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Pricing ambiguity in catastrophe risk insurance

Simon Dietz∗ and Falk Niehörster†

July 8, 2020

Abstract

Ambiguity about the probability of loss is a salient feature of catas-
trophe risk insurance. Evidence shows that insurers charge higher pre-
miums under ambiguity, but that they rely on simple heuristics to do
so, rather than being able to turn to pricing tools that formally link
ambiguity with the insurer’s underlying economic objective. In this
paper, we apply an α-maxmin model of insurance pricing to two catas-
trophe model data sets relating to hurricane risk. The pricing model
considers an insurer who maximises expected profit, but is sensitive to
how ambiguity affects its risk of ruin. We estimate ambiguity loads
and show how these depend on the insurer’s attitude to ambiguity, α.
We also compare these results with those derived from applying model
blending techniques that have recently gained popularity in the actu-
arial profession, and show that model blending can imply relatively
low aversion to ambiguity, possibly ambiguity seeking.
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1 Introduction

Ambiguity, defined as uncertainty about the relative likelihood of events
(Ellsberg, 1961), is a common feature of insurance (Hogarth and Kunreuther,
1989). Ambiguity is particularly likely to affect pricing of catastrophe rein-
surance, where historical loss data are limited for higher risk layers.1 Hur-
ricane risk provides a good motivating example of the issues. A number of
insurers and especially reinsurers failed in the aftermath of Hurricane An-
drew, which made landfall as a category four hurricane in south Florida in
August 1992. They failed principally because they had been relying on loss
data from the previous two decades for pricing, reserving and so on (Calder
et al., 2012). But 1971-1991 (or thereabouts) was an historically quiet pe-
riod for Atlantic hurricane activity (Landsea et al., 1996),2 as well as being
a period during which insured values and insurers’ exposure were chang-
ing. Partly as a consequence of Andrew, probabilistic catastrophe models
have become widely used in the insurance industry as a means of estimat-
ing catastrophe risks. However, while catastrophe models may provide a
better basis for estimating catastrophe risk than relying on the historical
record alone, such models tend not to provide unambiguous loss probabili-
ties. For example, Mao (2014) recently reported widely differing estimates of
insured losses from a 1/250-year Florida hurricane, ranging from $54 billion
to $151bn, with the three leading commercial catastrophe model providers
disagreeing on both the mean loss and the range. As well as ambiguity,
this can be described as a situation of ‘model uncertainty’ (e.g. Marinacci,
2015).3

Ambiguity tends to result in higher premiums than those charged for
1The pricing approaches used by reinsurers are very different from those used by pri-

mary insurers. In this paper, we focus on reinsurance pricing, therefore when we use the
term insurer we are usually referring to a reinsurance provider.

2The average number of intense hurricanes (categories 3-5) forming in the Atlantic
basin between 1944 and 1991 was 2.2 per year, whereas between 1971 and 1991 it was 1.5,
roughly 0.5 standard deviations below the 1944-1991 mean.

3In this paper, we will not draw a distinction between uncertainty about the probability
of a known loss and uncertainty about the loss conditional on an event of known probability
(cf. Kunreuther et al., 1993). Both are regarded here as instances of ambiguity and can
be rendered equivalent in terms of non-unique estimates of the loss distribution.
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equivalent, unambiguous risks (see Hogarth and Kunreuther, 1989, and fur-
ther references below). Yet, while it is well known that ambiguity contributes
to higher insurance premiums and accompanying problems of availability
and coverage, the economic rationale for this has received less attention.
This is not only true of the academic literature, it is also true of indus-
try practice, where insurance actuaries and underwriters appear to rely on
simple rules of thumb to load premiums under ambiguity (Hogarth and
Kunreuther, 1992). To redress the balance, Dietz and Walker (2019) have
recently proposed an α-maxmin representation of the insurer’s decision prob-
lem under ambiguity. The insurer is assumed to follow a safety-first model,
maximising expected profit subject to a survival constraint (Stone, 1973).
The insurer’s attitude to ambiguity affects the premium through the amount
of capital it must hold against the risk of ruin. An ambiguity-averse insurer
places more weight on higher probabilities of ruin, therefore holds more cap-
ital, and charges a higher capital load on the premium if the new contract
increases the probability of ruin.

In this paper, we apply the model of Dietz and Walker (2019) to two
data sets, where conflicting catastrophe models create ambiguity about the
probability of insured losses. The two data sets both relate to hurricane
risk in the Atlantic basin. In one, Florida property, ambiguity stems from
a set of hurricane models yielding different estimates of hurricane activ-
ity. In the other, Dominica property, we assume a unique estimate of the
probability of hurricane activity, but there is nonetheless ambiguity, which
stems from different vulnerability functions describing a property portfo-
lio. These applications enable us to demonstrate the practical use of an
economic premium principle that treats ambiguity explicitly and thereby
quantifies the ambiguity load as a function of the insurer’s attitude to ambi-
guity. We argue the application of this principle has the capacity to improve
on ad hoc adjustments, even if it is unable to avoid the need for them alto-
gether. The second purpose of the paper is to compare the results of this
with the premiums that would be quoted by an insurer, who is also an ex-
pected profit maximiser operating under a survival constraint, but where the
unique probability of loss is derived from the application of model blending
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techniques popular in the insurance industry. The comparison shows these
model blending techniques can imply the insurer has relatively low aversion
to ambiguity, possibly seeking ambiguity.

The remainder of the paper is structured as follows. Section 2 reviews re-
lated literature underpinning our introductory comments. Section 3 provides
a brief analytical treatment of the safety-first model of insurance pricing and
Dietz and Walker’s (2019) α-maxmin model of reserving under ambiguity,
as well as how the risk of ruin is estimated using popular methods of model
blending. Section 4 introduces and analyses the two case studies, and Sec-
tion 5 provides a discussion.

2 Related literature

That ambiguity results in higher premiums than those charged for equiva-
lent, unambiguous risks was a feature of industry practice that was widely
suspected, but difficult to isolate from other factors tending to raise premi-
ums. Therefore a series of studies used experimental and survey methods to
establish, in controlled conditions, the practice of loading premiums under
ambiguity (Hogarth and Kunreuther, 1989, 1992; Kunreuther et al., 1993,
1995; Cabantous, 2007; Kunreuther and Michel-Kerjan, 2009; Cabantous
et al., 2011; Aydogan et al., 2019). The participants in these studies, mostly
insurance professionals (including actuaries and underwriters), were asked
to price hypothetical contracts, with the existence of ambiguity about losses
being a treatment. The results consistently showed that higher prices were
quoted under ambiguity compared with when a precise probability estimate
was available.4 This insurer ambiguity aversion is consistent with a broader
body of evidence on individual decision-making under ambiguity (reviewed
by Machina and Siniscalchi, 2014), initiated by Ellsberg’s thought experi-
ments about betting on balls being drawn from urns (Ellsberg, 1961).

4Cabantous (2007) provided some evidence that ambiguity increased premiums more
when it was defined as the existence of conflicting, precise estimates, rather than a con-
sensual, imprecise estimate. Our case studies in this paper are easiest to interpret as
comprising conflicting, precise estimates.
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While it is well known that ambiguity contributes to higher insurance
premiums and accompanying problems of availability and coverage, the eco-
nomic rationale for this has received less attention. Hogarth and Kunreuther
(1989) showed that a positive ambiguity load is consistent with a risk-neutral
insurer who maximises expected profit, if the insurer’s beliefs about the
probability of loss are formed according to the psychological model of Ein-
horn and Hogarth (1985). In this model, the insurer’s probability estimate is
distorted such that, for low-probability events like catastrophe risks, greater
weight is placed on higher probabilities of loss. That is, the insurer forms
pessimistic beliefs when insuring catastrophe risks. A basic result of decision
theory is that expected utility maximisation is inconsistent with ambiguity
aversion (Ellsberg, 1961). However, Berger and Kunreuther (1994) showed
that an ambiguity load could be consistent with a risk-averse insurer who
maximises expected utility, if (and only if) the effect of ambiguity is to in-
crease the correlation between risks in the insurer’s portfolio.5 They also
showed, again under special assumptions about the nature of the ambiguity,6

that an ambiguity load is consistent with a safety-first model of an expected-
profit-maximising insurer who must satisfy an insolvency/ruin/survival con-
straint in the tradition of Stone (1973). Moreover they showed that this
safety-first model better explains other results in the experimental/survey
literature than does the expected utility model. What makes this approach
attractive is that survival constraints are widely used in the insurance indus-
try and have become enshrined in some regulations such as the European
Union’s Solvency II Directive.

Dietz andWalker (2019) have recently proposed an alternative α-maxmin
representation of the insurer’s decision problem under ambiguity, which is
also based on an expected profit maximiser facing a survival constraint. The

5In particular, they showed that the premium per risk was an increasing function of
the number of identical risks insured, when the loss probability was uncertain and either
uniform or discrete distributed with an expected value of one half. This illustrated that
under ambiguity the risks became correlated.

6Specifically their results were obtained using a discrete parameter distribution, as-
signing a probability of 0.9 on a loss probability of 0, and 0.1 on a loss probability of
1.

6



insurer’s attitude to ambiguity potentially affects the premium through the
amount of capital it chooses to hold against the risk of ruin. An ambiguity-
averse insurer places more weight on higher probabilities of ruin, therefore
holds more capital, and charges a higher capital load on the premium if the
new contract increases the probability of ruin (vice versa for an ambiguity-
seeking insurer). This is also a form of pessimism. The advantages of the
model in Dietz and Walker (2019) are that it is consistent with ambiguity
loading under quite general conditions whereby a new contract increases the
ambiguity of the insurer’s portfolio, and that, drawing on recent advances
in decision theory (especially Ghirardato et al., 2004, but with ideas go-
ing back to Hurwicz, 1951), it captures the insurer’s attitude to ambiguity
via an easily interpretable parameter, α, that is clearly separated from the
insurer’s beliefs about the probabilities of loss.

The actuarial literature that directly engages with ambiguity would also
appear to be sparse. Two areas are particularly relevant to the current set-
ting. The first is the development of premium principles. In this regard,
Pichler (2014) observes that all well-known premium principles assume a
unique, stable loss distribution. One or two of these principles take am-
biguity into account indirectly through the practice of distorting the loss
distribution, placing more weight on higher loss probabilities and therefore
introducing pessimistic beliefs like the Einhorn and Hogarth (1985) model.
The second is the development of techniques, primarily by practitioners, to
mix multiple, conflicting probability estimates into a single estimate that
can be inputted into a standard premium principle such as the expected
value principle. These have come to be referred to as catastrophe model
‘blending’ (Calder et al., 2012). The interesting feature of these techniques,
from our point of view, is that their development has been based on sat-
isfying certain mathematical properties and generally without attention to
insurers’ fundamental economic objective.

In view of the relatively limited body of theory on how ambiguity af-
fects insurance supply,7 it is perhaps unsurprising that insurance actuaries

7This can be compared with the relatively more extensive literature on ambiguity
aversion on the demand side, e.g. (Snow, 2011; Alary et al., 2013; Gollier, 2014; Berger,
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and underwriters appear to rely on simple rules of thumb in practice when
loading premiums under ambiguity. Hogarth and Kunreuther (1992) pro-
vided some structured evidence of this from their mail survey of actuaries.
A subset of respondents provided written comments giving insight into their
decision processes. Most of these responses indicated that actuaries first an-
chored the premium on the expected loss, and the majority of these would
then, when informed the probability of loss was ambiguous, explicitly or
implicitly apply an ad hoc adjustment factor or multiplier (e.g. increase the
premium by 25%). Anecdotally such practice is widespread.

3 Pricing insurance

3.1 Premium principle

An insurer that seeks to maximise its expected profits subject to a survival
constraint would price premiums according to

pc = Lc + y
(
Zf ′ − Zf

)
, (1)

where pc is the premium on contract c, Lc is the expected loss, y is the
cost of capital and Zi represents the insurer’s capital reserves held against
portfolio i ∈ {f, f ′}.8 When the insurer takes on contract c, the insurer’s
portfolio is f ′ = f + c. Thus expected profit maximisation implies the
insurer prices the contract at its expected loss. However, the need to satisfy
a survival constraint implies an additional load on the premium, equal to the
cost of the additional capital required to ensure the portfolio-wide survival
constraint is still met.

3.2 Expected losses and capital loads

Assuming a single probability distribution is appropriate to characterise the
insurer’s losses on its portfolio, the expected loss Lc is precisely estimated,

2016).
8This is a generalisation of Kreps (1990, formula 2.1), for example.
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as are the capital reserves, which can be set so that they are just sufficient
to cover the loss (−)x at a pre-specified probability θ (e.g. 1/200 years or
0.005).9 For portfolio f the capital reserves are

Zf = min {x : Pf (−x) ≤ θ} , (2)

where Pf (x) ≡ Pf (z : z < x), i.e. it is shorthand for the probability that
portfolio f pays out any amount less than x, or equivalently that the loss is
more than x.

The key question is what to do when multiple conflicting estimates of
Pf (x) are available and there is no basis for assuming one estimate is pre-
cisely correct. This might often be the case when insuring catastrophe risks
such as hurricanes. The insurer may have at its disposal a set of estimates
from the various catastrophe models available.

One approach is to blend the various estimates into a single probability
distribution and proceed exactly as above. There are several ways to blend
models, but the principal methods are frequency and severity blending.10

Their workings will be described below.11

Dietz and Walker (2019) propose an alternative approach. Where π
is an estimate of the probability distribution of losses – call it a ‘model’
for short – the expected loss Lc is simply the expectation of the expected
losses estimated by each π.12 On the other hand, in setting capital reserves
the insurer may not be neutral towards the existence of ambiguity and this
implies not simply taking expectations. Thus, applying recent developments
in economic theory, Dietz and Walker (2019) propose that capital reserves

9For the sake of consistency, we use the same notation as Dietz and Walker (2019). In
that paper, x signifies the payout on a portfolio and hence −x constitutes a loss.

10Like Calder et al. (2012) we take model blending to mean combining the outputs of
different models, rather than combining the components of different models into a model
that yields a single output, which can be referred to as ‘model fusion’.

11Other methods involve blending of loss history for short return periods with a tail
risk distribution from a catastrophe model (e.g. Fackler, 2013). However, frequency and
severity blending are still by far the most popular methods to generate a single probability
distribution, if conflicting estimates are available.

12In general this is the weighted mean of Lc across models. If all models have equal
weight, then it is the arithmetic mean.
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be set according to

Zf = min
{
x : α ·

[
max
π∈Π

P πf (−x)
]

+ (1− α) ·
[
min
π∈Π

P πf (−x)
]
≤ θ

}
, (3)

where Π ∈ Z+ is the set of all models. The insurer computes Zf by taking
a weighted average of the highest and lowest estimates of the loss (−)x at
probability θ. The weight factor α captures the insurer’s attitude to ambi-
guity.13 Notice that ambiguity aversion affects the capital reserves, but not
the expected loss. This just follows from the assumption that the insurer’s
objective is to maximise expected profit subject to a survival constraint.

Dietz and Walker (2019) go on to show that, if one portfolio is more
ambiguous than another14 in a specific sense, then an insurer holds more
capital if and only if α > 0.5. In other words, an insurer with α > (<
)0.5 is ambiguity-averse (-seeking) and charges higher (lower) premiums for
contracts that increase the ambiguity of the portfolio, all else being equal.
This comes about because an insurer with α > 0.5 places more weight
on the highest loss estimate, the worst case. In the limit of α = 1, the
insurer sets its capital reserves based exclusively on the worst case, which is
analogous to (unweighted) maxmin decision rules that have been proposed
as a means of making rational decisions under ambiguity/ignorance (e.g.
Gilboa and Schmeidler, 1989; Hansen and Sargent, 2008). The specific case
Dietz and Walker analyse is a set of models Π that is centrally symmetric.
One portfolio is more ambiguous than another, all else being equal, when it
has the same loss distribution at the centre, but where the loss distribution
depends more strongly on the true model π. If Π is not centrally symmetric,
then it is not true in general that α > 0.5 corresponds to ambiguity aversion.

13In Dietz and Walker (2019), this is denoted α̂ in order to differentiate it from the
parallel concept in the underlying theory of decision-making under ambiguity (Ghirardato
et al., 2004). However, doing so is unimportant here, so we avoid the extra notation.

14Formally, one portfolio f is more ambiguous than another portfolio g whenever any
ambiguity-neutral insurer is indifferent between the two portfolios, any ambiguity-averse
insurer prefers g to f , and any ambiguity-seeking insurer prefers f to g (Jewitt and Mukerji,
2017). Therefore this is a behavioural definition of ambiguity, depending only on revealed
preferences, in keeping with the standard approach in economics.
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3.3 Model blending

As mentioned above, instead of Dietz and Walker’s (2019) approach, the
insurer could blend the set of models into a single probability distribution
and set its capital reserves just using (2). This approach does not allow
for ambiguity aversion (seeking). Frequency blending works by taking the
weighted average of the probabilities estimated by each of the set of models
Π of a given loss:

Pf (−x) =
∑
π

γπP
π
f (−x), (4)

where γπ is the weight assigned to model π (see Figure 1 for a schematic
representation). Clearly if each model weight in the set is equal to 1/Π,
then (4) is equivalent to computing the arithmetic mean of the probabilities
at a given loss, which is a common and natural starting point.

Severity blending involves taking the weighted average of the losses es-
timated by the models at a given probability:

Pf (−x) = Pf

[∑
π

γπ invP πf (−xπ)
∣∣∣P jf = P kf , ∀π = j, k

]
. (5)

See Figure 1. If each model weight is equal to 1/Π, then (5) is equivalent
to computing the arithmetic mean of the losses at a given probability.

Although severity blending might appear to be the inverse of frequency
blending, it is not. It is well known that the two techniques tend to pro-
duce different estimates of the composite loss distribution, even in relatively
trivial examples where there are two models and γ1 = γ2 = 0.5 (see Calder
et al., 2012, p18-21). Although severity blending involves applying the in-
verse of the loss distribution function, invP πf (−x), the weighted average loss
at a given probability need not lead to the same result as the weighted
average probability at a given loss. Only in two cases will frequency and
severity blending yield exactly the same estimate of Pf (−x). One is the
trivial case where the models agree exactly on the probability of a given
loss, P jf = P kf ,∀π = j, k. The other is when the slopes of the loss distri-
bution functions are equal, that is, for all pairs of models j and k, when
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P j′f (−xj) = P k′f (−xk) over the interval
[
−xj ,−xk

]
. See Appendix A.

FIGURE 1 ABOUT HERE

It has been argued that frequency blending is superior to severity blend-
ing. While severity blending is easy to perform, doing so breaks the link
with the underlying event set, which makes it difficult to make comparisons,
such as the accumulation of risk from a given peril across the insurer’s whole
portfolio, or the comparison between losses gross and net of excess (Calder
et al., 2012; Cook, 2011). Nevertheless both techniques are common and so
we will evaluate both.

It is possible to envisage a situation in which the application of the α-
maxmin reserving rule in (3) is mathematically equivalent to using frequency
blending to mix models so that reserving rule (2) can be applied (or to using
severity blending under the limited circumstances described above). This
would be the case if, for example, there were two models and the ambiguity
parameter α happened to coincide with the model weights {γπ}2π=1. For
instance, the insurer might set α = 0.5 and consider each of the models
to be equally likely to be the true model (γ1 = γ2 = 0.5). However, it
is important to stress that α is a behavioural/preference parameter that is
intended to capture the insurer’s attitude to ambiguity, whereas the model
weights γπ reflect the insurer’s beliefs about how likely each model is to be
the true model. They are conceptually quite different.

4 Applications to hurricane risk

In this section, we estimate premiums in two case studies, both of which in-
volve catastrophe modelling of hurricane risk and both of which are affected
by ambiguity. On the one hand, we estimate premiums based on a single
estimate of the probability of losses. This can be obtained either conditional
on each model, or by frequency or severity blending. On the other hand,
we estimate premiums obtained when the capital holding is set according
to the α-maxmin rule (3). In both case studies, the problem is simplified
to that of a stand-alone, large-contract-cum-small-portfolio (Zf = 0 in Eq.
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(1)). Therefore we abstract from issues created by the interaction of the
new contract with an insurer’s existing portfolio, as well as from other com-
plications such as deductibles and limits. For these and other reasons that
will become apparent, the case studies are not entirely realistic. Limitations
to the availability of data constitute a barrier to full realism. Nonetheless
our hope is that the case studies are plausible enough to demonstrate the
utility of the α-maxmin rule relative to model blending.

4.1 Florida property

The first case considers ambiguity affecting the insurance of a large port-
folio of ca. 5 million residential buildings in Florida against wind damage
from hurricanes. The data are taken from Ranger and Niehörster (2012).
Ambiguity comes from a set of models of hurricane activity, i.e. the occur-
rence probabilities of catastrophic hurricane events are imprecisely known.
The set of models is generated by taking a set of global climate models and
using different models – both dynamical15 and statistical – to downscale the
boundary conditions from the global climate models to Atlantic hurricane
activity. Our set comprises 15 models. The estimates of hurricane activity
from these 15 models are then used to set the occurrence probabilities of
hurricane events (e.g. the event rates) in a single, simplified hurricane risk
model (from Risk Management Solutions Inc.), yielding 15 competing ex-
ceedance probability (EP) curves.16 We interpret the loss forecasts provided
by Ranger and Niehörster for the year 2020 as the complete set of estimates
of present-day losses. This implies all the ambiguity comes from modelling
the hazard, whereas in reality ambiguity often stems from uncertain vulner-
ability functions or exposure characteristics too.

The 15 EP curves are used to calculate average annual losses (AALs,
equivalent to Lc in Equation (1)) and losses at specific return periods, and
these enable us to estimate premiums if we abstract from the pre-existing

15That is, models that use basic physical principles to calculate changes in climatic
features.

16Ranger and Niehörster (2012) provide estimates assuming (i) status quo property
vulnerability, and (ii) lower vulnerability based on all properties meeting 2004 Florida
building codes. We use the status quo assumption.
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portfolio. Figure 2 displays the premium conditional on each hurricane
model. It also displays ambiguity-adjusted premiums, with the insurer’s
capital reserves set according to the α-maxmin rule (3), as well as premiums
based on using frequency and severity blending of the models to obtain the
AAL and the insurer’s reserves via Equation (2).17 Each of the 15 model
EP curves is given equal weight when carrying out frequency and severity
blending, i.e. γπ = 1/Π,∀π. Clearly other model weighting schemes are
possible and can be derived by different validation techniques (Mitchell-
Wallace et al., 2017), or by credibility theory (Dean, 1997). However, equal
weighting is consistent with the principle of insufficient reason and the view
of Ranger and Niehörster was that there was no straightforward way of
establishing relative confidence in each model. In all cases, the insurer is
required to hold capital sufficient to cover a 1/200-year event and the cost
of capital is assumed to be 10%.

FIGURE 2 ABOUT HERE

The range of premiums estimated is from $8.8 billion under the UKMO-
HADCM3model (a global climate model dynamically downscaled) to $16.3bn
under the MDR-SST model (a statistical model predicting hurricane forma-
tion based on the sea surface temperature in the Atlantic Main Development
Region). An insurer with α = 0.5 requires a premium of $11.3bn. This is
an important benchmark: an insurer with α > (<)0.5 will charge a higher
(lower) premium for a contract that is more ambiguous under the specific
conditions analysed in Dietz and Walker (2019) and discussed above. The
premium of $11.3bn is comprised of an AAL of $3.8bn and a capital load
of $7.5bn, thus the premium is three times the expected loss (expectations
taken over all 15 models). A maximally ambiguity-averse insurer with α = 1
sets its premium equal to the expected AAL plus the capital required to ab-
sorb the 1/200-year loss in the most pessimistic model, MDR-SST. The
resulting premium is $13.6bn, 20% higher than when α = 0.5, and the price
multiple of the expected loss rises to 3.5.18 Note that this premium is lower

17As the underlying model event sets were unavailable to us, frequency blending was
performed by directly computing (4) at each loss using the models’ EP curves.

18These premiums/multiples may be compared with the empirical estimates of Lane
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than the premium conditional on MDR-SST itself, because the expected
AAL over all 15 models is lower than the AAL predicted by MDR-SST.

One of the key results contained in Figure 2 is that frequency and sever-
ity blending produce premiums consistent with Equation (3) when α < 0.5.
This implies relatively low aversion to ambiguity, possibly ambiguity seek-
ing. The premium is particularly low under frequency blending; it is lower
than the premium conditional on 12/15 models. Inspecting the figure, it
is clear that the most pessimistic model, MDR-SST, is an outlier and con-
tributes significantly to the premium when α is high. However, note that
if MDR-SST is (arbitrarily) removed from the set of models, while the re-
sulting premium under severity blending is now just above the premium
corresponding to α = 0.5, the premium under frequency blending remains
below it.19 Figure 3 shows that the frequency-blended EP curve gives lower
losses than the severity-blended EP curve. Applying the theory set out in
Appendix A, this is driven by the slope of the more pessimistic EP curves
being initially higher.

FIGURE 3 ABOUT HERE

In Figure 4, we repeat the analysis, but instead require insurers to hold
sufficient capital to survive a 1/500-year loss. All premiums and multiples
are higher, but they are slightly less sensitive to α. For α = 1, the multiple
of the price above the expected loss is 4.5. The premium is 16% higher
than when α = 0.5. This reflects the fact that the models are marginally
less dispersed in their estimates of the 1/500-year event than they are of
the 1/200-year event.20 Frequency and severity blending still give rise to
premiums consistent with α < 0.5. Notice that a minimally ambiguity-
averse insurer with α = 0 charges a premium below that conditional on

and Mahul (2008), according to which a representative multiple for US wind based on the
market for insurance linked securities is 3.3, averaging over the insurance cycle. However,
since we abstract from the pre-existing portfolio, one should not read too much into the
comparison.

19An insurer with α = 0.5 requires a premium of $10.07bn when MDR-SST is excluded.
Severity blending yields a corresponding premium of $10.11bn, while frequency blending
yields a comparable premium of $9.3bn.

20As two indications of this, the respective coefficients of variation are 0.10 and 0.16,
while he respective adjusted Fisher-Pearson coefficients of skewness are 0.5 and 1.8.
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the most optimistic model, UKMO-HADCM3. This is explained by the
fact that, although UKMO-HADCM3 forecasts the lowest AAL, it does
not forecast the lowest 1/500-year losses (the model WNDSHR&MDR-SST
does21).

FIGURE 4 ABOUT HERE

4.2 Dominica property

The second case considers ambiguity affecting the insurance of a portfolio of
3,000 low-income residential properties on the Caribbean island of Dominica
against hurricane wind damage. The data come from a study by RMS et al.
(2018). In this case there is a single hazard model and ambiguity comes from
a set of six vulnerability functions, based on different assumptions about the
construction quality of buildings in the portfolio.

As in case 1, the six EP curves are used to calculate AALs, losses at
specific, high return periods against which capital reserves are set, and then
premiums. Figure 5 displays premiums where capital reserves are set against
the 1/200-year event and the cost of capital is 10%. The six models are
assigned equal weight for model blending. The range of premiums is from
$469,580 under the lowest vulnerability function to about $1.4 million under
the highest. An insurer with α = 0.5 requires a premium of $934,322, which
is five times the expected loss of $184,516. This premium is higher than
the premiums conditional on 5/6 models, reflecting how much higher losses
are under the highest vulnerability function (no protection) than the other
five. This also explains why the multiple is as much as five. The difference
in premium between α = 0.5 and α = 1 is $397,769 or 43%. In this case,
we again find that frequency and severity blending give rise to premiums
consistent with α < 0.5.

FIGURE 5 ABOUT HERE
21WNDSHR&MDR-SST is a statistical model, which predicts hurricane formation based

on the local vertical wind shear and the sea surface temperature in the Atlantic Main
Development Region.
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The implications of model blending for an insurer’s attitude to ambi-
guity depend on the model weighting scheme. To demonstrate this, here
we implement a purely illustrative scheme, according to which the model
using the highest vulnerability function (no protection) is over-weighted at
γno = 0.4, the three models using vulnerability functions that assume partial
roof reinforcement are given a probability of 0.15, and the two models us-
ing the lower vulnerability functions (full retrofit) are assigned γπ = 0.075.
Figure 6 shows that in this case severity blending gives a higher premium
than α = 0.5, but frequency blending still gives rise to a lower premium.

FIGURE 6 ABOUT HERE

This result suggests a relationship between the weight placed on the
model using the highest vulnerability function and the premium required
under model blending. Figure 7 traces that relationship, where γno is the
probability assigned to no protection and the weights of the remaining five
models are kept equal to (1− γno) /5. Figure 7 shows that the no protection
model needs to be assigned a weight of γno > 0.28 if severity blending is
to be consistent with α > 0.5, while it needs to be assigned a weight of
γno > 0.69 if frequency blending is to be consistent with α > 0.5.

FIGURE 7 ABOUT HERE

5 Discussion

The two case studies in this paper have demonstrated the application of a
premium principle, which is based on expected profit maximisation, com-
bined with a survival constraint that is based on an α-maxmin rule for
mixing the least and most pessimistic estimates of the risk of ruin. The
analysis has shown that the α-maxmin rule lends itself quite naturally to a
setting in which there is a finite number of competing catastrophe models.

The main point is to show how the ambiguity load can be linked ex-
plicitly to the insurer’s attitude to ambiguity, α. This naturally begs the
question of what an insurer’s value of α should be and how it might be cali-
brated. This is not straightforward to answer at this stage. Since the notion
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of applying the α-maxmin rule to insurance pricing is new, no directly rele-
vant empirical evidence on insurers’ α exists.22 Our suggestion is to take a
reflexive approach, whereby the insurer considers premiums, multiples and
ambiguity loads implied by various values of α, and uses the results to deter-
mine what the insurer thinks its α should be. There is a certain parallel here
with how Ellsberg (1961) and others (e.g. Gilboa et al., 2009) have sought
to justify ambiguity aversion as a feature of rational behaviour in the round:
namely confront subjects with their behaviour in Ellsberg-type experiments
and get them to reflect on whether this behaviour appears rational to them.
Insofar as the insurer wishes to set premiums consistent with relatively high
ambiguity aversion, 0.5 < α ≤ 1 is a plausible range within which to narrow
down.

The α-maxmin model, which is the inspiration behind Dietz andWalker’s
(2019) model of insurers’ capital reserving, is just one of several decision
rules that have been proposed to represent ambiguity aversion: future work
should apply others in the context of insurance pricing. Within a frame-
work of multiple models/priors, one of the chief attractions of α-maxmin is
that it generalises the earlier maxmin expected utility model of Gilboa and
Schmeidler (1989), achieving a separation between decision makers’ taste for
ambiguity and their beliefs about the likelihood of different outcomes, and
allowing for less pessimistic decision-making than maxmin expected utility,
which focuses entirely on the most pessimistic model. However, α-maxmin
does not admit any information about the relative likelihoods of different
models. One simply computes a weighted combination of the least and most
pessimistic models. By contrast, a popular model of ambiguity aversion that
admits second-order probabilistic beliefs about the models themselves is the
‘smooth ambiguity’ model of Klibanoff et al. (2005). In this model, one not
only computes expectations conditional on each model, one also computes a
weighted expectation over the set of all models, with the weights reflecting

22The experimental/survey studies discussed in Section 1 do provide evidence on the
size of the ambiguity load within the context of the scenarios used, but the α-maxmin
rule links the ambiguity load with the insurer’s capital, which is not considered in these
studies.
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decision makers’ degree of ambiguity aversion. A challenge facing both the
α-maxmin and smooth ambiguity models is how to define the set of models
Π. Robust control approaches (e.g. Hansen and Sargent, 2008) make explicit
the process of searching over a space of possible models. They have been
applied to insurance problems by Zhu (2011), for instance. There is also an
emerging literature in economic theory on unawareness, particularly aware-
ness of unawareness, in which rational decision-makers are modelled as being
aware that their perception of the decision problem could in some way be
incomplete, i.e. principally that their subjective state space could be incom-
plete (Walker and Dietz, 2011; Lehrer and Teper, 2014; Alon, 2015; Grant
and Quiggin, 2015; Karni and Vierø, 2017; Kochov, 2018). This speaks to
the question of whether the insurer’s set of models Π is complete. All of
these unawareness theories allow for precautionary behaviour (some require
it). It may in future be possible to apply some of these frameworks to in-
surance (e.g. the framework of Alon, 2015), although at present they start
from the position of an expected utility maximiser, so it is unclear how they
can be reconciled with a framework in which there is some degree of well-
defined ambiguity to start with. Thus we would argue, perhaps fittingly,
that there is no unambiguously preferred model of decision-making under
ambiguity/uncertainty.

If the insurer suspects that Π is incomplete, what are the implications
for pricing? One practical implication is that, insofar as the insurer wishes
to exercise further caution in the face of awareness of its unawareness, the
continued use of an ad hoc premium multiplier could be justified, if the
insurer suspects losses could exceed those in the most pessimistic model. In
practice, it may be infeasible to include the full set of available catastrophe
models when estimating reserves and premiums, due for instance to cost,
or a lack of in-house expertise to run them. The question then arising is
whether a particular subset of models would suffice. Using data from the
Florida property case, Figure 8 shows the premium estimated by applying
the α-maxmin rule to the full set of models (left-hand side) and compares
this with the premium estimated when one of the 15 hurricane models is
omitted (i.e. the premium is estimated over Π−1 models). This is repeated
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for each of the 15 models. In addition, on the right-hand side is the premium
estimated using just the least and most pessimistic models (with respect to
the 1/200-year loss). The figure illustrates two points. First, given the
way in which the α-maxmin rule takes a convex combination of the least
and most pessimistic models to estimate the capital load, the premium is
naturally relatively insensitive to removing any model except these two. This
suggests it is important for insurers to acquire the least and most pessimistic
models, insofar as this is known. Second, just using the least and most
pessimistic models does not, however, provide a good approximation of the
full set, at least in this case. This is because combining just these two models
significantly overestimates the AAL. This in turn stems from the fact that,
while WNDSHR&MDR-SST has the lowest 1/200 loss, it actually has quite
a high AAL.

FIGURE 8 ABOUT HERE

An implication of the analysis is that frequency and severity blending
can lead to premiums consistent with relatively low insurer ambiguity aver-
sion. This follows straightforwardly from the observation that the premium
estimated by these two blending methods is often lower than that estimated
by the α-maxmin rule when α = 0.5. For this result, we need only interpret
premium pricing under the α-maxmin rule as a representation, rather than
a recommendation. Clearly whether there is an inconsistency is context-
dependent. All we have sought to do is provide plausible examples.

If the insurer would subsequently apply an ad hoc adjustment to the
premium estimated via model blending, the premium could still be consis-
tent with α > 0.5, of course. We can use the results above to illustrate
how large this adjustment would need to be. Taking the leading examples
presented in Figures 2 and 5, the multiplier on the premium estimated via
frequency blending would need to be at least 1.15 for the Florida property
portfolio and 1.3 for the Dominica property portfolio. If severity blending
is used, then the resulting multipliers would need to be at least 1.08 for
the Florida property portfolio and 1.09 for the Dominica property portfolio.
Nonetheless in our view the use of ad hoc multipliers is better limited to
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conservatism in the face of unspecified contingencies, as discussed above.
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Figure 1: Schematic representation of frequency and severity blending of
exceedance probability curves
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Figure 2: Premiums for a portfolio of Florida residential property under
event rates derived from different hazard models
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Figure 3: Exceedence probability curves under 15 models of hurricane forma-
tion and based on frequency and severity blending (vertical axis is truncated
at $120bn for ease of inspection)
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Figure 4: Premiums for a portfolio of Florida residential property, where
insurers hold capital to cover 1/500-year loss
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Figure 5: Premiums for a portfolio of Dominican residential property under
different vulnerability models
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Figure 6: Premiums for Dominican residential property with an illustrative
scheme of unequal model weights

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Full Retrofit

(+9.9%)

α max-min, 

α=0

Full Roof

Retrofit

(+8%)

Frequency

blend

(weighted)

Roof Anchor

& Covering

and Opening

Protection

(+4.4%)

Roof Anchor

& Sheathing

(+1%)

Roof Cover &

Sheathing

(+2.5%)

α max-min, 

α=0.5

Severity

blend

(weighted)

α max-min, 

α=1

No

Protection

Loss (+0%)

U
S

 d
o

ll
a

rs

30



Figure 7: Premiums for Dominican property as a function of weight assigned
to highest loss model, no protection
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Figure 8: Premiums for a portfolio of Florida residential property under
different model subsets
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A When do frequency and severity blending give
the same result?

In order for frequency and severity blending to yield the same estimate of
Pf (−x), from Equations (4) and (5) it must be that

∑
π

γπP
π
f (−x) = Pf

[∑
π

γπ invP πf (−xπ)
∣∣∣P jf = P kf ,∀π = j, k

]
.

Using Jensen’s inequality, a necessary and sufficient condition for this is
that P j′f (−xj) = P k′f (−xk) for all j, k over the interval

[
−xj ,−xk

]
, i.e. all

model loss distribution functions have the same slope, or in other words
the reduction in probability is the same for a given increase in loss. This is
trivially the case when P jf (−x) = P kf (−x) for all j, k, i.e. all models agree and
there is no ambiguity, but may occasionally be the case in other situations
too.

Take any pair of models and suppose the more pessimistic model is j
and the more optimistic model is k, in the sense that j estimates a higher
probability of a given loss. Then Jensen’s inequality also implies

∑
π

γπP
π
f (−x) ≥ (≤)Pf

[∑
π

γπ invP πf (−xπ)
∣∣∣P jf = P kf ,∀π = j, k

]

if and only if P j′f (−xj) ≥ (≤)P k′f (−xk) for all j, k over the interval
[
−xj ,−xk

]
.

This says – in strong form – that frequency blending yields at least as high
an estimate of the probability of loss −x if and only if the slope of the more
pessimistic loss distribution function j is higher than its counterpart k, for
all j, k, and vice versa. Figure 9 provides a schematic representation. If this
is true, then given slope of the more pessimistic function is always higher,
we will observe an increasing dispersion of model estimates over the relevant
range of losses.

Sometimes, as in Section 4, it is more intuitive to perform the inverse
mapping of return periods to losses. Then the logic is the inverse too:
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Figure 9: Schematic representation of Jensen’s inequality as applied to
model blending
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severity blending yields a higher estimate of the probability of loss −x if and
only if the slope of the more pessimistic inverse loss distribution function j
is higher than its counterpart k, for all j, k, and vice versa. This intuition
is used to explain what we see in Figure 3.
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