimization is applied to observed yields and reported cultivation costs, 40% of227

counties are assigned crops that do not match observed planting. We treat this as reflecting228

hidden costs, and adjust the cost values for these counties to make the observed crops229

optimal.230

Future weather data for 2050 and 2070 is calculated using downscaled and bias-corrected231

CMIP5 results those years from [22] for the 17 GCMs included in [20]. Additional details are232

in Supplementary Notes 11-15, Supplementary Table 12, and Supplementary Figures 25-28.233
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Data Availability234

The data used in making the charts and tables in this paper is available at DOI 10.5281/235

zenodo.3889144.236

Code Availability237

All model and display code is available at DOI 10.5281/zenodo.3909637. The optimiza-238

tion model is constructed using the landuse component of the open-source AWASH 2.0239

water-energy-food model, available at https://github.com/AmericasWater/awash. The240

Bayesian model uses JAGS 4.3.0 and the optimization model uses Gurobi Optimizer 9.0.2.241
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