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Abstract

Demand response strategies that rely on individual behavior change have consistently 
demonstrated that flexibility i n e nergy d emand e xists, b ut t hat t here a re c onstraints t o de-
mand shifting such as limited attention or rebound effects. This paper aims to analyze resi-
dential energy demand flexibility through a  series of field experiments on  adoption and usage 
of WiFi-enabled smart plugs that largely overcome the need for home dwellers’ effort and at-
tention altogether. With 169 active participants, we study the adoption and user interaction 
of devices for automated dynamic energy demand-side management. Our design allows us 
to explore whether and how devices and incentive systems may be designed and deployed to 
improve load balancing in the centralized energy grid. Such a system would reduce the need 
for inefficient and often carbon-intensive back-up power generators during periods of peak 
demand, and increase the possible share of energy supplied by intermittent renewable energy 
sources. Our results suggest that users are more inclined to participate if switch-off events are 
sufficiently long to provide a meaningful probability of winning lottery prizes, but that higher 
frequency of such events may reduce participation intensity.
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1 Introduction

Increasing global attention on the threat posed by climate change has underscored the need for
rapid development and deployment of innovative solutions to catalyze a sustainable low-carbon
energy transition. Policymakers’ ability to reduce overall energy consumption and manage energy
market volatility is becoming increasingly important in this context. As decarbonization of elec-
tricity supply will rely on large-scale deployment of variable renewable energy sources, smarter
management of electricity consumption, i.e. demand-side management (DSM), will prove essential
to reach the global targets set out in the Paris Agreement (Gielen et al., 2019).

Internet connectivity and electronic innovation have opened the door for development of DSM
systems to accommodate fluctuations in energy supply and demand. This development expands
suppliers’ and grid operators’ toolkits beyond supply-side load balancing mechanisms that often
themselves require continuous emissions to maintain ramping capabilities of back-up power plants.
Excessive energy demand can be shifted from peak to off-peak hours, when electricity typically costs
less, by switching off some appliances for limited periods of time.1 Thus, residential and commercial
consumers have the ability—and, under a growing number of energy plans, the incentive—to
contribute to a more flexible energy grid (Carbon Trust and Imperial College London, 2016).

Our research considers the extent to which energy consumers’ adoption of an inexpensive Internet of
Things (IoT)2 technology—specifically the smart plug—can allow for increased flexibility in energy
demand given an embedded stock of energy-consuming goods and durables in the economy.3 We
posit that scaled utilization of such technology enables the formation of sizable and robust virtual
power plants (VPPs). Frequently regarded as important elements of a net zero-carbon future,
VPPs aggregate a network of distributed (often renewable) power sources, storage systems, and
flexible energy consumers to optimize and dispatch generation or consumption in a smart energy
grid. Flexibility on the demand side is particularly crucial during temporary periods of either high
energy demand (i.e. peak load) or limited energy supply from variable renewable sources.

On the supply side, technologies such as IoT applications and smart meters can reveal crucial infor-
mation about patterns and flexibility in households’ and businesses’ (appliance-specific) energy use.
Suppliers and grid operators can use this information—and, given access, use direct load control5—
to minimize inefficiency and waste while balancing electricity demand with available supply with
minimal intervention into consumers’ lifestyles. Furthermore, shaving peak load throughout the
year can have a significant impact on suppliers’ bottom line, providing vast economic motivation
for utilities to provide consumers with incentives—to date, usually embedded in rate design—to

1Energy consumption from buildings comprises about a fifth of global energy consumption, with the proportion
expected to increase as residents of non-OECD countries adopt home electronics and appliances at increasing rates
(U.S. Energy Information Administration, 2019). In anticipation of growing energy demand from the residential
sector and increased electrification of cooking, heating, and cooling as well as automobiles (Ürge-Vorsatz et al.,
2015; Gielen et al., 2019), understanding and managing patterns of electricity use is becoming ever more crucial
to meeting global climate change mitigation objectives. Additionally, due to varying carbon intensity of the grid
throughout the day, the time of the day at which these growing electricity demands occur will impact their carbon
footprint as well as grid reliability (Holland et al., 2016). Analysis of energy efficiency investments related to air
conditioning in California demonstrate that the value of energy efficiency upgrades to society increase when time of
use is taken into account (i.e. they are characterized by a “timing premium”), as peak savings occur during hours of
high value to electricity markets (Boomhower and Davis, 2020).

2According to the Oxford Dictionary, IoT refers to “the interconnection via the Internet of computing devices
embedded in everyday objects, enabling them to send and receive data.”

3Our research is pertinent to the literature that provides evidence on “load shifting” behavior (Borenstein et al.,
2002). Considering monetary incentives, recent experimental research supports the hypothesis that time-of-use
(TOU) electricity pricing and price elasticity signals—that is, reminding consumers how much electricity costs when
it is being used—can strongly affect the timing of electricity consumption (Wolak, 2011; Jessoe et al., 2014; Bradley
et al., 2016)). The numerous experiments to evaluate consumer responses to dynamic electricity prices and other
incentives have been comprehensively reviewed by Harding and Sexton (2017). Non-monetary incentives have also
been tested in the context of load shifting4. Prest (2020) demonstrated that the effect of TOU electricity pricing,
coupled with price signals, leads to a 10% reduction in peak electricity usage, and information provision, using
in-home displays, augments these reductions to 15%. Typically, non-pecuniary messages significantly affect high
users, while low users are more responsive to financial incentives (List et al., 2017).

5Interventions using direct load control, e.g., through smart thermostats, have shown to reduce peak demand by
15% (Ivanov et al., 2013)
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reduce consumption during these hours.6 Thus, smart devices simultaneously create opportunities
for cost savings and reduction in negative environmental externalities.

Transition to a clean economy can be facilitated by the widespread adoption of such “prosocial
technologies”, i.e. technologies whose adoption creates benefits that extend beyond those inter-
nalized by the adopter. Prosocial technologies include, for example, residential solar photovoltaic
panels or energy-efficient appliances, and they are increasingly being developed to target a variety
of social aims, such as tracker apps for Covid-19 exposure, traffic warning devices, and vaccination
trackers, among others.

When considering the potential of dynamic pricing in electricity, it has been recently assumed that
enabling automation is of crucial importance given the tendency of households to be inattentive
to electricity prices (Borenstein and Bushnell, 2019), particularly over time (Houde et al., 2013;
Gilbert and Zivin, 2014).7 This paper contributes to the limited literature that tests this conjecture
in the field. IoT technologies—which create the potential to observe, disaggregate, and automate
energy consumption—are becoming increasingly pervasive across the economy. In the UK, 17.3
million smart meters were in operation as of the end of Q1 2020, and billions of electronics and
appliances are projected to be connected through IoT in the near future (Khajenasiri et al., 2017;
Department for Business, Energy and Industrial Strategy, 2020). This rapid deployment of IoT
technologies has brought to the fore a number of concerns regarding the performance and reliability
of the evolving smart energy system, as issues related to misuse, safety, transparency, and data
leakage shake consumers’ trust (Alaa et al., 2017). As a consequence, the automation that is
potentially necessary for effective implementation of demand response could be difficult to achieve.

We explore these issues by conducting a series of field experiments designed to explore the extent
to which user behavior might constrain what is technically feasible—for example, users may have
reservations when it comes to adopting “smart” or externally controlled devices—while also explor-
ing how users might be incentivized to overcome such reservations.8 Additionally, by observing
users’ tendencies to override our randomly timed smart plug switch-off events, we are able to gain
insight into true energy demand flexibility; that is, we can understand which times of day or days
of the week individuals may be willing to turn off appliances, and when they may not be willing
to do so.

We ran our experiments via a program in university halls, which we call POWBAL (short for
“power balancing”). To facilitate the program, we developed a web platform that collects data on
how much electricity is consumed through the plugs and allows us to remotely and briefly switch
off POWBAL-branded smart plugs, through which users could connect a time-flexible appliance or
electronic device. The program incentivized students to participate in an exercise that would help
to smooth energy consumption by offering them a free smart plug and the possibility of earning
monetary rewards commensurate with plug usage. We also emphasized the prosocial element of
participation by informing the user of the environmental benefits of energy demand flexibility.9
Consenting participants each received a smart plug that allowed our research team (as well as the
participants themselves) to control the power to the connected appliance remotely throughout the

6As detailed in Pratt and Erickson (2020), a utility’s demand during the annual peak demand hour determines
the capacity cost it will be required to pay in the following year to ensure the same amount is available to them
during the annual peak hour (plus a reserve margin). This cost comprises a significant portion of a utility’s capacity
costs, which accounts for 25% of utilities’ total wholesale market expense, a percentage that is trending upward.
Hence, the ability to immediately shave peak load during particular hours of the year that are often difficult to
forecast can lead to dramatic cost savings that, if passed to the customer, could provide additional incentive for
consumers to accept direct load control mechanisms.

7Inattention severely impedes the benefits of dynamic pricing since active response to price changes is cognitively
costly. Automation in dynamic pricing aims to enable lower-cost responses to price changes, which promise to
achieve at least three times larger reductions for households that do rely on automation (Gillan and Gillan, 2017).

8In the context of climate change, any policy proposal to reduce emissions and energy demand will largely rely
on an appropriate combination of behavioral, technological, and institutional capabilities. While technologies and
institutions are often in the spotlight, influencing behavior is also crucial in tackling climate change (Stern, 2008;
?). For instance, understanding the adoption behavior surrounding relevant technologies—such as home insulation
or smart meters—is arguably as fundamental as developing the technology itself (Allcott and Mullainathan, 2010;
Toft et al., 2014; Bugden and Stedman, 2019; Hmielowski et al., 2019).

9Several studies on energy flexibility and curtailment have demonstrated the importance of prosocial motivations
(e.g., Asensio and Delmas, 2015; Pratt and Erickson, 2020).
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study period. Participants then accrued points in proportion to the energy use we displaced, which
in turn determined their likelihood of winning monetary prizes in our fortnightly lotteries.

To gain insight into the role of energy service interruption in determining plug usage, participants
were randomly assigned to treatments characterized by differing duration and frequency of our
randomly-timed “switch-off events”: (i) up to 15 or 30 minutes at a time, and (ii) either once or up
to eight times a day (excluding the once per day for 15 minutes cell of the complete 2x2 design).
The higher risk of interrupted energy services in the ‘higher intensity’ treatments is compensated
through increased probability of winning versatile digital gift cards in our fortnightly lotteries. We
assess this tradeoff through treatment differences in plug usage.

From the perspective of internal validity, the chosen context (i.e. university student accom-
modation) allows us to largely disregard complex irrelevant factors—in particular energy cost
considerations—and focus on the question at hand. From an external validity perspective, we
acknowledge that the university context may be limiting. On the other hand, we run the experi-
ment at three different campuses comprising diverse student populations, allowing for assessment
of generalizability to at least the UK student population. We centered our attention on a developed
country context due to (i) these countries’ extensive established centralized energy grid systems
that are largely sourced with emissions-intensive power generators (though may accommodate more
renewable energy sources, provided flexibility), and (ii) the prevalence of energy-intensive home
appliances and electronics amenable to smart plug usage.10 Nevertheless, these features suggest
immense potential of such programs in the developing world—perhaps particularly in rapidly in-
dustrializing economies—going forward, as per capita energy use seeks parity with the developed
world and the need for rapid energy transitions becomes increasingly urgent, in particular due to
air quality and climate concerns.

Our results suggest that users are more inclined to participate if switch-off events are sufficiently
long to provide a meaningful probability of winning lottery prizes, but that higher frequency of
such events may reduce participation intensity. However, individuals with relatively long but less
frequent switch-off events are also more inclined to override the events. We provide evidence that
individuals are motivated to consume more energy via the smart plug just after they have been
randomly selected to receive a lottery reward.

The remainder of this paper is structured as follows. The next section provides the experimental
setup and descriptive statistics. The third section outlines our stylized model and presents our
results. Section 4 concludes.

2 Research Design

2.1 Experimental Setup

Recruitment Process

We conducted a series of field experiments focused on measuring individuals’ willingness to adopt
POWBAL smart plugs and their subsequent energy consumption via these plugs under three
randomly assigned treatments. To this end, we recruited undergraduate and graduate students
from five LSE student halls, and from one student hall each at Imperial College London and
University of Reading. We only invited individuals living in single-occupancy rooms in order
to ensure that usage of the plugs derived from the sole individual exposed to treatment, and
to maintain comparability in the characteristics of the residences (e.g., building, management,
and events) and residents within a given student hall. The invitation offered participation in

10The energy demand displacement potential for large-scale systems of smart plugs in the residential sector
is economically significant in developed countries. For example, should plugs be deployed on 30% of domestic
refrigerators in the United Kingdom—each of which consumes between 150W to 400W on average—then a large
coal-fired power station (2.4GW) could be entirely displaced during peak hours.
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a research study aimed at designing systems to manage peak demand and smooth household
energy consumption, where the information provided to prospective participants varied only in
the frequency and duration with which they would experience switch-off events, as in Table 1 (see
Appendix for recruitment materials).

Our sample of prospective participants comprised 1798 residents, where 262, 648, and 888 occupants
from Imperial, LSE, and Reading, respectively, received an invitation to participate. We then
recruited 231 experimental subjects (30, 93, 108 respectively), who consented to participate in the
study and received plugs. Among these, 169 participants (24, 54, 91 respectively) actively used
their plugs. We recruited participants via several channels, including email, phone app, flyers,
in-person, or welcome packs in their rooms upon move-in. The majority of our participants were
recruited in person, using a predetermined script to describe the study when meeting them in the
residence.11

Students registered to participate in the study by completing a brief consent survey in the Qualtrics
survey software. The survey first asked individuals to read a one-page overview of the study’s
purpose and implications of participation, then to check four boxes confirming that they had
read the information sheet, understood their participation rights, and were aware that their plugs
could be switched off for periods of time corresponding to their randomly assigned frequency and
duration, which were stated explicitly and saliently in both the information sheet and the consent
language (see Appendix A).

Our data collection began in April 2019 and lasted until the end of May 2020. Using student halls
as the field of study comes with advantages and drawbacks. Students are not typical households
and use electricity outside their room, for example in laundry or common dining rooms. They have
a smaller range of appliances they can choose to use with their plugs. Even when aggregated for
the UK, total electricity consumption of student rooms is a very small proportion of total domestic
consumption.12 However, on the plus side, the share of their overall electricity consumption that
happens through the smart plug is likely to be higher than if the plugs were used in a regular
household. We therefore capture a larger proportion of their potential behavioral response. In
addition, our student participants do not pay for their energy usage, meaning we can test our
incentive mechanisms in isolation (i.e. without any confounding of savings from reduced energy
costs). The size of the rewards in relation to their total budget is also likely to be greater than in
the rest of the population.

2.2 Procedure, Randomization, and Treatments

Our overall procedure is as follows: First, we used simple randomization13 to randomly assign
prospective participants into three groups differing in the frequency and duration of switch-off
events in order to discern the likelihood of adoption based on switch-off intensity. We implemented
three cells of a 2x2 study design. The first dimension is the number of possible switch-off events in
a given 24-hour period. Some invitees were told that the switch-off events may occur once per day,
while others were told they may occur once every three hours (i.e., up to eight times in a 24-hour
period). The second dimension is the duration of the switch-off events, which may be either 15
or 30 minutes. To bolster group-level sample size and maximize observed switch-off events, we
exclude the 15-minutes once per three hours cell of the 2x2 design, as shown in Table 1.

We distributed a (free) smart plug to all consenting participants that we (and they) used to remotely
control electricity supply to their selected electronic device or appliance. Over the course of the

11Previous research has linked social pressure to technology adoption, adding another dimension to this channel;
we do not attempt to measure treatment or welfare effects from our channel of adoption (see Giaccherini et al.,
2019), but acknowledge that there may be an effect on adoption that, if anything, would attenuate any treatment
effects in our study.

12Students in Imperial residences consume on average 18kWh per week. There are roughly 650,000 student rooms
in the UK, so in total they would consume 11GWh per week, which under certain assumptions can be produced by
40 wind turbines.

13We do not have data on characteristics of the subject pool, hence stratified randomization was not possible.
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Table 1: Treatment Group Design

3 hours intervals 24-hour intervals
15 minutes switch-offs Treatment 1
30 minutes switch-offs Treatment 3 Treatment 2

Notes: This table describes the three treatments with switch-off events varying in both duration and frequency over a

24-hour period. A 3 hours interval means a switch-off event can occur once every 3h, i.e. up eight times in a 24-hour

period.

study period, we administered randomly timed switch-off events in accordance with the switch-
off intensity to which each participant had been assigned. Participants collected points based on
the energy that had been displaced through our switch-off events, as measured by the amount of
energy consumed through the plug just prior to the switch-off event multiplied by the duration of
the event.14 Finally, in fortnightly intervals, we performed a lottery where participants with more
points had a higher chance of winning monetary prizes.15 Provided they accumulated at least one
reward point during the two week period, the lottery allocated each participant with a probability
to win a voucher, in proportion to their reward points.16 Over the course of the experiment, we
distributed £740 worth of versatile digital gift cards. Table 2 shows that among 31 total winners,
a large majority - 23 - students won only once. 1 participant won 8 times.

Table 2: Lottery Results

Vouchers won Highest voucher won N winners

One-time winners £310 £30 23
2-times winners £60 £10 3
3-times winners £110 £50 1
4-times winners £90 £20 2
5-times winners £60 £20 1
8-times winners £110 £20 1
Total £740 £50 31

Notes: This table reports the outcomes of the lottery, i.e how the vouchers were distributed among lottery winners. The

variable "N winners" records how many many participants won repeatedly, the variable "Total won" records the share in

£ that was won by x-times winners out of the entire voucher pool.

Additionally, we have another layer of randomization in that we randomly selected the time of day
and week during which we administer these events across all participants.

2.3 Data

Our dataset consists of energy consumption readings for all POWBAL plugs that are consuming
energy at 5-minute intervals (1,702,547 observations), the timing of the random switch-off events,
and the dates and amounts of prize money received for lottery winners.

14We computed reward points as the power (in Watts) consumed by a plug just before the beginning of a switch-off
event multiplied by the duration of the event (in hours). For example, if the power consumed by the plug prior to
switch-off was 2 Watts, and the switch-off event lasted for 30 minutes (i.e. 1

2
hour), the participant earned 2 Watts

x 1
2
hour = 1 reward point. If a participant overrode the switch-off event (i.e. by pressing the override button on

the plug or via the app), we only counted the amount of time that the plug was switched off before the override
(not the entire switch-off event).

15Our prizes came in the form of digital gift cards, redeemable in a variety of high-street and online retailers as
well as hospitality providers.

16The lottery worked as follows: the number of sub-lotteries for a £10 voucher was defined by the number of
participants with non-zero reward points during a given fortnight, for example 100 sub-lotteries if there had been
100 such participants. Each voucher was given away by drawing the names of participants. The probability to win
each of these draws was equal to 15% of that participant’s share of the overall number of reward points won in those
two weeks.
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Figure 1: POWBAL performance over time
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during the summer, later trials at Imperial College and Reading University initiated in October 2019 and January 2020

respectively, and ended in June 2020 as the emergence of COVID-19 drew students home from March 2020.

We first provide an overview of our data on electricity consumption via the plugs. Out of the 231
who signed up and received their plug, 169 went on to use it at least once. Figure 1 reports hourly
figures of aggregate power consumption. The LSE trial started in spring 2019 and ended over the
summer as students successively moved out of the halls, as reflected in the left-hand part of Figure
1. The Imperial trial initiated in October 2019 when students moved in, and the Reading trial
began in January 2020 at the start of term. The latter two trials officially ended on June 1, 2020,
though the emergence of the COVID-19 lockdown in March 2020 led many students to move out
of the halls to be with their families, which is apparent in the figure.17

Table 3: Descriptive statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Power consumption 1,702,547 7.19 66.73 0 0 0 3,118
Non-zero power 366,699 33.38 140.71 3.10 6.50 26.70 3,117.90
consumption

Notes: This table reports descriptive statistics of power consumption over the duration of the experiment. Power con-

sumption is recorded in Watts.

Table 3 reports statistics on the power consumption of connected devices (outside of switch-off
events) across all measurements throughout the trials. The average power is 7 Watts (akin to
that of a phone charger). However, this figure hides considerable heterogeneity both between and
within users. Note that most plugs do not consume any electricity most of the time. Of the nearly
1.7 million data measurements we observe, only 22% report non-zero consumption, while in the
remaining 78% of observations the plugs were connected to a socket without any devices consuming
energy through them . However, there are some users who use up to 3 kW (about the power needed

17In our pre-registry, we had indicated that trials would take place in 2018, and simultaneously. Logistical
technicalities delayed rollout at two of our sites, and the opportunity to work with University of Reading arose as we
were preparing to implement the experiment at Imperial. Given lower than expected uptake in Imperial and LSE,
we gladly partnered with Reading to achieve our desired sample size of 200-250, as designated in the pre-registry,
which can be found on OSF.
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Figure 2: Distribution of Power
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to run a 3 ton 12 SEER air conditioner) some of the time. Note that individual plugs can consume
energy even during a switch-off event if they choose to override the event.

Within-plug consumption changes over time because users connect different devices, switch off the
outlet, unplug the POWBAL plug, or toggle between switching a device off or on, which they can
do remotely or via a button on the plug itself. Therefore, it also makes sense to examine what
power is being drawn when power consumption is non-zero. These data are reported in row 2
of Table 3, which reveals that average consumption is 33 Watts with the 75th percentile at 26.7
Watts, which is on the order of magnitude of a small laptop or a tablet charger, natural usages
for a student hall. This coincides with our findings from the debrief survey.18 Figure 2 reports the
distribution of measured power for plugs with non-zero consumption and illustrates that a large
proportion of participants used the plug for small amounts of consumption.

2.4 Consumption over the course of the day

Given the importance of optimizing and integrating VPPs in increasingly smart energy systems,
demand fluctuations throughout the day need to be well understood. Figure 3 examines the
average power usage via the plugs for different hours of the day. The figure shows that the timing
of consumption varies substantially. During evening hours from 18:00 (6pm) onward, consumption
is more than three times higher than during the lowest consumption period around 5:00 (5am).
This pattern is comparable to within-day variations of consumption in typical UK households
(Ushakova and Jankin Mikhaylov, 2020), with the notable difference that nighttime consumption
is higher through the students’ plugs and that the morning peak is not pronounced. In addition,
the variation is independent of the day of the week. These different observations signify that the
virtual power plant’s capacity follows typical power demand to some extent, so that latent and

18Please see Appendix
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Figure 3: Power consumption throughout the day

Notes: This figure depicts average electricity consumed through plugs at each hour of the day, reported in Watts. The

hours of the day are noted on the x-axis. The average hourly consumption data for the UK was adapted from ?.

untapped flexibility in the energy system is maximized during periods of peak load. Additionally,
we see that the load remains relatively high until around midnight, which could be important if
electric vehicle owners plug in their cars to charge at night, as incentivized in many existing electric
vehicle energy plans.

3 Empirical Specification and Results

In this section we address our primary experimental research question of how our treatments, and
the switch-off intensity they entailed, affected the likelihood of adoption and use. To do so, we
compare adoption and use—i.e., whether the plug was used at all (binary) and the magnitude of
energy consumption contributed toward the VPP via the plug following adoption (continuous),
respectively—across the three groups. We additionally derive insights regarding prosocial motiva-
tion to adopt by analyzing the impact of receiving financial rewards on subsequent usage.

3.1 Prosocial Technology Adoption: A Stylized Model

To frame our analysis, we develop a stylized model on prosocial technology adoption. POWBAL
differs from most technology adoption experiences—for instance, purchasing and using a smart
phone—in that there is no intrinsic utility for the user. The value of adoption arises exclusively
as a positive externality; e.g., in our case it facilitates increased efficiency of the electricity grid.
However, there is potentially disutility from adoption—for instance, setup costs, data sharing, and
relinquished control over select energy services in the home—so users may need to be compensated
(Richter and Pollitt, 2018).

For simplicity, we assume that intensity of participation is unidimensional (e.g., frequency or
duration of a switch-off event) and that there is a fixed disutility, or ‘setup cost’, from adoption.
Moreover, with increasing switch-off intensity, the disutility of adoption increases at an accelerating
rate, as in the red line of Figure 4. We also suppose that transfer payments (e.g., lottery prizes)
increase linearly in consumption through the smart plug, as in the blue line of Figure 4. At point
B, disutility exceeds benefits and the user will not adopt. At point A, benefits are higher than

9



Figure 4: A stylized model

A

B

Duration

Disutility/Transfer

Disutility from plug use

Benefit from transfers (lottery)

C

Notes: This figure models disutility from plug use (red curve) combined with benefits from transfers (blue curve) as

function of variations in duration of switch-off events. At point A, benefits form the the lottery exceed the disutility from

adopting the plug. Conversely, at points B and C, disutility is larger than the potential benefits.

disutility so that a user will adopt. In our current setting the user cannot choose switch-off intensity
freely; rather, intensity is exogenously allocated. Hence, depending on the shape of the underlying
functions in our experimental settings, individuals will either adopt and use the technology (as at
point A) or choose not to adopt (as at points B or C). In the next two sections, we analyze first
how the different treatments, and the disutility from plug use that they represent, affect adoption
rates. We then explore whether the rewards from the lottery (extrinsic motivation) complement
prosocial utility (intrinsic motivation).
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3.2 Treatment impacts on adoption

3.2.1 Empirical Specification

Based on the three different treatments, we are able to explore two dimensions that could have an
impact on subjects’ decisions of whether to adopt the plugs: the duration and the frequency of the
switch-off events. All else equal, we would assume that a user prefers less frequency (i.e. a long gap
between switch-off events) and shorter events. However, less frequent and shorter switch-off events
also translate to lower payoff likelihood, so the expected response to the different treatments is an
empirical question.

To answer it, we run regressions of two different measures of adoption on the frequency and the
duration of the event. The first measure is the average electricity consumed per week (in kWh)
through individual plugs. The second measure is the percentage of weeks that a plug is online,
regardless of how much electricity is consumed through it. With the reference group being users
with exogenously assigned switch-off events of short duration (15 minutes) and only once every 24
hours, the regressions we run take the following form:

Yi = β0 + β1Freq + β2Long +H ′iγ + εi (1)

where Yi is the measure of adoption, either electricity consumed or percentage of weeks the plug is
online at least once. For example, if a user came online for the fist time in week 1, and then only
every other week until the end of the trial, the latter outcome would be 50%. Freq is a binary
variable set to 1 when a user is subject to frequent switch-off events occurring up to every three
hours (as in Treatment Group 3), and to zero otherwise. Long is a variable set to 1 when a user
is subject to long switch-off events of up to 30 minutes (as in Treatment Groups 2 and 3), and to
zero otherwise. Hi is a vector of residence hall control dummies.

3.2.2 The effect of varying switch-off event frequency and duration

To begin, we graphically explore the effects of the switch-off event characteristics. In Figure 5
we examine the effects of the treatments by observing two measures of adoption—weekly energy
consumption and share of users that have their POWBAL plug online at least once during a
given week—by treatment. The figure reveals that energy consumption via the plug tends to be
highest for Treatment Group 2 (low frequency, long duration of switch-off event) particularly in
the early weeks of the treatment. Consumption appears lowest for participants assigned to the
lowest switch-off event intensity, with the highest-intensity group in between.

In line with our discussion in section 3.1, one explanation may be that users do not view the
disutility from switch-off events as worthwhile when prospective rewards are too low, so infrequent
switch-off events lead to user disengagement. On the other hand, frequent switch-off events in-
convenience the user, which is why engagement is highest with long duration and low frequency.
Explicit regressions of consumption on treatment characteristics, as per equation 1, are presented
in Table 4. They are supportive of this interpretation in that they suggest users with long duration
switch-off events consume 3.4 kWh more over a week on average than those with short-duration
events, whereas high frequency reduces consumption by 2.9 kWh on average, as shown in column
1. The direction of the results is robust to winsorizing at 1% the dependent variable in column
2, which shows the result is not driven by a few outliers; however, the magnitude of the effect is
attenuated with winsorization. In column 3, the result holds once we control for the residence in
which the user lives.

Some additional results support this interpretation. Note that the gap between Treatment Group
2 and the other groups becomes initially bigger as the trial proceeds. This feature of the data is
in line with participants’ learning about their rewards: users in group 2 respond to higher rewards
whereas users in group 1 lose interest because of their lower chance of receiving rewards. We
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Figure 5: Treatment effects on plug usage
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Notes: The left-hand side graph reports the average energy consumption in kWh consumed through the plugs for each

treatment group across all sites over the trial duration measured in weeks where time 0 is when the user first uses the plug.

The right-hand side graph reports the share in percent of users that come online at least once, even briefly, during a given

week for each treatment group across all sites over the trial duration in weeks.

also see that users in group 2 are, toward the end of the trial period, the most likely to remain
engaged, leaving their plugs online for more weeks, as shown in the right panel of Figure 5. This
effect is less pronounced than the consumption effect: in the last column of Table 4, we find that
users with a longer switch-off duration treatment are 7.7 percentage points more likely to continue
participating, though the effect is not statistically significant.

There are a number of caveats to this interpretation. First, Figure 5 illustrates powerfully that
there is non-trivial attrition. Come week 15 of the trial most users abandon adoption. It is,
however, noteworthy that the observed drop is conflated by the end of term (in the LSE case) and
the onset of the COVID-19 lockdown (in the Reading case), as illustrated by Figures 6 to 8 which
repeat Figure 5 for our three trial sites separately. Note that for the Imperial site where we had
about 27 weeks of data before the lockdown began, attrition is much lower.

Interestingly, the relative performance of the treatment groups is different for the Imperial site
compared to the others. There is no advantage for any treatment in the early weeks of the trial.
Only toward the end does there appear to be some relative increase for group 3. Hence, we have to
be cautious in drawing overly strong conclusions from the aggregated results. However, consistent
with earlier results, group 1 comes lower in terms of participation likelihood toward the end of the
trial. Hence, we can conclude with some confidence that the need to provide sufficient incentive to
participate will dominate—within reason—factors such as the inconvenience of having plugs switch
off too often or for too long.
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Figure 6: Treatment effects on plug usage (LSE)
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Notes: The left-hand side graph reports the average energy consumption in kWh consumed through the plugs for each

treatment group across LSE sites over the trial duration measured in weeks. The right-hand side graph reports the share

in % of users that come online at least once during a given week for each treatment group across LSE sites over the trial
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Figure 7: Treatment effects on plug usage (Imperial)

0

10

0 10 20 30
Trial Duration in weeks

A
ve

ra
ge

 P
ow

er
 c

on
su

m
pt

io
n 

in
 k

W
h

0

50

100

0 10 20 30
Trial Duration in weeks

S
ha

re
 o

f u
se

rs
 o

nl
in

e 
in

 %

Treatment 1 Treatment 2 Treatment 3
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Figure 8: Treatment effects on plug usage (Reading)
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Notes: The left-hand side graph reports the average energy consumption in kWh consumed through the plugs for each

treatment group at the Reading site over the trial duration measured in weeks. The right-hand side graph reports the share
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Table 4: Regressions on Treatment Characteristics

Dependent variable: Weekly

Av. kWh Av. kWh Wins. Av. kWh User online

(1) (2) (3) (4)

Long duration 3.386∗∗ 1.686∗∗ 3.370∗∗ 7.700
(1.486) (0.824) (1.508) (5.551)

High Frequency −2.887∗ −1.693∗∗ −3.126∗∗ −7.547
(1.492) (0.827) (1.518) (5.572)

Reference Group 1.620 1.415∗∗ 1.295 39.000∗∗∗
(1.002) (0.556) (1.862) (3.742)

Site Controls No No Yes No
Observations 169 169 169 169
R2 0.034 0.032 0.045 0.014
Adjusted R2 0.023 0.020 0.021 0.003
Residual Std. Error 7.762 4.304 7.767 28.987
F Statistic 2.940∗ 2.713∗ 1.916 1.218

Notes: These estimates are the result of OLS regressions. The table reports the effect of varying the duration and

frequency of switch-offs events on the weekly average electricity consumption in kWh. Each coefficient represents the

difference relative to the control group such as to estimate the treatment effects of long duration and high frequency

switch-off events. The dependent variable is average weekly electricity consumption in columns 1 and 3. In column 2, the

average weekly electricity consumption is winsorized at 1%. In column 4, the dependent variable is the percentage of weeks

that a given user was online at least once after their first connection. In column 3, a set of dummies controls for which

student residence the participant resides in. Robust standard errors in parentheses. Significance levels are indicated as
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.3 How prosocial are participants?

In addition to exploring the impact of switch-off characteristics on adoption, we seek to understand
the motivation of participants. There could be at least two benefits driving users to adopt, despite
disutility from interruption to energy services: first, there could be a purely prosocial motivation,
since the POWBAL technology promises to enable clean energy generation. Alternatively, users
could be driven by the desire to win lottery prizes.

We can examine the relative importance of these motivations by comparing users’ participation
intensity—i.e. their energy consumption via the plug—to their reward intensity. We hypothesize
that if users are driven by prosocial motives alone, they should not respond to lottery wins by
increasing their energy consumption through the plug to increase their chances of future wins.

On the other hand, if they are driven by private rewards and if they update their expectations
about those rewards according to observed lottery wins, we would expect to find a relationship
between receiving rewards and participation intensity. In other words, if we find that consumers
respond to rewards being paid out, this is a sufficient condition for the presence of reward effects
(although not a necessary one).

We develop a simple model to illustrate this phenomenon. Suppose users’ utility is defined as

U = (θri + si) ei − eηi

where ei is participation intensity, ri represents the financial reward, θ is the importance of rewards
to users and si the prosocial benefit. We assume that η > 1, which implies increasing marginal
disutility from higher participation intensity. We here abstract from fixed costs that were discussed
in the earlier model.

Hence optimal participation is defined by

U ′ = 0 = θri + si − ηeη−1i

so that optimal participation intensity becomes

e∗i =

(
θri + si

η

) 1
η−1

If there is uncertainty over rewards, consumers will maximize expected utility E{U} which implies
that optimal adoption becomes

e∗it =

(
θEit{ri}+ si

η

) 1
η−1

with Eit{ri} being users’ expectation about rewards at time t. If we find that actual reward
payouts in the past (e.g. rit−1) drives current participation eit, we can infer that users form their
expectations about payouts on the basis of what they have actually received in the past:

Eit{ri} = f(rit−1)

Hence, past payouts become an instrument for the effect of rewards on participation (except that
we don’t directly observe Eit{ri}). We can then write the reduced form effect in this setting as
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∂eit
∂rit−1

=
1

η − 1

(
θEit{ri}+ si

η

) 2−η
η−1 θ

η
× ∂f(rit−1)

∂rit−1

Consequently, a regression of eit on rit−1 will provide us with the marginal response to rewards,
times the response of expectations to rewards. For an entirely prosocial driven user (with θ = 0)
this would be zero. For - at least in part - not prosocially driven users it seems reasonable to
assume that

0 <
∂f(rit−1)

∂rit−1
< 1

i.e. in response to a very high payment, users would adjust their beliefs upward but not excessively
so. Consequently, a reduced form regression of the form

eit = βrit−1 + εit

would give us a lower bound of the response of users to rewards:

1

η − 1

(
θEit{ri}+ si

η

) 2−η
η−1 θ

η
> β

This in turn provides us with an upper bound of the prosocialness of our virtual power plant.

Figure 9 illustrates this by plotting the change in weekly energy consumption against the change
in reward payments. We find large variation in both variables. The figure also reveals a positive
relationship between the two suggesting that more reward payments will encourage participants to
increase the amount of electricity they consume through the plugs.

We examine this response in greater detail by running regressions of the form 3.3 where we also
assume that there is a user-specific fixed effect:

εit = αi + νit

We deal with unobservable user-specific variation by running the regression in first differences.
Table 5 presents the results. Column 1 suggests that a reward payout in the previous week will
increase consumption in the current week by 45Wh per £1 paid out. Column 2 allows for further
lags, which suggests that there is an additional boost in adoption with an increase of 38Wh two
weeks after a payout. However, we also see that this additional boost disappears by the third week
after receiving payout. Hence, our first column estimate seems to be a good representation of the
net effect.

One concern could be that autocorrelation in a users’ consumption could be driving our effects;
i.e. if a user consumed more last week she might also consume more (or less) this week. Clearly
last week’s consumption is driving last week’s reward payments. It is easy to account for this
autocorrelation however, by including the previous week’s consumption levels as further controls
(and using a dynamic panel estimator, i.e. Arrelano Bond, for the estimation), which we present
in column 3. The results show that autocorrelation has little effect on the qualitative conclusions
drawn from columns 1 and 2. Indeed, it leads to a slightly larger impact estimate of rewards.

Based on these findings, what can we conclude about the importance of the financial motive
in comparison to the prosocial motive in fueling our virtual power plant? As noted above, our
estimates provide a lower bound on the financial motive (and in turn an upper bound on the
prosocial motive).
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Figure 9: Do rewards improve participation?
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Notes: This figure plots a fitted line between points that each represent a participant on a given week. On the y-axis, the

variable represents the change in weekly energy consumption from week t-1 to week t. On the x-axis, the variable measures

the change in reward payments from week t-2 to week t-1. (For example, if a participant wins a 20£ voucher in week t-2

and does not win in week t-1 then the change from week t-2 to t-1 is equal to -20)
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Table 5: Regressions of energy consumption on reward payouts

Dependent variable:

Change in weekly energy consumption

(1) (2) (3)

Reward Week -1 45.361∗∗ 52.353∗∗ 68.754∗∗
(19.714) (22.358) (30.593)

Reward Week -2 38.224∗ 52.764
(20.582) (33.581)

Reward Week -3 −33.831∗ −18.257
(17.506) (27.298)

Wh Week -1 −0.074
(0.348)

Wh Week -2 0.079
(0.099)

Wh Week -3 0.148
(0.234)

Week controls Yes Yes Yes
Observations 4742 4742 4742
Users 166 166 166

Notes: These estimates are the result of OLS regressions. The dependent variable is the change in weekly electricity

consumption in Wh from week t-1 to week t. The explanatory variables take the value 1 if the user received a reward in

week t-1, t-2 or t-3, and zero otherwise. The table reports the effect of receiving reward in previous weeks on the change

in electricity consumption. Column 3 also includes as controls weekly electricity consumption in weeks t-1, t-2 and t-3.

Robust standard errors in parentheses. Significance levels are indicated as ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Let’s consider the estimate in column 1 of Table 5, which suggests that the response to winning
£1 is an additional 45 Wh of consumption through the plug. Average weekly consumption is 136
Wh, and average payouts are 75 pence. Hence, not paying the average user would reduce her
consumption by 45Wh× 0.75 = 33Wh. This amount corresponds to 24% of average consumption,
which would seem substantial. Of course, if this amount is worth paying for the corresponding
contribution to the VPP, rewards need to be determined in relation to marginal increases in either
revenue or carbon reductions.

3.4 Overriding

Our discussion thus far has focused on adoption and amount of energy consumption as the primary
outcome variables of our experiment. However, there is a further dimension of how users can
respond to the exogenous switch-off schedule, which is by overriding the switch-offs. Table 6
reports regressions where the dependent variable is a binary variable equal to 1 if a switch-off
event is overridden by the user, and the independent variable of interest is the treatment to which
the user was assigned. In total we observe all 6719 switch-off events that occurred over our trial
period.

Overall, treatment assignment (i.e. switch-off intensity) appears to have little impact on overriding
behavior, with a rate between 2.1% for treatment group 1 (Reference Group) and 3.4+2.1=5.5%
for treatment group 2. However, this is in part because many of the switch-off events occur
during periods when users do not consume anything via the plugs. Hence, in column 2 we look at
overrides for switch-off events with non-zero load (in Watt) in the five-minute period immediately
preceding a switch-off. For this group switch-off events are considerably higher at between 7 and
17%. Comparing the variation of overriding between treatment groups leads to a surprising but
robust result: overriding is most prevalent for treatment group 2 with relatively long but infrequent
switch-off events.

On the other hand, the amount of overriding in groups 1 and 3 is nearly identical. One might
have expected most overriding to occur in group 3, wherein participants experience both long and
frequent switch-off events. At this point we can only speculate as to why this is not the case.
Perhaps users connect different devices under the various treatments. It could be that the with
longer treatments they make certain ex ante that any connected devices are more flexible and
therefore suited for better suited for withstanding switch-off events.

Columns 3 and 4 explore whether there is a relationship between pre-switch-off energy consumption
and overriding. It would be concerning if there is a positive relationship as this would imply that
the overriding behavior could substantially reduce the capacity of the virtual power plant. Column
3 includes the whole sample whereas in column 4 we only include the switch-off events with positive
pre-switch-off power usage (as in column 2). While we see a strong association between power usage
and overriding in column 3, the association vanishes in column 4. Hence, the effect in column 3 is
entirely driven by the extensive margin of power users with positive usage.

4 Discussion and Conclusion

The development and adoption of new and often “prosocial” technologies will be critical to address
climate change as well as other prominent societal issues, including economic growth and public
health. Smart connected IoT devices powered by artificial intelligence have become a central
focus of technological advancement in recent years. In this paper, we introduce POWBAL, a new
and original platform for research into the possible impacts of inexpensive smart technologies in
facilitating low-carbon energy transitions while increasing electricity reliability and efficiency.

The emergence of IoT applications will continue to increase data availability across a number of
sectors. This exponential increase in data collection opportunities will create an environment where
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Table 6: Regressions of Override events

Dependent variable:

Override event

(1) (2) (3) (4)

Treatment 1 0.021 0.070∗∗∗ 0.021∗∗∗ 0.070∗∗∗
(0.016) (0.005) (0.006) (0.020)

Treatment 2 0.055∗∗ 0.169∗∗∗ 0.053∗∗∗ 0.167∗∗∗
(0.026) (0.014) (0.006) (0.021)

Treatment 3 0.032∗∗ 0.085∗∗∗ 0.032∗∗∗ 0.084∗∗∗
(0.015) (0.009) (0.003) (0.009)

Pre switch-off power in W 0.0001∗∗∗ 0.0001
(0.00003) (0.0001)

Observations 6,719 1,467 6,719 1,467
R2 0.036 0.103 0.039 0.104
Adjusted R2 0.036 0.101 0.038 0.101
Residual Std. Error 0.180 0.291 0.180 0.291
F Statistic 83.829∗∗∗ 56.194∗∗∗ 67.927∗∗∗ 42.357∗∗∗

Notes: These estimates are the result of OLS regressions. The table reports the propensity of participants to override

the switch-off event across treatment groups. The dependent variable is a binary variable equal to 1 when a switch-off

event is overridden while each coefficient represents the increased likelihood in % of overrides happening in each of the

three treatment groups. In column 1 and 3, regressions are run on the entire data-set while columns 2 and 4 control for

periods of non-zero consumption shortly preceding switch-off events. The variable pre-switch-off power in columns 3 and

4 reports the effect of consuming power before a switch-off event on the likelihood of overriding the upcoming switch-off

event. Robust standard errors in parentheses. Significance levels are indicated as ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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harvesting information about the activities and behaviors of individuals, devices, and physical
phenomena becomes increasingly commonplace. Understanding which information and incentives
are useful in this setting, which IoT applications are likely to be adopted and influence energy
consumption behavior, and how users respond to real-time feedback mechanisms is critical.

Via internet-connected power plug adapters, POWBAL allows remote device-level power consump-
tion monitoring as well as remote power switch-offs. We use this capability to conduct a series
of field experiments on dynamic demand management. If deployed at scale, such a technology
could significantly reduce the requisite capacity to ensure reliable electricity supply while reducing
the costs of intermittent renewable technologies by requiring fewer backup generation assets. In
other words, the technology allows us to better conceptualize and actualize a consumer-driven
virtual power plant (VPP) with instantaneous ramping capabilities. Conventional VPPs consist
of the bundling and coordination of a large number of small generation assets (e.g., from solar
panels). In our case, these generation assets are small electricity gateway devices that can swiftly
be switched off, thereby delivery “negawatts” to the grid.

Our results provide a first step in understanding mechanism design for virtual power plants fueled
by smart plugs, an inexpensive IoT technology that can make any appliance or electronic “smart”.
While our focus on student halls in the United Kingdom may limit the external validity of our
results, a number of interesting findings emerge. These include, firstly, that participation is highly
skewed with many users connecting very small or no power loads—as might be expected in uni-
versity housing—despite adopting the plug in principle. However, despite the limited appliances
in these residential settings, there are also some superusers connecting loads that could make a
substantial contribution to load balancing.

Users appear to respond to different treatment options (with different degrees of switch-off inten-
sity) in a nonlinear way. That is, more intrusion does not necessarily lead to less participation,
which may be rationalized via the trade-off between rewards and service interruption. Relat-
edly, we find that users who experience a more intensive switch-off regimen are not necessarily
overriding the load-balancing efforts more frequently, which could indicate that these users are
more considerate of the flexibility of devices they connect through their smart plugs. In other
words, as with issues related to technology adoption, there are often complementary—and often
intangible—investments required of adopters, and the quality and quantity of those investments
matter. These complementary investments could be a further driver of non-linear responses to
treatment intrusiveness.

Finally, we find that users clearly respond to reward payouts, suggesting that adoption is not
purely driven by prosocial motives. Evidence of such varied motivations is good news for efforts
to facilitate widespread adoption of such a technology, as prosocially motivated adopters tend to
make up only a small fraction of any population. Future research should further rigorously explore
the vast array of competing motivations that determine adoption of prosocial technologies that can
contribute toward such a virtual power plant, and toward climate change mitigation more broadly.
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A Appendix

Figure 10: Participant Information Sheet
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Figure 11: Participation Consent Form
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Table 7: Items Connected via Smart Plugs (Debrief Survey Sample)

Device 1 Device 2

Bluetooth speaker charger 1 0
(2%) (0%)

Electric heater 1 0
(2%) (0%)

Games Console 1 1
(2%) (1%)

Hair electronics (incl. shavers) 1 3
(2%) (6%)

Kettle 3 0
(6%) (0%)

LED or computer screen 2 0
(4%) (0%)

Lamp 6 3
(11%) (6%)

Laptop charger 19 14
(36%) (26%)

Phone charger 15 11
(28%) (21%)

Printer 1 0
(2%) (0%)

Plug-in diffuser 0 1
(0%) (2%)

Refrigerator 1 1
(2%) (2%)

Speaker 0 1
(0%) (2%)

TV 2 2
(4%) (4%)

No second device N/A 15
(28%)

No Response N/A 1
(2%)

Notes: This table reports the participants answers regarding the items that were connected via smart plugs. The column

"Device 1" records the number of participants that stated a particular device. The column "Device 2" records the number

of participants that stated a second device if used.
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