

# Fossil fuel risks: What remains unburnt when staying below 2°C?

Dr. Christophe McGlade Prof. Paul Ekins

UBS Environmental Month Wednesday 29<sup>th</sup> April





#### Modelling future energy system developments

- Models are essential to determine outcomes of complex systems
- Model results depend on three crucial factors (in addition to the expertise of the users):
  - *Robustness of structure: TIMES* Integrated Assessment Model (TIAM-UCL)
  - Plausibility of input assumptions
  - Data quality
- Provides integrity of analysis so that work can be taken seriously

TIAM-UCL finds the cost-optimal global energy system that meets energy demands within 16 individual regions

- Technologically-detailed, bottomup energy system model
- Models the energy system by maximising global welfare over the duration of scenario
- Optimises energy service demands for 16 regions given available primary energy sources and technologies
- Calculates impact of selected primary energy sources on emissions and temperature rise





## The long-term future of energy systems is subject to numerous uncertainties

- Importance of different input assumptions
  - Regional and global population and GDP growth rates
  - Costs and rates of low-carbon technology deployment (carbon capture and storage, solar PV, electric vehicles etc.)
  - Fossil fuel production costs and availability
  - Alternative energy sources (bio-energy, hydrogen etc.)
  - Temperature rises
  - Climate policy
- Importance of being able to vary these assumptions in the model
- Need for sensitivity analysis to see which assumptions the model is most sensitive to



### Estimates of remaining fossil fuel reserves and resources and how these relate to 2 °C climate change budgets





### 

#### Which regions contain fossil fuels that should stay in the ground to stay within the 2°C carbon budgets?

- Burning all current fossil fuel reserves exceed the 2 °C 'carbon budget' by around three times
- But to date unknown which of oil, gas and coal are and aren't developed and who owns these
- Used TIAM-UCL to investigate this and examine who owns the fossil fuel reserves and resources that are 'unburnable'

#### LETTER

The geographical distribution of fossil fuels unused when limiting global warming to 2 °C





**UCL** 

Scenarios were run under a wide range of assumptions on both supply and demand sides and climate change



- Left panel shows range in projected global GDP from all scenarios used in the IPCC 5<sup>th</sup> Assessment Report
- Right panel shows cumulative fossil fuel production for different temperature scenarios (2 °C, 3 °C, 5 °C) and sensitivity of 2 °C scenario to assumptions on fossil fuel costs, bioenergy, oil and gas availability, demand (GDP) and carbon capture and storage (CCS)



## Regional distribution of reserves unburnable before 2050 to stay below 2°C

| Region        | Oil |     | G   | as  | Coal |     |
|---------------|-----|-----|-----|-----|------|-----|
|               | Gb  | %   | Tcm | %   | Gt   | %   |
| Africa        | 23  | 21% | 4.4 | 33% | 28   | 85% |
| Canada        | 39  | 74% | 0.3 | 24% | 5.0  | 75% |
| China         | 9   | 28% | 2.6 | 75% | 116  | 61% |
| C & S America | 58  | 39% | 4.8 | 53% | 8    | 51% |
| Europe        | 5.0 | 20% | 0.6 | 11% | 65   | 78% |
| FSU           | 27  | 18% | 31  | 50% | 203  | 94% |
| India         | 0.4 | 7%  | 0.3 | 27% | 64   | 80% |
| Middle East   | 263 | 38% | 46  | 61% | 3.4  | 99% |
| OECD Pacific  | 2.1 | 37% | 2.2 | 56% | 83   | 93% |
| ODA           | 2.0 | 9%  | 2.2 | 24% | 10   | 34% |
| United States | 2.8 | 6%  | 0.3 | 4%  | 235  | 92% |
| Global        | 431 | 33% | 95  | 49% | 819  | 82% |



Oil and coal consumption significantly different between 2°C and 5°C scenarios but gas acts as a 'transition' fuel



Limited effect of CCS on unburnable reserves, energy inputs for oil sands must be decarbonised, and all Arctic resources are unburnable

Unburnable reserves with and without CCS

|          | Oil |     | Gas |     | Coal |     |
|----------|-----|-----|-----|-----|------|-----|
|          | Gb  | %   | Tcm | %   | Gt   | %   |
| With CCS | 431 | 33% | 95  | 49% | 819  | 82% |
| No CCS   | 449 | 35% | 100 | 52% | 887  | 88% |



- CCS has only a modest effect on the production of reserves
- Production of oil sands in Canada continues but this is accompanied by a rapid and total de-carbonization of the auxiliary energy inputs required
  - No development of oil or gas resources in the Arctic







CO<sub>2</sub> price trajectory in 2 °C scenario from '*The* geographical distribution of fossil fuels unused when limiting global warming to 2 °C'







#### Factors for consideration

- Politics: Inconsistency of stated commitments to 2 °C
  - Climate change as well as economic and (geo-) political implications
  - Licensing constraints for fossil fuel exploration?
- Corporates: Justification for E&P financing
  - New discoveries cannot lead to increased aggregate production (e.g. European shale gas)
  - At the limit may be too risky for delivery of long-term returns
- Other models existing (BUEGO oilfield model) or under development (gas field model) should identify corporate or state ownership of different resources





#### Conclusions

- Modelling tools can provide a holistic analysis of systemwide implications of a wide range of energy futures
- Addressing uncertainty: wide range of possible outcomes and developments can often be better assessed through scenarios than short-term deterministic 'forecasts'
- Such uncertainties are exacerbated by the uncertainty surrounding the severity of future efforts to address climate change
- There is a huge amount at stake: economically, socially, politically and environmentally
- We will be developing and extending these tools in order to contribute further insights to the future possibilities for and implications of global, regional and national energy systems

| _ | _    |
|---|------|
|   |      |
|   | - 11 |
|   | - 11 |
| _ |      |