
 

(Not so) Gently down the stream: river pollution 

and health in Indonesia 

Teevrat Garg, Stuart Hamilton, Jacob Hochard, Evan 

Plous and John Talbot 

April 2016 

Grantham Research Institute on Climate Change and 

the Environment 

Working Paper No. 234 
 



 

The Grantham Research Institute on Climate Change and the Environment was 
established by the London School of Economics and Political Science in 2008 to 
bring together international expertise on economics, finance, geography, the 
environment, international development and political economy to create a world-
leading centre for policy-relevant research and training. The Institute is funded by the 
Grantham Foundation for the Protection of the Environment and the Global Green 
Growth Institute. It has nine research programmes: 

1. Adaptation and development 
2. Carbon trading and finance 
3. Ecosystems, resources and the natural environment 
4. Energy, technology and trade 
5. Future generations and social justice 
6. Growth and the economy 
7. International environmental negotiations 
8. Modelling and decision making 
9. Private sector adaptation, risk and insurance 

 
More information about the Grantham Research Institute on Climate Change and the 
Environment can be found at: http://www.lse.ac.uk/grantham. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This working paper is intended to stimulate discussion within the research community 
and among users of research, and its content may have been submitted for 
publication in academic journals. It has been reviewed by at least one internal referee 
before publication. The views expressed in this paper represent those of the 
author(s) and do not necessarily represent those of the host institutions or funders. 
 

 



(Not So) Gently Down The Stream:
River Pollution and Health in Indonesia ∗

Teevrat Garg†

Stuart E. Hamilton ‡

Jacob P. Hochard§

Evan M. Plous¶

John Talbot ‖

Abstract

Waterborne diseases are the leading cause of mortality in developing countries. We
emphasize a previously ignored cause of diarrhea - upstream river bathing. Using
newly constructed data on upstream-downstream hydrological linkages along with vil-
lage census panel data in Indonesia, we find that upstream river bathing can explain as
many as 7.5% of all diarrheal deaths. Our results, which are net of avoidance behav-
ior, show no effect of trash disposal on diarrheal infections. Furthermore we find that
individuals engage in avoidance behavior in response to trash disposal (visible pollu-
tants) but not river bathing (invisible pollutants). We conduct policy simulations to
show that targeting upstream individuals could generate substantial environmental and
health savings relative to targeting downstream individuals. This provides a potential
roadmap for low- and middle-income countries with limited resources for enforcement
of water pollution.
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1 Introduction

The objective of market-based environmental regulations is to internalize the social cost of

pollution in economic decisions. When exposure to, and damage from, a pollutant is salient,

measuring only the direct incidence of the pollutant and ignoring compensatory behavior

(e.g. air filters, water purifiers, etc.) can understate the true social cost of pollution (Bartik,

1988; Deschenes, Greenstone and Shapiro, 2012). Individuals engage in such compensatory

behavior when the marginal cost of avoidance is less than the marginal benefit from reduced

exposure to pollutants. However, this duality between observed choice and experienced

utility can break down when exposure to certain pollutants is not salient, resulting in low

avoidance behavior or defensive underinvestment - even when such behavior can be welfare

improving. This is of particular importance in developing countries, where individuals rou-

tinely underinvest in profitable and health saving technologies (Ashraf, Berry and Shapiro,

2010; Bryan, Chowdhury and Mobarak, 2014; Greenstone and Jack, 2015; Barrett, Garg and

McBride, 2016). In such a context, an understanding of the nature and extent of external-

ities as a result of these “silent killers” can increase the efficacy of regulatory interventions

designed to promote public health and environmental improvements.

In this paper, we consider the case of river pollution and resulting waterborne diseases

in Indonesia. In particular, we focus on diarrhea, which globally accounts for more than 1.5

million deaths each year (WHO, 2014). Freshwater pollution is of particular importance in

low- and middle-income countries where untreated river water is routinely consumed, in part

due to the low enforcement of policies intended to prevent contamination.1 Earlier work in

1Greenstone and Hanna (2014) find that while air pollution regulations had a measurable impact on infant mortality in
India, water pollution laws had no measurable effect.
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the area of freshwater pollution has focused primarily on industrial waste disposal in rivers

(Ebenstein, 2012). We emphasize a previously ignored and seemingly benign source of water

pollution, in-river bathing, and show that it has a large welfare cost. We present three major

findings: (1) upstream river bathing in Indonesia can explain as many as 7.5% of all diarrheal

deaths in a given year, which over our four year sample translates to 865 diarrheal fatalities,

(2) individuals exhibit avoidance behavior in response to upstream trash disposal (visible)

but not to upstream river bathing (invisible) and (3) targeting upstream villages can reduce

diarrheal mortality by 57% more than would targeting downstream villages.

The challenge in causally estimating the impacts of river pollution on public health is

finding variation in river pollution that is exogenous to local health outcomes, and also

large enough to be economically meaningful. While researchers have previously employed

randomized designs in subsidies for provision of clean water (Ahuja, Kremer and Zwane,

2010; Kremer et al., 2011), to the best of our knowledge no one has used experimental

or quasi-experimental variation to study the impact of specific river pollutants on local

health outcomes.2 We fill this void in the literature by constructing a novel data set of

drainage basins in Indonesia to assign to each of the villages in our sample their respective

set of upstream and downstream villages from approximately 5.8 billion possible upstream-

downstream hydrological linkages.

Using biennial village census data from 2000 to 2008 and employing village fixed effects,

we rely on the identifying assumption that year-to-year changes in upstream polluting behav-

ior are exogenous to downstream health outcomes, which is plausible for two reasons. First,

2The closest study to our work is Ebenstein (2012) who uses rainfall as an instrument for water quality (and not polluting
behavior or actual pollutant concentrations) at certain sites in China to study the impact of poor water quality on digestive
cancers.
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household level in-river polluting behavior in Indonesia is de facto unregulated, minimizing

the regulatory factors that could selectively drive household pollution towards low-income

villages. Second, we use data on upstream polluting behavior rather than data on local

pollution levels (Lipscomb and Mobarak, 2016) or official quality grades (Ebenstein, 2012).

As a result, we are not relying on correlating local pollution with local health outcomes,

which could be spurious for many reasons including but not limited to geographic (Tiebout)

sorting. Instead, we rely on upstream behavior that is plausibly exogenous to downstream

health outcomes.

We test the validity of our identifying assumption and rule out geographic sorting through

a battery of placebo and falsification tests and find that for a given village, bathing by

upstream villages increases diarrheal incidence, while bathing by downstream villages has

no effect. Furthermore, we show that the effect is specific to diarrhea (consistent with its

waterborne nature), with no measurable effect on other diseases. This rules out the existence

of a spurious correlation between upstream polluting and downstream health, as we would

expect to see that manifest as a significant impact between upstream bathing and at least

one of the other diseases as well.3 Importantly, while alternative explanations could exist

for each of our results, we believe there is no plausible alternative explanation that would

rationalize all of our empirical findings.

Our results are relevant for policymakers interested in reducing mortality from waterborne

diseases. Given the limited enforcement of water pollution in most low- and middle-income

nations, we identify sources of pollution that individuals fail to avoid and crucially, where

3The remaining threat to identification would be if individuals geographically sort across villages within a province in our
time frame in response to diarrheal outbreaks unrelated to upstream polluting behavior, but not in response to outbreaks of
malaria, measles, respiratory infections or dengue. That seems unlikely.
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enforcement resources will be most effective. When large scale government programs aimed

at river basin cleanups are financially or technically infeasible, policymakers could enact

cost-effective prevention policies that could substantially reduce diarrheal incidence; we show

that a 1% reduction in the most upstream decile’s river bathing activity reduces downstream

diarrheal incidence by 2.54%.

The policy implications of our work are underscored by contributions to several relevant

research areas in economics. First, we build on the literature emphasizing the estimation

of causal impacts of environmental quality on human health, particularly in developing

countries (see Graff Zivin and Neidell (2013) for an exhaustive review). The construction

of all riparian linkages between villages using a combination of geospatial and hydrological

techniques enables us to overcome previously identified data limitations (Currie et al., 2014),

and extend the research on the linkage between environmental quality and human health

to freshwater pollution. Our data construction and identification method can generalize

to other settings to understand downstream externalities when the path of the pollutant

determines the marginal social cost of pollution.

Second, we contribute to the literature on consequences of water pollution (Leggett and

Bockstael, 2000; Resosudarmo, 2003; Dasgupta, 2004; Ebenstein, 2012; Currie et al., 2013),

as well as strategies to reduce associated health consequences (Jalan and Ravallion, 2003;

Cutler and Miller, 2005; Galiani, Gertler and Schargrodsky, 2005; Ahuja, Kremer and Zwane,

2010; Graff Zivin, Neidell and Schlenker, 2011). We are unaware of any paper that isolates

pollutants differentially on the basis of avoidance behavior, even though such compensatory

behavior has been documented in several instances (Deschenes, Greenstone and Shapiro,

2012).
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Third, we relate to a growing literature on the political economy of environmental and

natural resources (Burgess et al., 2012; Brollo et al., 2013). Our finding that targeting indi-

viduals in upstream areas can generate much larger health savings than targeting individuals

in downstream areas is consistent with other work in this literature, such as Lipscomb and

Mobarak (2016), who show that within governing jurisdictions, water quality is lowest in the

downstream areas.

The rest of the paper is organized as follows. In section 2 we provide an overview of water

pollution regulation in Indonesia and the epidemiological evidence on the link between river

bathing and diarrhea. In section 3 we describe the health and demographic data used in this

paper, as well as the construction of the upstream-downstream village networks. Section 4

details the econometric strategy that we use and in section 5 we discuss the empirical results.

In section 6, we simulate different targeted moratoriums on river bathing and associated

impacts on health outcomes. Section 7 provides our concluding notes.

2 Background

In this section, we provide a brief overview of the state of water pollution and associated

regulations in Indonesia to demonstrate that river pollution, particularly originating from

households, is de facto unregulated. We also provide evidence of the epidemiological foun-

dations on the impact of river bathing on water quality.
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2.1 Water Pollution Regulation in Indonesia

Indonesia has made recent advances in environmental regulation, including the 2009 Environ-

mental Protection and Management Law that recognizes the “serious problem” of decreasing

environmental quality, as well as executive actions designed to reduce emissions and other

forms of pollution (Nachmany et al., 2014). Yet, the regulation of water pollution in Indone-

sia can be characterized as nominally mandated but not regulated for some industries, and

fully non-existent for others. Ostensibly, any individual or business that purposely pollutes

or otherwise damages water sources can face imprisonment for up to 9 years and a maximum

fine of 1.5 billion rupiah (USD 115,000), in accordance with Article 94 of Indonesia’s Law

No. 7/2004 concerning water resources. The provincial governments are responsible for the

regulation and supervision of all water resources, including rivers, that fall within their ju-

risdictions. Despite the steep penalties for polluters, the quality of Indonesia’s water sources

remain low. Several studies including those by the Ministry of the Environment (MoE) found

that all 35 rivers that were tested across Indonesia were unsafe sources for drinking water

(AECEN, 2008).4

The most unregulated source of water pollution in Indonesia is household and municipal

discarding of sewage. Households routinely dispose of waste directly into rivers, while the

improper construction of municipal wastewater facilities leads to the disposal of untreated

sewage into river waters (Kerstens et al., 2013). Nearly two-thirds of the Citarum River’s

biological oxygen demand (BOD) comes from household pollution, as compared to one-third

from all industrial and agricultural activities combined (Kerstens et al., 2013). Regulation

of water pollution at the household level is non-existent, with households polluting into lakes

4In fact, the Citraum River has been found to be one of the most polluted places on Earth (Bernhardt and Gysi, 2013).
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and rivers with de facto impunity.

Water pollution in Indonesia is also generated from industrial waste and agricultural

run-off (GWP, 2013). Industrial polluting causes toxic materials such as heavy metals and

mercury to enter and poison drinking water sources. The 1989 Clean Water Program (CWP),

a government initiative to curb water pollution, achieved spotty reductions in industrial

pollutants with disproportionate success in East Java (Lucas and Djati, 2000). The mixed

success of the CWP may be attributable to its enforceability, as the program was designed

to be voluntary (Bedner, 2010) and water pollution regulations across Indonesia generally

do not apply to small firms and home industries (Braadbaart, 1995).5

2.2 Implications of River Bathing

River bathing poses two major risks to human health, both of which are symptomatic of

diarrhea. First, riparian bathing increases the amount of free carbon dioxide (CO2) and

decreases the amount of dissolved oxygen (DO) in rivers (Bhatnagar and Sangwan, 2009;

Sharma, Bhadula and Joshi, 2012). Organic and biodegradable waste from the bathers is

decomposed by microbes that use oxygen and release carbon dioxide back into river water.

This effect is amplified by the use of soaps and detergents that are absorbed by aquatic

flora. Higher CO2 levels drive phosphate and alkalinity concentrations, which lead to river

eutrophication. Consumption of water from eutrophic rivers has been linked to gastroen-

teritis (WHO, 2002) and cyanobacterial toxins (Scott et al., 1985; Wu, 1999), both of which

can cause symptoms of intestinal pain, nausea, and diarrhea. Second, river bathing can lead

5This is true for small scale industrial enterprises, as well as small and family-run farms, which account for nearly a fifth of
national GDP. In general, agriculture has been relatively less regulated than industrial activity. For example, the Clean Water
Program only applies to industrial firms and no counterpart has been created for the agricultural sector.
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to an increased presence of coliform bacteria known to cause nausea, vomiting, and bloody

diarrhea, especially among infants and those with compromised immune systems (Joshi and

Sati, 2011; Tyagi et al., 2013). Coliforms are a large group of bacteria including total co-

liforms, fecal coliforms, and E. coli. The presence of fecal coliforms and E. coli can come

from both removing trace amounts of fecal matter from the body during bathing, and from

bathers (particularly infants) defecating while bathing. Both of these types of coliforms are

known to cause diarrhea.

3 Data

In this section, we describe the health and demographic data, the geospatial methods used to

conduct the upstream and downstream assignment of villages along Indonesia’s hydrological

network, and the classification of each village into an identifiable drainage basin.

Health and Demographic Data

The Indonesian statistical agency, Badan Pusat Statistik (BPS), conducts a biennial census

of all Indonesian villages known as Podes. Our sample consists of an unbalanced panel of

32,107 villages6 over years (2000, 2003, 2006 and 2008) spread across all major Indonesian

islands with the exception of Java.7 The census is conducted in a short span of 4-6 weeks in

October and November and consists of an exhaustive questionnaire to which village heads

6We have 25,894 villages in 2000, 22,952 villages in 2003, 28,041 villages in 2006 and 32,107 villages in 2008. We construct
our key independent variable - upstream bathing - separately for each year, reducing concerns over an unbalanced panel.

7Java, where the capital city of Jakarta is located, is the most densely populated island with an unusually high level of
urbanization relative to the other islands. Additionally, Java has differential level of enforcement of water pollution that we
do not have the data to capture. We leave it as a future follow-up exercise, and in this paper we focus on all other major
Indonesian islands.
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respond.8 The census contains village-level information on health, population, river location

and other demographic variables.

Disease Data

The Podes is the most spatially and temporally expansive dataset on outbreaks and resulting

deaths from five major diseases: dengue, diarrhea, malaria, measles and respiratory infec-

tions. In each year of the census, the village head is asked to report if there was an outbreak

of each of the different infections in that year. To the best of our knowledge, the village head

is not provided any instructions - such as a cut-off or a point of comparison with respect

to deaths or infections - in determining whether an outbreak has taken place. As such it is

entirely feasible that there were disease-driven deaths in a given year that were unreported

in Podes because the degree of spread was not determined “high” enough to be considered

an outbreak.

Therefore, we provide a number of checks on the accuracy of this ‘outbreak’ measure.

First, we use actual mortality data from Podes that is only available for 4681 village-years.9

In the appendix table A.1, we show the outcomes using log mean death rate per epidemic

using the ‘outbreak’ variable and the log of actual death rate and show that the results are

qualitatively and quantitatively similar. With this validation, we defer to using the outbreak

variable since we have a larger number of observations over a more geographically diverse

area. This allows us to have power to provide better and more nuanced estimates of the

effect of upstream bathing on downstream health outcomes.

8We are aware that some components of this information are verified at the sub-district or district offices but we unfortunately
do not have information of the precise sections of the survey that are verified.

9We have 19,933 village-years but in practice only 4681 village-years where villages have more than one year of data and
therefore provide useful variation for our panel data approach.
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Table I provides summary statistics on the probability of village level outbreaks for

different diseases. Diarrhea is the second most prevalent disease in Indonesia after malaria,

and followed closely by respiratory infections. The mean incidence of the five different

diseases is statistically indistinguishable from one another (column 1). Diarrhea is slightly

more prevalent in hilly areas relative to flatter ones, and in rural areas relative to urban

settings. This geographic pattern of disease prevalence is consistent across all diseases with

the exception of dengue. The differences between these groups are small and not statistically

different from zero (columns 2 and 3).

Population and Demographic Data

We also obtain population and demographic data from Podes. In addition to village popu-

lation information, the census also contains information on whether a river passes through

a village, which we use to ground truth the hydrological river network data. Podes also

contains information on a range of socio-economic variables that we use for robustness in

our econometric strategy: dominant source of income in village, geography of village, quality

of governance (e.g. education of village head), access to medical facilities in the village and

political status of the village.

The dominant form of trash disposal (e.g. carry away, burnt, river polluting, other)

and bathing activity (e.g. in-river, other) is reported in Podes for each village. These are

binary variables, and unfortunately, the census does not contain information on the number

of individuals in each category. This necessitates the use of village populations to construct

our key explanatory variables: the number of individuals polluting in the river through trash

disposal and in-river bathing.
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To create these variables, we replicate the following exercise for both trash disposal and

river bathing for both upstream and downstream aggregate measures, which we illustrate

by considering our main independent variable - upstream river bathing. For a given year t,

village v, with nvt villages upstream along the river that passes through village v, we define

our key independent variable - the number of individuals engaging in upstream river bathing

as,

Upstreamvt =
∑
nvt

[populationnt ∗ bathingnt] (1)

where populationnt is the population of the nth
t upstream village and bathingnt is a binary

variable which is equal to 1 if the majority of households in the village bathe in the river in

year t. We repeat this exercise for all downstream villages.

It is important to note that our independent variables could be either over- or understated.

Including all individuals as river bathers where only the majority of individuals engage

in river bathing likely overstates the number of individuals bathing in rivers. However,

excluding any individuals as river bathers in villages where less than a majority of individuals

bathe in rivers understates the number of individuals bathing in rivers. The concern of

unpredictable measurement error in our key independent variables is addressed in our placebo

tests in table IV. Since we construct our upstream and downstream variables in the same

way, any bias should be present in both, and given that the downstream effects are negligible

we are confident that this is not a source of bias in our results. Cautiously, we may interpret

our results as the differential impact of upstream bathing health effects net of downstream

bathing health effects. We find equivalence in the two interpretations due to the approximate
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null effects of downstream river bathing.10

Construction of Drainage Basins Data and Assignment of Upstream

and Downstream Villages

Linking villages along a hydrological network enables us to track the impact of upstream

river bathers on downstream river users. Indonesia contains seven major islands with rela-

tively mountainous and high-elevation interiors that create a complex hydrological network

of streams and rivers. The official river network for the country fails to identify minor water-

ways that are being used by villages for bathing, drinking and trash disposal. Conducting a

classic hydrological network analysis poses the risk of failing to assign villages located along

minor rivers to the river network, which may understate upstream pollutant runoff (figure

2).

Instead of tracing the hydrological network directly, we adopt a watershed approach

that identifies all upstream-downstream relationships within each basin using a high resolu-

tion digital elevation model (DEM), and then determine on-river status using survey data.

Proprietary approaches to processing such a DEM are less adept to managing canopy in-

terference - where the presence of tree canopy is mistaken for terrain - which could also

render an underestimation of the number of upstream villages connected topographically

to a given downstream village. The problem of canopy interference is compounded by the

approximately 5.8 billion possible village relationships across Indonesia.11

10Another way to characterize our key independent variable described in equation (1) is as a scalar multiple of the population
weighted average of the number of villages where a plurality of households engage in polluting behavior, with zero weight being
assigned to villages where the dominant source of bathing (or trash disposal) is not in the river.

11We manage canopy interference and computational processing constraints by developing a clustered implantation of the
r.watershed and r.water.outlet algorithms in GRASS GIS v7.
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A high-resolution 30 meter void-filled DEM was used alongside village administrative

boundaries from Podes. A pour point was then constructed for each individual village that

self-reported being located on a river.12 The use of self-reported locations in this way pro-

vides a means to “ground truth” our data to avoid misclassifying on-river (type 1 error)

and off-river (type 2 error) villages. The mapping of all upstream and downstream village

relationships was conducted independently for each sample year (2000, 2003, 2006 and 2008)

to accommodate the redistricting of administrative units.13 The product of the hydrolog-

ical analysis was a list of every Indonesian village and its ordered upstream counterparts

across the four sample years (approximately 13.7 million upstream observations). The com-

prehensive nature of the GIS output enables us to (1) calculate the relevant upstream and

downstream pollutant measures, (2) define all distinct drainage basins that represented the

level of exposure to river water pollutants, and (3) simulate geographically-targeted policy

interventions.

4 Estimation and Identification Strategy

The challenge in identifying the effects of water polluting behavior on human health is finding

exogenous variation in water pollution that is also large enough to capture an economically

measurable effect. There are many plausible reasons why exposure to, and consumption of,

impure water may be endogenously determined. For instance, poorer individuals who have

a lower stock of health may be financially or behaviorally constrained from consuming clean

12Each pour point identified the village’s maximum upstream catchment, which is bound by its drainage basin.
13Three sets of verifications were conducted. First, the GIS open source algorithms were compared against the ESRI algo-

rithms. Second, the flow accumulations were consistent with the official Indonesian River Network. Third, the construction
of drainage basins was verified by ensuring the official rivers network flowed properly through each basin ensuring that the
constructed basins were logically sound.
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water. Instead of correlating local water pollution with local health outcomes, we focus on

the diarrheal incidence in a given village due to individuals who are geographically separated

but whose (unregulated or unenforced) polluting behavior may affect downstream villages

through river networks. Relying on the identifying assumption that year-to-year changes in

upstream polluting behavior are exogenous to downstream diarrheal incidence, we estimate

a linear probability model:

I(DiarrhealOutbreak = 1)vpt =
∑
j

[β1jUpstreamjvpt + β2jDownstreamjvpt]+γv +ηpt + εvpt

(2)

I(·) is an indicator variable equal to 1 if the village v in province p at time t had an

outbreak of diarrheal disease.14 Upstreamjvpt is the number of people upstream of village

v that are engaging in type j polluting behavior (i.e. trash, bathing) in province p at time

t. Similarly, Downstreamjvpt is the number of people downstream of village v that are

engaging in type j polluting behavior. γv denotes the village fixed-effects that control for

time-invariant heterogeneity across villages and ηpt are the province-year fixed effects that

control for provincial level shocks across all years. εvrt is the error term, with standard errors

clustered at the drainage basin to allow for arbitrary serial correlation across villages along

the same drainage basin over time.

While focusing on geographically-separated polluting behavior can avert some endogene-

ity concerns, to the extent that individuals could geographically sort over time with wealthier

individuals ending up in villages with cleaner water, the coefficients on upstream polluting,

β1j would remain biased. Since we use province-year fixed effects and thereby control for

14We validate the use of the binary outbreak variable as opposed to data on death rates in the appendix (table A.1).
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all province-specific changes over time, we will focus on such geographic sorting within a

province over time. To overcome these concerns, we test the validity of our identifying as-

sumption with a battery of placebo tests. First, upstream pollution could have an effect

on downstream individuals’ polluting behavior, but downstream polluting should not have

a direct effect on upstream individuals’ health. Second, we estimate the effect of pollut-

ing behavior on diseases that are not transmitted through ingestion of contaminated water,

such as measles, malaria, respiratory infections, and dengue. If we are estimating a spurious

geography-health correlation instead of the causal effect of upstream bathing on downstream

diarrheal incidence, then we should also see association with these other diseases that are not

waterborne. The absence of such effects would support the identifying assumption. Third,

we add a range of time-varying control variables for changing demographic and poverty char-

acteristics. As detailed in the results section, each of these tests supports our identifying

assumption and thereby increases our confidence that we are estimating the causal effect of

polluting behavior on diarrheal incidence.

Following equation (2), we also estimate avoidance behavior. In particular we test

whether individuals reduce consumption of drinking water from the river in response to

upstream polluting.

H(DrinkFromRiver)vpt =
∑
j

[β1jUpstreamjvpt + β2jDownstreamjvpt]+γv +ηpt+εvpt (3)

where H(·) is an indicator function equal to 1 if most people in that village drink water from

the river.

Three additional econometric issues bear noting. First, there could be potential concerns
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over the choice of our estimator. We find that our estimates are robust to different choices of

estimator. In particular, we use the fixed effects logit estimator and find that our results are

qualitatively similar, as reported in appendix table A.2. We also find that a mere 0.3% of

our observations (433 out of 108,991) had predicted values outside the [0,1] range, suggesting

that fit is not a concern with the use of a linear probability model. Second, we cluster our

standard errors at the drainage basin to allow for errors to be correlated across villages along

the same river segment and over time. Given that the pollutants accumulate along a river

segment, clustering at the drainage basin allows for conservative inference on the effects of

upstream polluting behavior. Third, given different populations across villages, we show

in appendix table A.1 that our results are robust to population-weighted generalized least

squares (GLS) estimation.

5 Results

We investigate the health effects of two kinds of non-industrial riparian polluting behavior -

bathing and trash disposal. We simultaneously estimate the effects of these different polluting

behaviors using equation (2) and find strong evidence that upstream bathing causes increased

diarrheal incidence. Specifically, we find that a one standard deviation increase in the number

of people bathing upstream from a village (182,940 individuals) increases the probability of

diarrheal outbreak in that village by 4.59 percentage points (table III, column 2). Using the

within sample average of 18.29% diarrheal incidence, this corresponds to a 25.10 % effect.15

The result is stable to the choice of specification (appendix table A.2) and limited to villages

15We report the results per 100,000 individuals, which corresponds to a 2.52 percentage point effect or 13.7% effect.
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where the primary source of water is the river (table III, column 2-3). The magnitude of the

effect of upstream bathing on downstream diarrheal incidence is considerably larger when

limiting our sample to only those villages where the primary source of drinking water is the

river. Cumulatively yet conservatively, we estimate that upstream bathing can explain 865

deaths, which is 7.5% of all diarrheal deaths in our sample, suggesting that there is a large

human cost to seemingly benign polluting behavior.

Notably, we find no evidence on the impact of upstream trash disposal on downstream

diarrheal incidence. It is important to note that these are equilibrium effects, net of avoidance

behavior specific to upstream polluting behavior. As a result, the absence of effects on in-

river trash-disposal could simply be evidence of strong avoidance behavior. Later in this

section we will separately estimate the avoidance behavior in response to upstream polluting

behavior.

The contrast between the effects of upstream bathing and upstream trash disposal is of

interest. Since the effects in table III are net of avoidance behavior, these results suggest

that downstream populations exhibit avoidance behavior in response to trash and not to

pollutants entering the river through bathing in it. While we cannot explicitly or directly

test the motivations behind this gap in avoidance behavior between the different sources

of pollution, we hypothesize two plausible explanations. First, trash disposal in the river

may pose a higher health risk than in-river bathing, and as such individuals are more active

in avoiding the risk arising from the former. Yet, given the large health cost of upstream

bathing, this seems less likely. Instead we favor the second explanation, that trash disposal

results in pollutants that are visible to the naked eye, in contrast to impurities generated

from bathing that are less or not visible to individuals. This explanation is consistent with
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our results in table VI that individuals stop drinking water from the river in response to

upstream trash polluting but not in response to upstream bathing.

Additionally, we test for non-linearities in appendix table A.3 and find no evidence to sup-

port a non-linear relationship between exposure to upstream river bathing and downstream

diarrheal incidence.

Avoidance Behavior

In this subsection, we quantify the extent to which individuals engage in avoidance behavior

in response to upstream polluting behavior (table VI). We find some evidence of avoid-

ance behavior in response to upstream in-river trash disposal, but no evidence for avoidance

behavior with respect to river bathing. Specifically, one standard deviation (37,853 indi-

viduals) increase in upstream bathers reduces river water consumption by 0.65 percentage

points (p-value = 0.06), which corresponds to a 5% effect.16 While we cannot provide specific

behavioral or structural explanations for this gap in avoidance behavior, combined with the

evidence on the net effects from table III, we cautiously conclude that individuals exhibit

greater avoidance behavior with respect to visible pollutants such as trash than less visible

pollutants arising from bathing, making them potentially more lethal. This is consistent

with a negligible net effect of upstream trash disposal on downstream diarrheal incidence.

16In table VI, we report that that a 100,000 individuals engaging in upstream trash disposal reduces river water consumption
by 1.71 percentage points, which corresponds to a 5% effect.
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Topographic and Geographic Factors

Next we isolate effects based on different geographies to deduce whether (1) the results are

consistent with the topography of villages (flat versus hilly), which would affect the rate

of water flow, and (2) there are systematic differences in the effects of upstream bathing

across urban and rural villages in our sample. In table V we provide results breaking down

the effect of upstream bathing by topography (columns 2-3) and by urbanization (columns

4-5). Consistent with our intuition, we find that the bulk of the effect is concentrated in

flat rather than hilly villages due to the propensity for eutrophication in stagnant water

(Jiménez, 2006). By contrast, we find no evidence of differential impacts in rural versus

urban locations, suggesting that avoidance behavior may not be region-specific.

Placebo Tests

In this section we provide the results from a battery of placebo and falsification tests to

demonstrate the strength of our identification strategy, and consequently the validity of our

identifying assumption. Table IV shows that the effect we find is (1) specific to diarrheal

incidence and (2) specific to upstream polluting behavior. As shown in the table, we find

no evidence of an effect on diarrheal incidence in a given village in response to downstream

bathing. Not only is the effect of downstream bathing statistically indistinguishable from

zero, it is also an order of magnitude smaller than the effect of upstream polluting. Therefore,

concerns over drainage basin specific, time-varying factors that are correlated with both

polluting behavior and diarrheal outcomes may be overstated.

Additionally, we follow Garg (2015) and provide placebo tests on other diseases (table IV,
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columns 2-5). Spurious correlation between downstream health (driven by demographic or

political economy factors) and upstream polluting behavior should be shared when predicting

the impact of upstream pollutants on other disease outbreaks. For instance, if individuals

were geographically sorting over time in response to poor health conditions (but not to

upstream bathing), then we should also expect to see a correlation with incidence of at least

one of the other diseases. The absence of any noticeable or meaningful effect on any of the

other diseases adds support to the validity of our identification strategy.

6 Policy Simulations

The impact of upstream bathing on downstream health suggests that policy responses to river

pollution should be targeted with consideration to geography. Therefore, we conduct a set

of policy simulations by imposing increasingly stringent moratoriums on river bathing (table

VII).17 Tailored policy options are particularly relevant in Indonesia and other developing

countries where limited resources for enforcement require precision targeting of point-source

pollution.

We show that the geography of targeting is essential to cost-effective policy. We categorize

all sample villages into deciles based on total downriver population. Villages located near a

river’s headwaters with a large downstream population are grouped into the first decile while

most downstream villages are grouped into the tenth decile (table VII). Targeting upstream

17Simulations are cumulative across all four sample years (2000, 2003, 2006 and 2008) and the exposure variable (upstream
bathing population) is updated by recalculating the sample mean with a moratorium imposed on villages that fall under the
targeting rule. Epidemics are predicted using the rate of 0.0252 per 100,000 upstream individuals and deaths are predicted
using the sample average of 0.58 diarrhea-related fatalities occurring within a village per diarrhea outbreak. Elasticity measures
are calculated as the percentage change in diarrhea-related deaths divided by the percentage change in bathing individuals for
each policy increment. Note that the marginal elasticities are not forced to be decreasing as they are calculated for incremental
adjustments to the policy rather than as percentage changes from the no-regulation baseline (which would be necessarily
decreasing in magnitude).
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villages generates the largest benefit - targeting the most upstream villages is an order of

magnitude more effective than targeting downstream villages. Specifically, avoiding a single

diarrheal death requires preventing 971,000 individuals in the most downstream decile from

bathing but only 82,000 individuals in the most upstream decile. Our findings are therefore

consistent with recent work on the political economy of water pollution (Lipscomb and

Mobarak, 2016).

The baseline case, which most closely resembles the current state of affairs in Indonesia,

has no regulation on river bathing activity. Population deciles with the largest downstream

populations are then targeted incrementally until a complete moratorium on river bathing

is achieved. Column 2 in table VII shows the number of individuals bathing in the river in

each decile.18 In our two extreme cases, the absence of regulation on river bathing allows

the 865 deaths attributable to river bathing to persist while a strict moratorium on river

bathing prevents all of these deaths (table VII, column 3).

However, avoided deaths on decile-level moratoriums is not a comparable measure across

the different deciles that have varying number of bathers. We generate two measures that

allow us to compare moratoriums on different deciles - average and marginal number of in-

dividuals who must stop bathing to avoid a single instance of diarrheal mortality (table VII,

columns 3 and 4 respectively). These cost calculations are akin to average and marginal

costs of the policies per unit of benefit (figure 3). Columns (3) and (4) show that a policy-

maker interested in reducing diarrheal deaths would have to inconvenience (or compensate)

the fewest number of individuals per avoided death in the most upstream decile - 82,000

individuals who bathe in a river, versus 971,000 individuals in the most downstream decile.

18Deciles are constructed based on total population, not bathing-in-river populations.
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Conversely, in columns 5 and 6 (table VII), we develop an elasticity measure that shows

reductions in mortality from a 1% reduction in decile-specific river bathers (figure 4). Re-

ducing top-decile bathers by 1% reduces marginal downstream diarrhea-related mortalities

by 2.54% but reducing the lowest-decile bathers by 1% reduces marginal mortalities by only

1.61%.

7 Conclusion

In this paper, we construct and employ a novel data set on Indonesia’s drainage basins to

provide the first causal evidence that household-level polluting behavior and in particular

upstream in-river bathing generates large downstream health externalities. Our results have

particular relevance for policymakers for several reasons. First, we uncover a previously

ignored source of household level pollution: in-river bathing. We find that upstream river

bathing can explain as many as 865 deaths over four years representing 7.5% of all diarrheal

deaths in our sample. This represents a large human cost from a source of river pollution that

the literature has almost entirely ignored. Second, we find that targeting based on geographic

location of the source of pollution can result in substantial health savings. In particular, a

1% decrease in in-river bathers in the most upstream decile reduces fatalities by 2.54%. By

contrast, a 1% decrease in in-river bathers in the most downstream decile reduces fatalities by

only 1.62%. Third, we find suggestive evidence that individuals exhibit avoidance behavior

to visible but not invisible pollutants. If salience drives a wedge between the marginal benefit

and marginal cost of avoidance behavior, investment in prevention of these “silent” killers

may yield considerable health savings. Instead of large scale government programs aimed
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at river basin cleanup which may be financially infeasible, policymakers could attempt to

enact policies aimed at preventing polluting behavior. Future work could explore the health

impacts of avoidance behavior to previously understudied point and non-point sources of

water pollution.
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Jiménez, Blanca. 2006. “Irrigation in developing countries using wastewater.” Interna-
tional Review for Environmental Strategies, 6(2): 229–250.

Joshi, Namita, and Vandana Sati. 2011. “Assessment of Water Quality of River Ganges
at Haridwar during Kumbh Mela-2010.” Report and Opinion, 3(7): 30–36.

26



Kerstens, SM, G Hutton, A Van Nes, and I Firmansyah. 2013. “Downstream Im-
pacts of Water Pollution in the Upper Citarum River, West Java, Indonesia Economic
Assessment of Interventions to Improve Water Quality (p. 32).” Jakarta, Indonesia.

Kitazawa, Yoshitsugu. 2012. “Hyperbolic transformation and average elasticity in the
framework of the fixed effects logit model.” Theoretical Economics Letters, 2(2): 192.

Kremer, Michael, Jessica Leino, Edward Miguel, and Alix-Peterson Zwane. 2011.
“Spring Cleaning: Rural Water Impacts, Valuation and Property Rights Institutions.”
Quarterly Journal of Economics, 126: 145–205.

Leggett, Christopher G, and Nancy E Bockstael. 2000. “Evidence of the effects of
water quality on residential land prices.” Journal of Environmental Economics and Man-
agement, 39(2): 121–144.

Lipscomb, Molly, and Ahmed Mushfiq Mobarak. 2016. “Decentralization and the
political economy of water pollution: Evidence from the re-drawing of county borders in
Brazil.” Forthcoming in Review of Economic Studies.

Lucas, Anton, and Arief Djati. 2000. The Dog is Dead So Throw it in the River: Envi-
ronmental Politics and Water Pollution in Indonesia: an East Java Case Study. Monash
Asia Inst.

Nachmany, Michal, Samuel Fankhauser, Terry Townshend, Murray Collins,
Tucker Landesman, Adam Matthews, Carolina Pavese, Katharina Rietig,
Philip Schleifer, and Joana Setzer. 2014. “The GLOBE climate legislation study:
a review of climate change legislation in 66 countries.”

Resosudarmo, Budy P. 2003. “River water pollution in Indonesia: an input-output anal-
ysis.” International Journal of Environment and Sustainable Development, 2(1): 62–77.

Scott, WE, RA Van Steenderen, DI Welch, Water Research Commission, et al.
1985. “Health aspects of eutrophication.” Available from the National Technical Informa-
tion Service, Springfield VA. 22161, as PB 87-225645.

Sharma, Vijay, Sushil Bhadula, and BD Joshi. 2012. “Impact of mass bathing on
water quality of Ganga river during Maha Kumbh-2010.” Nature and Science, 10(6): 1–5.

Tyagi, Vinay Kumar, Akanksha Bhatia, Rubia Zahid Gaur, Abid Ali Khan,
Muntajir Ali, Anwar Khursheed, Absar Ahmad Kazmi, and Shang-Lien Lo.
2013. “Impairment in water quality of Ganges River and consequential health risks on
account of mass ritualistic bathing.” Desalination and Water Treatment, 51(10-12): 2121–
2129.

WHO. 2002. “Eutrophication and health.” Luxembourg: Office for Official Publications of
the European Communities. Geneva: WHO.

WHO. 2014. “Preventing Diarrhea Through Better Water, Sanitation and Hygiene: Expo-
sures and Impacts in Low- and Middle-Income Countries.”

27



Wu, RSS. 1999. “Eutrophication, water borne pathogens and xenobiotic compounds: en-
vironmental risks and challenges.” Marine Pollution Bulletin, 39(1): 11–22.

28



Figures

(a) 2000 (b) 2003

(c) 2006 (d) 2008

Figure 1: Percentage of Villages Declaring a Diarrheal Outbreak in a Year

Figure 2: Construction of River Network Data. (Left) Low and High Order Rivers (Right) Im-
proved Assignment

29



Figure 3: Marginal and Average Cost by Geographic Deciles
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Figure 4: Percentage Reduction in Mortality Per 1% Decrease in Bathers by Targeting Rule
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Tables

Table I: Probability of Village-Level Disease Outbreaks

(1) (2) (3) (4) (5)
Full Flat Hilly Urban Rural

Diarrhea 0.183 0.158 0.188 0.158 0.185
(0.387) (0.365) (0.391) (0.365) (0.389)

Respiratory Infections 0.111 0.0978 0.118 0.101 0.112
(0.315) (0.297) (0.323) (0.301) (0.316)

Measles 0.0807 0.0748 0.0866 0.0682 0.0820
(0.272) (0.263) (0.281) (0.252) (0.274)

Malaria 0.207 0.165 0.231 0.127 0.216
(0.405) (0.371) (0.421) (0.333) (0.411)

Dengue 0.0613 0.0698 0.0420 0.213 0.0454
(0.240) (0.255) (0.201) (0.409) (0.208)

Observations 108,994 54,122 23,127 10,298 98,696

The mean incidence of the different diseases are statistically indistinguishable from each
other using the Tukey’s test as well as the less conservative Fisher’s LSD.
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Table II: Dumping Variables Summary Statistics

Mean(sd)

Do most individuals bathe in the river? 0.791
(0.407)

Do most individuals drink from the river? 0.343
(0.475)

Do most individuals dispose trash in the river? 0.0915
(0.288)

Observations 108,994
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Table III: Impact of Upstream Bathing on Downstream Diarrheal Incidence

(1) (2) (3) (4)
Was there an outbreak of diarrhea? Full Sample Full Sample Drink from Not Drink

River from River

Upstream Bathing 0.0225** 0.0252** 0.0564*** -0.000656
(100,000 individuals) (0.0105) (0.0107) (0.0181) (0.0132)
Upstream Trash -0.00504 -0.00182 -0.0174 -0.00412
(100,000 individuals) (0.0111) (0.0120) (0.0165) (0.0133)

Observations 108,991 106,797 36,819 69,978
R-squared 0.012 0.013 0.023 0.012
Village FE Yes Yes Yes Yes
Province-Year FE Yes Yes Yes Yes
Controls No Yes Yes Yes

Cluster robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 All specifications include
village and province-year fixed effects. Standard errors are clustered at the river basin levels. All specifications
include additional controls for total village population, total upstream population and total downstream population.
Columns (2) - (4) include additional controls: dominant source of income in village, geography of village, quality of
governance (education of village head), access to medical facilities in the village and political status of the village.

34



Table IV: Placebo Tests

(1) (2) (3) (4) (5)
Was there an outbreak of Diarrhea Respiratory Measles Malaria Dengue

Upstream Bathing (100,000 HH) 0.0225** 0.00548 0.000182 0.0105 -0.00711
(100,000 individuals) (0.0105) (0.00772) (0.00846) (0.0116) (0.00737)
Downstream Bathing (100,000 HH) 0.00315 0.000529 0.00322 0.00639*** -0.000797
(100,000 individuals) (0.00250) (0.00215) (0.00229) (0.00243) (0.00264)

Observations 108,991 108,991 108,991 108,991 108,991
R-squared 0.012 0.011 0.010 0.015 0.026

Cluster robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 All specifications include village and
province-year fixed effects. Standard errors are clustered at the river basin levels. The specifications include additional controls
for total village population, total upstream population and total downstream population. The sample is limited to villages
that self-report proximity to a river.
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Table V: Results Disaggregated By Geography

(1) (2) (3) (4) (5)
Was there an outbreak of diarrhea? Full Sample Flat Hilly Urban Rural

Upstream Bathing 0.0225** 0.0249* -0.0589 0.0193 0.0211*
(100,000 individuals) (0.0105) (0.0142) (0.0529) (0.0212) (0.0117)
Downstream Bathing 0.00315 0.00280 -0.00000 0.00256 0.00579
(100,000 individuals) (0.00250) (0.00295) (0.00923) (0.00426) (0.00360)

Observations 108,991 54,122 23,124 10,298 98,693
R-squared 0.012 0.012 0.030 0.047 0.013

Cluster robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 All specifications include village and
province-year fixed effects. Standard errors are clustered at the river basin levels. The specifications include additional
controls for total village population, total upstream population and total downstream population. The sample is limited to
villages that self-report proximity to a river.
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Table VI: Avoidance Behavior

(1) (2) (3)
Did Villages Drink from River? Full Urban Rural

Upstream Bathing 0.00798 -0.00123 0.0123
(100,000 individuals) (0.0111) (0.0181) (0.0127)
Upstream Trash -0.0146* -0.0114 -0.0161*
(100,000 individuals) (0.00780) (0.0114) (0.00936)

Observations 108,991 10,298 98,693
R-squared 0.016 0.043 0.019

Cluster robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
All specifications include village and province-year fixed effects. Standard errors
are clustered at the river basin levels. The specifications include additional con-
trols for total village population, total upstream population and total downstream
population. The sample is limited to villages that self-report proximity to a river.
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A Appendix

A.1 Validation of Outbreak Variable

In this section, we validate the outbreak variable with data on deaths. We do not use deaths
in our primary specification since we have mortality data on only 4,681 village-years with
more than one time period of data. In practice we have over 19,000 village-year observations,
but over 15,000 villages with just a single year of data on deaths. In table A.1 we estimate two
sets of regressions. In Column 1 we use, as the dependent variable, the log of the interaction
of the outbreak variable with the ratio of average diarrheal deaths per unit population.
This is equivalent to computing the effect on diarrheal outbreaks and then transforming the
outbreak variable into the log of mortality rate. In column 2 we use the log of the actual
death rate. The coefficient of interest and the corresponding placebo test have qualitatively
the same coefficients. To the extent that column 1 and 2 are comparable, by using outbreak
data instead of deaths data, we are likely underestimating the impact of upstream bathing
on downstream health outcomes.

Table A.1: Validation of Outbreak Variable with Data on Deaths

(1) (2)
Log Mean Death Log Death

Rate per Epidemic Rate

Upstream Bathing (100,000 HH) 0.682*** 0.672***
(0.215) (0.207)

Downstream Bathing (100,000 HH) 0.0699 0.0710
(0.116) (0.120)

Observations 19,933 19,933
R-squared 0.207 0.231
Number of Villages 15,252 15,252

Cluster robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 All
specifications include village and province-year fixed effects. Standard errors are clustered
at the river basin levels. The sample is limited to villages that self-report proximity to a
river. Column (1) is defined as the log of the average number of diarrheal deaths divided
by the average population interacted with the indicator variable denoting an outbreak in
a village in a given year. Column (2) is the log of the death rate. Both regressions are
weighted by population to account for differential populations across village and compute
the average effect per person rather than per village.
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A.2 Robustness to Choice of Estimator

In this section, we validate the choice of estimator. Column 1 presents the coefficients of a
linear probability model (LPM) in predicting the diarrheal epidemic in a village in a given
year. Using an LPM generates only 0.3% of predicted values that are outside the [0,1] range.
Column 2 performs a similar estimation using a panel logit model instead of an LPM. The
results of the estimation are qualitatively similar to the LPM regression, and maintains both
the sign and level of significance for the bathing estimator.

Table A.2: Robustness to Choice of Estimator

(1) (2)
LPM Logit

Upstream Bathing (100,000 individuals) 0.0225** 0.176**
(0.0105) (0.0713)

Downstream Bathing (100,000 individuals) 0.00315 0.0354
(0.00250) (0.0304)

Observations 108,991 41,332
R-squared 0.012 0.026

Cluster robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
All specifications include village and province-year fixed effects. Standard errors
are clustered at the river basin levels. Both specifications include additional con-
trols for total village population, total upstream population and total downstream
population. Column (1) presents estimation using an OLS linear probability model,
with approximately 0.3% of predicted values lying outside the [0,1] range. Column
(2) presents the results of the fixed effects logit model. R-squared presented in the
table is the psuedo-R2 calculated by the logit estimation. The number of observa-
tions using the FE Logit model is smaller than Column (1) due to all-positive or
all-negative outcomes for village across all 4 years of the panel being dropped. The
fixed effect logit model does not allow for the computation of the marginal effect
at the mean value for the variables of interest - for a more detailed discussion, see
Kitazawa (2012).
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A.3 Testing for Non-Linearities

In this section, we test for whether there exists a non-linear relationship between upstream
bathing behavior and diarrheal incidence in downstream villages. Column 1 presents the
main result of the paper using the OLS estimator, and is identical to the corresponding
column in table III. Column 2 applies a quadratic fit to the bathing estimator, and finds
no significant relationship between diarrheal outbreak and the square of upstream bathing
populations. The third column runs an OLS regression using the log of upstream bathing
values. This monotonic transform of the explanatory variable is qualitatively similar to the
main specification, and although the estimator is an order of magnitude smaller, it still
estimates a positive and significant relationship. Thus we find no evidence to support a non-
linear relationship between exposure to upstream river bathing and downstream diarrheal
incidence.

Table A.3: Testing for Non-Linearities

(1) (2) (3)
Linear Quadratic Logarithmic

Upstream Bathing (100,000 individuals) 0.0225** 0.0176
(0.0105) (0.0150)

Square [Upstream Bathing] 0.000428
(0.000536)

Log[Upstream Bathing] 0.00490***
(0.00114)

Observations 108,991 108,991 108,991
R-squared 0.012 0.012 0.013
Village FE Yes Yes Yes
Province-Year FE Yes Yes Yes
Controls No No No

Cluster robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 All specifications
include village and province-year fixed effects. Standard errors are clustered at the river basin levels.
All specifications include additional controls for total village population, total upstream population
and total downstream population. The sample is limited to villages that self-report proximity to a
river. The mean number of upstream bathing households is 54,840.
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