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Pricing ambiguity in catastrophe risk insurance

Simon Dietz∗† and Falk Niehörster‡

July 29, 2019

Abstract

Ambiguity about the probability of loss is a salient feature of catas-
trophe risk insurance. Evidence shows that insurers charge higher pre-
miums under ambiguity, but that they rely on simple heuristics to do
so, rather than being able to turn to pricing tools that formally link
ambiguity with the insurer’s underlying economic objective. In this
paper, we apply an α-maxmin model of insurance pricing to two catas-
trophe model data sets relating to hurricane risk. The pricing model
considers an insurer who maximises expected profit, but is sensitive to
how ambiguity affects its risk of ruin. We estimate ambiguity loads
and show how these depend on the insurer’s attitude to ambiguity,
α. We also compare these results with those derived from applying
model blending techniques that have recently gained popularity in the
actuarial profession, and show that model blending can lead to the
counter-intuitive result that the insurer prices catastrophe risk con-
tracts as if it seeks ambiguity.
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1 Introduction

Ambiguity, defined as uncertainty about the relative likelihood of events
(Ellsberg, 1961), is a common feature of insurance (Hogarth and Kunreuther,
1989). Ambiguity is particularly likely to affect pricing of catastrophe rein-
surance, where historical loss data are limited for higher risk layers.1 Hur-
ricane risk provides a good motivating example of the issues. A number of
insurers and especially reinsurers failed in the aftermath of Hurricane An-
drew, which made landfall as a category four hurricane in south Florida in
August 1992, principally because they had been relying on loss data from
the previous two decades for pricing, reserving and so on (Calder et al.,
2012). But 1971-1991 (or thereabouts) was an historically quiet period for
Atlantic hurricane activity (Landsea et al., 1996),2 as well as being a period
during which insured values and other aspects of the state’s vulnerability
and insurers’ exposure were changing. Partly as a consequence of Andrew,
probabilistic catastrophe models have become widely used in the insurance
industry as a means of estimating catastrophe risks. However, while catas-
trophe models may provide a better basis for estimating catastrophe risk
than relying on the historical record alone, such models tend not to provide
unambiguous loss probabilities. For example, Mao (2014) recently reported
widely differing estimates of insured losses from a 1/250-year Florida hurri-
cane, ranging from $54 billion to $151bn, with the three leading commercial
catastrophe model providers disagreeing on both the mean loss and the
range.3

Ambiguity tends to result in higher premiums than those charged for
equivalent, unambiguous risks. This was a feature of industry practice that

1The pricing approaches used by reinsurers are very different from those used by pri-
mary insurers. In this paper, we focus on reinsurance pricing, therefore when we use the
term insurer we are usually referring to a reinsurance provider.

2The average number of intense hurricanes (categories 3-5) forming in the Atlantic
basin between 1944 and 1991 was 2.2 per year, whereas between 1971 and 1991 it was 1.5,
roughly 0.5 standard deviations below the 1944-1991 mean.

3In this paper, we will not draw a distinction between uncertainty about the probability
of a known loss and uncertainty about the loss conditional on an event of known probability
(cf. Kunreuther et al., 1993). Both are regarded here as instances of ambiguity and can
be rendered equivalent in terms of non-unique estimates of the loss distribution.
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was widely suspected, but difficult to isolate from other factors tending to
raise premiums. Therefore a series of studies used experimental and survey
methods to establish, in controlled conditions, the practice of loading pre-
miums under ambiguity (Hogarth and Kunreuther, 1989, 1992; Kunreuther
et al., 1993, 1995; Cabantous, 2007; Kunreuther and Michel-Kerjan, 2009;
Cabantous et al., 2011). The participants in these studies, mostly insurance
professionals (including actuaries and underwriters), were asked to price hy-
pothetical contracts, with the existence of ambiguity about losses being a
treatment. The results consistently showed that higher prices were quoted
under ambiguity compared with when a precise probability estimate was
available.4 This insurer ambiguity aversion is consistent with a broader
body of evidence on individual decision-making under ambiguity (reviewed
by Machina and Siniscalchi, 2014), initiated by Ellsberg’s thought experi-
ments about betting on balls being drawn from urns (Ellsberg, 1961).

While it is well known that ambiguity contributes to higher insurance
premiums and accompanying problems of availability and coverage, the eco-
nomic rationale for this has received less attention. Hogarth and Kunreuther
(1989) showed that a positive ambiguity load is consistent with a risk-neutral
insurer who maximises expected profit, if the insurer’s beliefs about the
probability of loss are formed according to the psychological model of Ein-
horn and Hogarth (1985). In this model, the insurer’s probability estimate is
distorted such that, for low-probability events like catastrophe risks, greater
weight is placed on higher probabilities of loss. That is, the insurer forms
pessimistic beliefs when insuring catastrophe risks. A basic result of deci-
sion theory is that expected utility maximisation is inconsistent with am-
biguity aversion (Ellsberg, 1961). However, Berger and Kunreuther (1994)
showed that an ambiguity load could be consistent with a risk-averse in-
surer who maximises expected utility, if (and only if) the effect of ambigu-
ity is to increase the correlation between risks in the insurer’s portfolio.5

4Cabantous (2007) provided some evidence that ambiguity increased premiums more
when it was defined as the existence of conflicting, precise estimates, rather than a con-
sensual, imprecise estimate. Our case studies in this paper are easiest to interpret as
comprising conflicting, precise estimates.

5In particular, they showed that the premium per risk was an increasing function of
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They also showed, again under special assumptions about the nature of
the ambiguity,6 that an ambiguity load is consistent with a ‘safety-first’
model of an expected-profit-maximising insurer who must satisfy an insol-
vency/ruin/survival constraint in the tradition of Stone (1973). Moreover
they showed that this safety-first model better explains other results in the
experimental/survey literature than does the expected utility model. What
makes this approach attractive is that survival constraints are widely used
in the insurance industry and have become enshrined in some regulations
such as the European Union’s Solvency II Directive.

Dietz andWalker (2019) have recently proposed an alternative α-maxmin
representation of the insurer’s decision problem under ambiguity, which is
also based on an expected profit maximiser facing a survival constraint.
The insurer’s attitude to ambiguity potentially affects the premium through
the amount of capital it must hold against the risk of ruin. An ambiguity-
averse insurer places more weight on higher probabilities of ruin, therefore
holds more capital, and charges a higher capital load on the premium if the
new contract increases the probability of ruin (vice versa for an ambiguity-
seeking insurer). This is also a form of pessimism. The advantages of the
model in Dietz and Walker (2019) are that it is consistent with ambiguity
loading under quite general conditions whereby a new contract increases the
ambiguity of the insurer’s portfolio, and that, drawing on recent advances
in decision theory (especially Ghirardato et al., 2004), it captures the in-
surer’s attitude to ambiguity via an easily interpretable parameter, α, that
is clearly separated from the insurer’s beliefs about the probabilities of loss.

The actuarial literature that directly engages with ambiguity would also
appear to be sparse. Two areas are particularly relevant to the current set-
ting. The first is the development of premium principles. In this regard,
Pichler (2014) observes that all well-known premium principles assume a

the number of identical risks insured, when the loss probability was uncertain and either
uniform or discrete distributed with an expected value of one half. This illustrated that
under ambiguity the risks became correlated.

6Specifically their results were obtained using a discrete parameter distribution, as-
signing a probability of 0.9 on a loss probability of 0, and 0.1 on a loss probability of
1.
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unique, stable loss distribution. One or two of these principles take am-
biguity into account indirectly through the practice of distorting the loss
distribution, placing more weight on higher loss probabilities and therefore
introducing pessimistic beliefs like the Einhorn and Hogarth (1985) model.
The second is the development of techniques, primarily by practitioners, to
mix multiple, conflicting probability estimates into a single estimate that
can be inputted into a standard premium principle such as the expected
value principle. These have come to be referred to as catastrophe model
‘blending’ (Calder et al., 2012). The interesting feature of these techniques,
from our point of view, is that their development has been based on sat-
isfying certain mathematical properties and generally without attention to
insurers’ fundamental economic objective.

In view of the relatively limited body of theory on how ambiguity af-
fects insurance supply,7 it is perhaps unsurprising that insurance actuaries
and underwriters appear to rely on simple rules of thumb in practice when
loading premiums under ambiguity. Hogarth and Kunreuther (1992) pro-
vided some structured evidence of this from their mail survey of actuaries.
A subset of respondents provided written comments giving insight into their
decision processes. Most of these responses indicated that actuaries first an-
chored the premium on the expected loss, and the majority of these would
then, when informed the probability of loss was ambiguous, explicitly or
implicitly apply an ad hoc adjustment factor or multiplier (e.g. increase the
premium by 25%). Anecdotally such practice is widespread.

The purpose of this paper is twofold. The first is to apply the model
in Dietz and Walker (2019) to two data sets, where conflicting catastrophe
models create ambiguity about the probability of insured losses. The two
data sets both relate to hurricane risk in the Atlantic basin. In one, Florida
property, ambiguity stems from a set of (simple) hurricane models yielding
different estimates of hurricane activity. In the other, Dominica property, we
assume a unique estimate of the probability of hurricane activity, but there

7This can be compared with the relatively more extensive literature on ambiguity
aversion on the demand side, e.g. (Snow, 2011; Alary et al., 2013; Gollier, 2014; Berger,
2016).
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is nonetheless ambiguity, which stems from different vulnerability functions
describing a property portfolio. These applications enable us to demonstrate
the practical use of an economic premium principle that treats ambiguity
explicitly and thereby quantifies the ambiguity load as a function of the
insurer’s attitude to ambiguity. We argue the application of this principle
has the capacity to improve on ad hoc adjustments, even if it is unable to
avoid the need for them altogether. The second purpose of the paper is to
compare the results of this with the premiums that would be quoted by an
insurer, who is also an expected profit maximiser operating under a survival
constraint, but where the unique probability of loss is derived from the ap-
plication of popular model blending techniques. The comparison yields the
important and counter-intuitive result that these model blending techniques
can be inconsistent with insurer ambiguity aversion, instead implying the
insurer is ambiguity-seeking. This will not always be the case and it is be-
yond the scope of our paper to demonstrate how often it will be the case.
We merely set out to demonstrate that it can happen, by providing two
plausible examples.

The remainder of the paper is structured as follows. Section 2 provides a
brief analytical treatment of the safety-first model of insurance pricing and
Dietz and Walker’s (2019) α-maxmin model of reserving under ambiguity,
as well as how the risk of ruin is estimated using popular methods of model
blending. Section 3 introduces and analyses the two case studies, and Section
4 provides a discussion.

2 Pricing insurance

2.1 Premium principle

An insurer that seeks to maximise its expected profits subject to a survival
constraint would price premiums according to

pc = Lc + y
(
Zf ′ − Zf

)
, (1)
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where pc is the premium on contract c, Lc is the expected loss, y is the
cost of capital and Zi represents the insurer’s capital reserves held against
portfolio i ∈ {f, f ′}.8 When the insurer takes on contract c, the insurer’s
portfolio is f ′ = f + c. Hence the premium is comprised of the expected loss
on the contract, plus the cost of the additional capital required to ensure
the portfolio-wide survival constraint is still met.

2.2 Expected losses and capital loads

Assuming a single probability distribution is appropriate to characterise the
insurer’s losses on its portfolio, the expected loss Lc is precisely estimated,
as are the capital reserves, which can be set so that they are just sufficient
to cover the loss (−)x at a pre-specified probability θ (e.g. 1/200 years or
0.005).9 For portfolio f this is

Zf = min {x : Pf (−x) ≤ θ} , (2)

where Pf (x) ≡ Pf (y : y < x), i.e. it is shorthand for the probability that
portfolio f pays out any amount less than x, or equivalently that the loss is
more than x.

The key question is what to do when multiple conflicting estimates of
Pf (x) are available and there is no basis for assuming one estimate is pre-
cisely correct. This might often be the case when insuring catastrophe risks
such as hurricanes. The insurer may have at its disposal a set of estimates
from the various catastrophe models available.

One approach is to blend the various estimates into a single probability
distribution and proceed exactly as above. There are several ways to blend
models, but the principal methods are frequency and severity blending.10

Their workings will be described below.11

8This is a generalisation of Kreps (1990, formula 2.1), for example.
9For the sake of consistency, we use the same notation as Dietz and Walker (2019). In

that paper, x signifies the payout on a portfolio and hence −x constitutes a loss.
10Like Calder et al. (2012) we take model blending to mean combining the outputs of

different models, rather than combining the components of different models into a model
that yields a single output, which can be referred to as ‘model fusion’.

11Other methods involve blending of loss history for short return periods with a tail
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Dietz and Walker (2019) propose an alternative approach. Where π
is an estimate of the probability distribution of losses – call it a ‘model’
for short – the expected loss Lc is simply the expectation of the expected
losses estimated by each π.12 On the other hand, in setting capital reserves
the insurer may not be neutral towards the existence of ambiguity and this
implies not simply taking expectations. Thus, applying recent developments
in economic theory, Dietz and Walker (2019) propose that capital reserves
be set according to

Zf = min
{
x : α ·

[
max
π∈Π

P πf (−x)
]

+ (1− α) ·
[
min
π∈Π

P πf (−x)
]
≤ θ

}
, (3)

where Π ∈ Z+ is the set of all models. The insurer computes Zf by taking
a weighted average of the highest and lowest estimates of the loss (−)x
at probability θ. The weight factor α captures the insurer’s attitude to
ambiguity.13

Dietz and Walker (2019) go on to show that, if one portfolio is more
ambiguous than another,14 then an insurer holds more capital if and only
if α > 0.5. In other words, an insurer with α > (<)0.5 is ambiguity-averse
(-seeking) and charges higher (lower) premiums for contracts that increase
the ambiguity of the portfolio. This comes about because an insurer with
α > 0.5 places more weight on the highest loss estimate, the worst case. In
the limit of α = 1, the insurer sets its capital reserves based exclusively on
the worst case, which is analogous to (unweighted) maxmin decision rules
that have been proposed as a means of making rational decisions under am-

risk distribution from a catastrophe model (e.g. Fackler, 2013). However, frequency and
severity blending are still by far the most popular methods to generate a single probability
distribution, if conflicting estimates are available.

12In general this is the weighted mean of Lc across models. If all models have equal
weight, then it is the arithmetic mean.

13In Dietz and Walker (2019), this is denoted α̂ in order to differentiate it from the
parallel concept in the underlying theory of decision-making under ambiguity (Ghirardato
et al., 2004). However, doing so is unimportant here, so we avoid the extra notation.

14Formally, one portfolio f is more ambiguous than another portfolio g whenever any
ambiguity-neutral insurer is indifferent between the two portfolios, any ambiguity-averse
insurer prefers g to f , and any ambiguity-seeking insurer prefers f to g (Jewitt and Mukerji,
2017). Therefore this is a behavioural definition of ambiguity, depending only on revealed
preferences, in keeping with the standard approach in economics.
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biguity/ignorance (e.g. Gilboa and Schmeidler, 1989; Hansen and Sargent,
2008).

2.3 Model blending

Frequency blending works by taking the weighted average of the probabilities
estimated by each of the set of models Π of a given loss:

Pf (−x) =
∑
π

γπP
π
f (−x), (4)

where γπ is the weight assigned to model π (see Figure 1 for a schematic
representation). Clearly if each model weight in the set is equal to 1/Π,
then (4) is equivalent to computing the arithmetic mean of the probabilities
at a given loss, which is a common and natural starting point.

Severity blending involves taking the weighted average of the losses es-
timated by the models at a given probability:

Pf (−x) = Pf

[∑
π

γπ invP πf (−xπ)
∣∣∣P jf = P kf , ∀π = j, k

]
. (5)

See Figure 1. If each model weight is equal to 1/Π, then (5) is equivalent
to computing the arithmetic mean of the losses at a given probability.

Although severity blending might appear to be the inverse of frequency
blending, it is not. It is well known that the two techniques tend to pro-
duce different estimates of the composite loss distribution, even in relatively
trivial examples where Π = 2 and γ1 = γ2 = 0.5 (see Calder et al., 2012,
p18-21). Although severity blending involves applying the inverse of the
loss distribution function, invP πf (−x), the weighted average loss at a given
probability need not lead to the same result as the weighted average proba-
bility at a given loss. Only in two cases will frequency and severity blending
yield exactly the same estimate of Pf (−x). One is the trivial case where the
models agree exactly on the probability of a given loss, P jf = P kf ,∀π = j, k.
The other is when the slopes of the loss distribution functions are equal,
that is, for all pairs of models j and k, when P j′f (−xj) = P k′f (−xk) over the
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interval
[
−xj ,−xk

]
. See Appendix A.

FIGURE 1 ABOUT HERE

It has been argued that frequency blending is superior to severity blend-
ing. While severity blending is easy to perform, doing so breaks the link
with the underlying event set, which makes it difficult to make comparisons,
such as the accumulation of risk from a given peril across the insurer’s whole
portfolio, or the comparison between losses gross and net of excess (Calder
et al., 2012; Cook, 2011). Nevertheless both techniques are common and so
we will evaluate both.

It is possible to envisage a situation in which the application of the α-
maxmin reserving rule in (3) is mathematically equivalent to using frequency
blending to mix models so that reserving rule (2) can be applied (or to using
severity blending under the limited circumstances described above). This
would be the case if, for example, there were two models and the ambiguity
parameter α happened to coincide with the model weights {γπ}2π=1. For
instance, the insurer might be ambiguity-neutral (α = 0.5) and consider
each of the models to be equally likely to be the true model (γ1 = γ2 =
0.5). However, it is important to stress that α is a behavioural/preference
parameter that is intended to capture the insurer’s attitude to ambiguity,
whereas the model weights γπ reflect the insurer’s beliefs about how likely
each model is to be the true model. They are conceptually quite different.

3 Applications to hurricane risk

In this section, we estimate premiums in two case studies, both of which
involve catastrophe modelling of hurricane risk and both of which are af-
fected by ambiguity. On the one hand, we estimate premiums based on
a single estimate of the probability of losses. This can be obtained either
conditional on each model, by frequency blending or severity blending. On
the other hand, we estimate premiums obtained when the capital holding
is set according to the α-maxmin rule (3). In both case studies, the prob-
lem is simplified to that of a stand-alone, large-contract-cum-small-portfolio
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(Zf = 0 in Eq. (1)). Therefore we abstract from issues created by the in-
teraction of the new contract with an insurer’s existing portfolio, as well
as from other complications such as deductibles and limits. For these and
other reasons that will become apparent, the case studies are not entirely
realistic. Limitations to the availability of data constitute a barrier to full
realism. Nonetheless our hope is that the case studies are plausible enough
to demonstrate the utility of the α-maxmin rule relative to model blending.

3.1 Florida property

The first case considers ambiguity affecting the insurance of a large port-
folio of ca. 5 million residential buildings in Florida against wind damage
from hurricanes. The data are taken from Ranger and Niehörster (2012).
Ambiguity comes from a set of models of hurricane activity, i.e. the occur-
rence probabilities of catastrophic hurricane events are imprecisely known.
The set of models is generated by taking a set of global climate models and
using different models – both dynamical15 and statistical – to downscale the
boundary conditions from the global climate models to Atlantic hurricane
activity. Our set comprises 15 models. The estimates of hurricane activity
from these 15 models are then used to set the occurrence probabilities of
hurricane events (e.g. the event rates) in a single, simplified hurricane risk
model (from Risk Management Solutions Inc.), yielding 15 competing ex-
ceedance probability (EP) curves.16 We interpret the loss forecasts provided
by Ranger and Niehörster for the year 2020 as the complete set of estimates
of present-day losses. This implies all the ambiguity comes from modelling
the hazard, whereas in reality ambiguity often stems from uncertain vulner-
ability functions or exposure characteristics too.

The 15 EP curves are used to calculate average annual losses (AALs,
equivalent to Lc in Equation (1)) and losses at specific return periods, and
these enable us to estimate premiums if we abstract from the pre-existing

15That is, models that use basic physical principles to calculate changes in climatic
features.

16Ranger and Niehörster (2012) provide estimates assuming (i) status quo property
vulnerability, and (ii) lower vulnerability based on all properties meeting 2004 Florida
building codes. We use the status quo assumption.
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portfolio. Figure 2 displays the premium conditional on each hurricane
model. It also displays ambiguity-adjusted premiums, with the insurer’s
capital reserves set according to the α-maxmin rule (3), as well as premiums
based on using frequency and severity blending of the models to obtain the
AAL and the insurer’s reserves via Equation (2).17 Each of the 15 model
EP curves is given equal weight when carrying out frequency and severity
blending, i.e. γπ = 1/Π,∀π. Clearly other model weighting schemes are
possible and can be derived by different validation techniques (Mitchell-
Wallace et al., 2017), by or credibility theory (Dean, 1997). However, equal
weighting is consistent with the principle of insufficient reason and the view
of Ranger and Niehörster was that there was no straightforward way of
establishing relative confidence in each model. In all cases, the insurer is
required to hold capital sufficient to cover a 1/200-year event and the cost
of capital is assumed to be 10%.

FIGURE 2 ABOUT HERE

The range of premiums estimated is from $8.8 billion under the UKMO-
HADCM3model (a global climate model dynamically downscaled) to $16.3bn
under the MDR-SST model (a statistical model predicting hurricane forma-
tion based on the sea surface temperature in the Atlantic Main Development
Region). An ambiguity-neutral insurer with α = 0.5 requires a premium of
$11.3bn. This is an important benchmark, since an ambiguity-averse (-
seeking) insurer requires a strictly higher (lower) premium. The premium of
$11.3bn is comprised of an AAL of $3.8bn and a capital load of $7.5bn, thus
the premium is three times the expected loss (expectations taken over all 15
models). A maximally ambiguity-averse insurer with α = 1 sets its premium
equal to the expected AAL plus the capital required to absorb the 1/200-
year loss in the most pessimistic model, MDR-SST. The resulting premium
is $13.6bn, so the ambiguity load is $2.2bn or 20%, and the price multiple
of the expected loss rises to 3.5.18 Note that this premium is lower than the

17As the underlying model event sets were unavailable to us, frequency blending was
performed by directly computing (4) at each loss using the models’ EP curves.

18These premiums/multiples may be compared with the empirical estimates of Lane
and Mahul (2008), according to which a representative multiple for US wind based on the

13



premium conditional on MDR-SST itself, because the expected AAL over
all 15 models is lower than the AAL predicted by MDR-SST.

One of the key results contained in Figure 2 is that frequency and severity
blending produce a premium lower than Equation (3) when α = 0.5. This
implies frequency and severity blending are consistent with an insurer who
is ambiguity-seeking in this case. The premium is particularly low under
frequency blending; it is lower than the premium conditional on 12/15 mod-
els. The shortfall between frequency/severity blending and the ambiguity-
neutral premium is $1.8bn and $0.8bn respectively. Inspecting the figure, it
is clear that a contributing factor to this result is that the most pessimistic
model, MDR-SST, which is given a weight of 0.5 by an ambiguity-neutral
insurer in setting its capital reserves, is an outlier. It is therefore tempting to
dismiss the relevance of the result to cases where the most pessimistic model
is not an outlier. However, note that if MDR-SST is (arbitrarily) removed
from the set of models, while the resulting premium under severity blending
is now just above the ambiguity-neutral level, the premium under frequency
blending remains below it.19 Figure 3 shows that the frequency-blended
EP curve gives lower losses than the severity-blended EP curve. Applying
the theory set out in Appendix A, this is driven by the slope of the more
pessimistic EP curves being initially higher.

FIGURE 3 ABOUT HERE

In Figure 4, we repeat the analysis, but instead require insurers to hold
sufficient capital to survive a 1/500-year loss. All premiums and multiples
are higher, but the ambiguity load for ambiguity-averse insurers is uniformly
slightly smaller. For α = 1, the multiple of the price above the expected loss
is 4.5, but the ambiguity load is 16%. This reflects the fact that the models
are marginally less dispersed in their estimates of the 1/500-year event than

market for insurance linked securities is 3.3, averaging over the insurance cycle. However,
since we abstract from the pre-existing portfolio, one should not read too much into the
comparison.

19An ambiguity-neutral insurer with α = 0.5 requires a premium of $10.07bn when
MDR-SST is excluded. Severity blending yields a corresponding premium of $10.11bn,
while frequency blending yields a comparable premium of $9.3bn.
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they are of the 1/200-year event.20 Frequency and severity blending still
give rise to premiums consistent with an ambiguity-seeking insurer. Notice
that a maximally ambiguity-seeking insurer with α = 0 charges a premium
below that conditional on the most optimistic model, UKMO-HADCM3.
This is explained by the fact that, although UKMO-HADCM3 forecasts the
lowest AAL, it does not forecast the lowest 1/500-year losses (the model
WNDSHR&MDR-SST does21).

FIGURE 4 ABOUT HERE

3.2 Dominica property

The second case considers ambiguity affecting the insurance of a portfolio of
3,000 low-income residential properties on the Caribbean island of Dominica
against hurricane wind damage. The data come from a study by RMS et al.
(2018). In this case there is a single hazard model and ambiguity comes from
a set of six vulnerability functions, based on different assumptions about the
construction quality of buildings in the portfolio.

As in case 1, the six EP curves are used to calculate AALs, losses at
specific, high return periods against which capital reserves are set, and then
premiums. Figure 5 displays premiums where capital reserves are set against
the 1/200-year event and the cost of capital is 10%. The six models are as-
signed equal weight for model blending. The range of premiums is from
$469,580 under the lowest vulnerability function to about $1.4 million un-
der the highest. An ambiguity-neutral insurer with α = 0.5 requires a
premium of $934,322, which is five times the expected loss of $184,516. The
ambiguity-neutral premium is higher than the premiums conditional on 5/6
models, reflecting how much higher losses are under the highest vulnerabil-
ity function (no protection) than the other five. This also explains why the
multiple is as much as five. The maximum ambiguity load is $397,769 or

20As two indications of this, the respective coefficients of variation are 0.10 and 0.16,
while he respective adjusted Fisher-Pearson coefficients of skewness are 0.5 and 1.8.

21WNDSHR&MDR-SST is a statistical model, which predicts hurricane formation based
on the local vertical wind shear and the sea surface temperature in the Atlantic Main
Development Region.
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43%, defined as before as the difference in premium between α = 0.5 and
α = 1. In this case we again find that frequency and severity blending give
rise to premiums that are below the premium required by the ambiguity-
neutral insurer, thus being representative of ambiguity-seeking behaviour by
the insurer.

FIGURE 5 ABOUT HERE

The implications of model blending for an insurer’s attitude to ambi-
guity depend on the model weighting scheme. To demonstrate this, here
we implement a purely illustrative scheme, according to which the model
using the highest vulnerability function (no protection) is over-weighted at
γno = 0.4, the three models using vulnerability functions that assume partial
roof reinforcement are given a probability of 0.15, and the two models us-
ing the lower vulnerability functions (full retrofit) are assigned γπ = 0.075.
Figure 6 shows that in this case severity blending is consistent with insurer
ambiguity aversion, but frequency blending still gives rise to a premium be-
low the ambiguity-neutral premium, i.e. it is inconsistent with ambiguity
aversion.

FIGURE 6 ABOUT HERE

This result suggests a relationship between the weight placed on the
model using the highest vulnerability function and the premium required
under model blending. Figure 7 traces that relationship, where γno is the
probability assigned to no protection and the weights of the remaining five
models are kept equal to (1− γno) /5. Figure 7 shows that the no protection
model needs to be assigned a weight of γno > 0.28 if severity blending is to be
consistent with ambiguity aversion, while it needs to be assigned a weight of
γno > 0.69 if frequency blending is to be consistent with ambiguity aversion.

FIGURE 7 ABOUT HERE

4 Discussion

The two case studies in this paper have demonstrated the application of a
premium principle, which is based on expected profit maximisation, com-
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bined with a survival constraint that is based on an α-maxmin rule for
mixing the least and most pessimistic estimates of the risk of ruin. The
analysis has shown that the α-maxmin rule lends itself quite naturally to a
setting in which there is a finite number of competing catastrophe models.
The ambiguity load is up to 20% in the case of Florida property and 43% in
the case of Dominica property for a cost of capital of 10% and a risk of ruin
of 1/200, with the difference being explained principally by the dispersion
in model estimates of the 1/200-year loss. Since we abstract from any pre-
existing insurance portfolio and therefore assume away the possibility of any
risk pooling at the portfolio level, these estimates should not be taken too
literally. The main point is to show how the ambiguity load can be linked
explicitly to the insurer’s attitude to ambiguity, α.

This naturally begs the question of what an insurer’s value of α should be
and how it might be calibrated. This is not straightforward to answer at this
stage. Since the notion of applying the α-maxmin rule to insurance pricing is
new, no directly relevant empirical evidence on insurers’ α exists.22 Insofar
as the insurer wishes to set premiums consistent with aversion to ambiguity,
it is nonetheless clear that 0.5 < α ≤ 1 and this provides a good place
to start. Within this range, our suggestion is to take a reflexive approach,
whereby the insurer considers the ambiguity load (and related information
such as the insurance multiple) that is implied by various values of α, and
uses the results to determine what the insurer thinks its α should be. There
is a certain parallel here with how Ellsberg (1961) and others (e.g. Gilboa
et al., 2009) have sought to justify ambiguity aversion as a feature of rational
behaviour in the round: namely confront subjects with their behaviour in
Ellsberg-type experiments and get them to reflect on whether this behaviour
appears rational to them.

Another difficult question posed by the analysis is; how would insurers
know that the set of models they are looking at, Π, is complete? It is nat-

22The experimental/survey studies discussed in Section 1 do provide evidence on the
size of the ambiguity load within the context of the scenarios used, but the α-maxmin
rule links the ambiguity load with the insurer’s capital, which is not considered in these
studies.
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urally difficult to define the things one doesn’t know. There is an emerging
literature in economic theory on unawareness, particularly awareness of un-
awareness, in which rational decision-makers are modelled as being aware
that their perception of the decision problem could in some way be incom-
plete, i.e. principally that their subjective state space could be incomplete
(Walker and Dietz, 2011; Lehrer and Teper, 2014; Alon, 2015; Grant and
Quiggin, 2015; Karni and Vierø, 2017; Kochov, 2018). All of these theories
allow for precautionary behaviour in such situations (some require it). It
may in future be possible to apply some of these frameworks to insurance
(e.g. the framework of Alon, 2015), although at present they start from the
position of an expected utility maximiser, so it is unclear how they can be
reconciled with a framework in which there is some degree of well-defined
ambiguity to start with. If the insurer suspects that Π is incomplete, what
are the implications for pricing? One practical implication is that, insofar
as the insurer wishes to exercise further caution in the face of awareness of
its unawareness, the continued use of an ad hoc premium multiplier could
be justified, if the insurer suspects losses could exceed those in the most
pessimistic model.

In practice, it may be infeasible to include the full set of available catas-
trophe models when estimating reserves and premiums, due for instance to
cost, or a lack of in-house expertise to run them. The question then arising
is whether a particular subset of models would suffice. Using data from the
Florida property case, Figure 8 shows the premium estimated by applying
the α-maxmin rule to the full set of models (left-hand side) and compares
this with the premium estimated when one of the 15 hurricane models is
omitted (i.e. the premium is estimated over Π−1 models). This is repeated
for each of the 15 models. In addition, on the right-hand side is the premium
estimated using just the least and most pessimistic models (with respect to
the 1/200-year loss). The figure illustrates two points. First, given the way
in which the α-maxmin rule takes a convex combination of the least and
most pessimistic models to estimate the capital load, the premium is nat-
urally relatively insensitive to removing any model except these two. This
suggests it is important for insurers to acquire the least and most pessimistic
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models, insofar as this is known. Second, just using the least and most pes-
simistic models does not, however, provide a good approximation of the full
set, at least in this case. This is because combining just these two models
significantly overestimates the AAL. This in turn stems from the fact that,
while WNDSHR&MDR-SST has the lowest 1/200 loss, it actually has quite
a high AAL.

FIGURE 8 ABOUT HERE

A more straightforward implication of the analysis is that frequency and
severity blending can lead to premiums that are inconsistent with insurer
ambiguity aversion. This follows straightforwardly from the observation that
the premium estimated by these two blending methods is often lower than
that estimated by the α-maxmin rule when α = 0.5. For this result, we need
only interpret premium pricing under the α-maxmin rule as a representation,
rather than a recommendation. Clearly whether there is an inconsistency is
context-dependent. All we have sought to do is provide plausible examples.

If the insurer would subsequently apply an ad hoc adjustment to the
premium estimated via model blending, the premium could still be consis-
tent with ambiguity aversion, of course. We can use the results above to
illustrate how large this adjustment would need to be. Taking the leading
examples presented in Figures 2 and 5, the multiplier on the premium esti-
mated via frequency blending would need to be at least 1.15 for the Florida
property portfolio and 1.3 for the Dominica property portfolio. If severity
blending is used, then the resulting multipliers would need to be at least
1.08 for the Florida property portfolio and 1.09 for the Dominica property
portfolio. Nonetheless in our view the use of ad hoc multipliers is better
limited to conservatism in the face of unspecified contingencies, as discussed
above.
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Figure 1: Schematic representation of frequency and severity blending of
exceedance probability curves
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Figure 2: Premiums for a portfolio of Florida residential property under
event rates derived from different hazard models
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Figure 3: Exceedence probability curves under 15 models of hurricane forma-
tion and based on frequency and severity blending (vertical axis is truncated
at $120bn for ease of inspection)
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Figure 4: Premiums for a portfolio of Florida residential property, where
insurers hold capital to cover 1/500-year loss
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Figure 5: Premiums for a portfolio of Dominican residential property under
different vulnerability models
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Figure 6: Premiums for Dominican residential property with an illustrative
scheme of unequal model weights
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Figure 7: Premiums for Dominican property as a function of weight assigned
to highest loss model, no protection
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Figure 8: Premiums for a portfolio of Florida residential property under
different model subsets
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A When do frequency and severity blending give
the same result?

In order for frequency and severity blending to yield the same estimate of
Pf (−x), from Equations (4) and (5) it must be that

∑
π

γπP
π
f (−x) = Pf

[∑
π

γπ invP πf (−xπ)
∣∣∣P jf = P kf ,∀π = j, k

]
.

Using Jensen’s inequality, a necessary and sufficient condition for this is
that P j′f (−xj) = P k′f (−xk) for all j, k over the interval

[
−xj ,−xk

]
, i.e. all

model loss distribution functions have the same slope, or in other words
the reduction in probability is the same for a given increase in loss. This is
trivially the case when P jf (−x) = P kf (−x) for all j, k, i.e. all models agree and
there is no ambiguity, but may occasionally be the case in other situations
too.

Take any pair of models and suppose the more pessimistic model is j
and the more optimistic model is k, in the sense that j estimates a higher
probability of a given loss. Then Jensen’s inequality also implies

∑
π

γπP
π
f (−x) ≥ (≤)Pf

[∑
π

γπ invP πf (−xπ)
∣∣∣P jf = P kf ,∀π = j, k

]

if and only if P j′f (−xj) ≥ (≤)P k′f (−xk) for all j, k over the interval
[
−xj ,−xk

]
.

This says – in strong form – that frequency blending yields at least as high
an estimate of the probability of loss −x if and only if the slope of the more
pessimistic loss distribution function j is higher than its counterpart k, for
all j, k, and vice versa. Figure 9 provides a schematic representation. If this
is true, then given slope of the more pessimistic function is always higher,
we will observe an increasing dispersion of model estimates over the relevant
range of losses.

Sometimes, as in Section 3, it is more intuitive to perform the inverse
mapping of return periods to losses. Then the logic is the inverse too:
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Figure 9: Schematic representation of Jensen’s inequality as applied to
model blending
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severity blending yields a higher estimate of the probability of loss −x if and
only if the slope of the more pessimistic inverse loss distribution function j
is higher than its counterpart k, for all j, k, and vice versa. This intuition
is used to explain what we see in Figure 3.
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