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ANNEX: Future climate projections for Malawi

This annex provides the methods and extra figures to support the brief on future climate projections for Malawi',
which provides an overview of future climate change for the country using the latest available climate model simulations.
A two-page summary? is also available highlighting key findings.

Data

Observed data

The observations used in the briefs
included gridded rainfall and
temperature data. We used the CHIRPS
v2.0 (Climate Hazards group Infrared
Precipitation with Stations) dataset®
for daily rainfall at a resolution of
~5km (0.05° x 0.05°) for the period
1981-2016. CHIRPS is a combination
of satellite-based rainfall estimates
and station observations and has been
used for various analyses for Africa*>®.
For temperature, we used the Climate
Research Unit (CRU) TS v. 3.24.017
monthly data at a resolution of

~50 km (0.5° x 0.5°) for the period
1901-2015, which has been widely
used for Africa®®™,
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Historical and future climate data

We used the daily temperature and
rainfall simulations for historical
(1950-2005) and future (2006-2099)
periods from 34 General Circulation
Models (GCMs) listed in Table 1. These
models are from the Coupled Model
Inter-comparison Project 5 (CMIP5)
corresponding to the Fifth Assessment
Report of the Intergovernmental

Panel for Climate Change (AR5 IPCC).
The historical simulations represent
simulated climate variability from

the mid-19th century to early 21st
century, driven by anthropogenic

and natural forcings. As the level of
present emissions is just above the
Representative Concentration Pathway
(RCP) 8.5, we used climate simulations
based on the high-emission business as
usual pathway, RCP8.5'"'2, Other lower
emission RCPs are available in the CMIP5
database, but we only show results for
RCP8.5 here.

Methods

Figure 1 shows the elevation and
location map of Malawi. For developing
the climate briefs, both temperature and
rainfall variables have been extracted

over a domain — 8.25°S-17.75°S
latitude and 32.25°E-36.75°E longitude
for covering the geographical extent
of Malawi.

Downscaling of climate data

To analyse variations in future rainfall
and temperature at a fine spatial
resolution, we used the delta change
method'™, This method is widely used
for downscaling coarse resolution GCM
projections to derive information at
finer spatial scale™ for climate change
impact modelling (e.g. hydrological
and crop modelling) studies, which
require temperature and rainfall
changes at higher resolution's'7'8,

In this method, a change factor is
applied to the observed climatology

of temperature and rainfall. This change
factor represents the climate change
signal as derived from the climate
models, and is calculated as a difference
of mean changes in the future and
historical climate simulations of a GCM
(Equation 1)". The derived time series
provides higher resolution information
consistent with future projections of

a changing climate®.
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where,P_ P _ P, andP _ represents
the new time series, observations in the
historical period, raw GCM output for
the future period and raw GCM output
for the historical period, respectively.

P.. - P represents the change factor.
Like other downscaling methods, there
are advantages and limitations of using
the delta change method. While it
preserves the general climate change
signal, it does not capture change in
variance?'?? or account for local climatic
variations®%*, The method requires
observations for the representative
period®, which can be challenging

in data scarce regions. For this study,
the 30-year period from the historical
simulations used in Equation 1 (1976-
2005) is different from the available
observations (1981-2010).

We present results for change in mean
annual rainfall and temperature for all 34
CMIP5 models separately, and the Multi-
Model Ensemble (MME) of historical and
future simulations of temperature and
rainfall from 34 CMIP5 models to show

spatial patterns of change. We averaged
monthly rainfall and temperature over
the period 1976-2005 for historical
simulations, medium-term (2021-2050),
long-term (2070-2099) for future
simulations and observed rainfall and
temperature over the period 1981-2010.
We obtained monthly change factors
(12 each) for medium and long-term
periods. The change factors were
interpolated using bi-cubic interpolation
and were added to CHIRPS and CRU
observations for preparing new time
series for medium and long-term future
periods for rainfall and temperature,
respectively. Using the monthly change
factors we derived annual and seasonal
change factors to address seasonal
climatic specificities of Malawi.

We used well-defined seasons for
Malawi; March to May (MAM), September
to November (SON) and December to
February (DJF). These seasons were
considered important in terms of water
resource availability at the time of
planting and crop growth stages by the
Malawi Department for Climate Change
and Meteorological Services (DCCMS).

Figure 1: Elevation map of Malawi
based on 30-metres Shuttle Radar
Topography Mission data*
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Table 1: List of 34 CMIP5 climate models used for analysing future climate change for Malawi

Model Modelling Centre/Group




Recent climate variability
and extremes from
observations

Figure 2: CHIRPS observed annual and
seasonal rainfall trend (linear trend by
grid cell in mm/year) for 1981-2016.
Seasons are March to May (MAM),
September to November (SON) and
December to February (DJF)
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Figure 3: CHIRPS observed mean CHIRPS DJF 1988-89 Anomaly wrt 1981-2016%  CHIRPS MAM 1989 Anomaly wrt 1981-2016%

seasonal precipitation anomaly (%)
for the wettest year 1989, driest year
2005 and recent dry year 2014/15 with
respect to the mean for 1981-2016.
Seasons are December to February
(DJF) and March to May (MAM)
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Figure 4: CRU observed annual and
seasonal mean temperature (°C) for
1976-2005. Seasons are March to May
(MAM), September to November (SON)
and December to February (DJF)
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Projections of future climate 30
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Figure 7: Change in annual mean

temperature (°C) for all Malawi
between the GCM simulated
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Figure 8: Change in annual mean

temperature (°C) between the GCM
simulated current period (1976-
2005) and 2070-99 for 34 GCMs
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Figure 9: Mean seasonal
temperature change (°C) for
near-term 2021-2050 compared
to current period 1976-2005

using ensemble mean of 34 CMIP5
models for annual, March to

May (MAM), September to
November (SON) and December
to February (DJF)
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Figure 10: Mean seasonal
temperature change (°C) for the
long-term 2070-2099 compared

to current period 1976-2005 using
ensemble mean of 34 CMIP5 models
for annual, March to May (MAM),
September to November (SON) and
December to February (DJF)

Figure 11: Time series of mean annual
temperature (°C) for 34 CMIP5 models
and their ensemble (bold red line)

for the period 1950-2099 and CRU
observations (bold black line) for the
period 1950-2014
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