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Abstract

The permafrost carbon feedback is not currently taken into account
in economic assessments of climate change, yet it could have important
implications for the social cost of carbon and the associated choice of
the optimal greenhouse gas emissions pathway. Although this feedback
is still imperfectly known, there are enough estimates of its potential
strength to now include it in our assessments. In this paper, I present a
model of the permafrost carbon feedback and integrate it in the DICE
Integrated Assessment Model to examine its consequences. I find that
doing so increases the social cost of carbon by 10-20% in the base case
scenario, but that this impact is much more significant in the case of
a more convex damage function and can reach up to 220%. It follows
that setting industrial emissions targets without taking into account
the permafrost carbon feedback would lead to excessive atmospheric
carbon: I find that it increases the optimal emissions rate by c. 8 per-
centage points on average over the period 2015-2100. These results are
yet another illustration of the crucial role of discounting and damage
functions in economic assessments of climate change but also make a
clear case for including the permafrost carbon feedback in the current
debate about the appropriate stringency of climate mitigation commit-
ments.
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1 Introduction

Integrated assessment models (IAMs) are meant to be simple, tractable
models which can be readily used to evaluate the costs and benefits of dif-
ferent climate policies. However, the absence of key factors and crucial
feedback loops in these models has been highlighted (Stern, 2013), to the
point where they were said to render IAMs “close to useless as tools for
policy analysis” (Pindyck, 2013). Indeed, IAMs are used for evaluations of
policies which can run up to several centuries (IAWG, 2010), despite the fact
that the main carbon-climate feedbacks included in IAMs are those which
enter through the climate sensitivity parameter, and which correspond pri-
marily to the “fast” feedbacks: namely, water vapour, temperature lapse
rate, surface albedo and clouds. Many other feedback processes, such as,
for instance, the thawing of permafrost carbon, changes in ocean circulation
and the shift of the terrestrial biosphere from a sink to a source of car-
bon, are not expected to become significant by the end of the 21st century.
Still, these could have non-negligible impacts on global mean temperature
and climate damages over the next 200 or 300 years, and should be taken
into account when assessing the long-term economic implications of climate
change. Admittedly, feedback processes are still imperfectly known and the
uncertainty pertaining to their strength, scale and timing is wide. However,
contrary to climate models which are limited in their ability to incorporate
poorly known complex processes, IAMs precisely provide the opportunity to
integrate and explore the impact of uncertain processes through the use of
stochastic modelling and Monte Carlo simulations.

Research in this area has developed along several dimensions. The first
dimension corresponds to studies aimed at assessing the significance of the
climate and carbon components of IAMs for climate and economic outcomes
(van Vuuren et al., 2011; Marten, 2011; Warren et al., 2010). These have
shown that the modelling of climate dynamics could have significant im-
pacts, especially for longer-term horizons, and that the failure to capture
climate dynamics correctly could lead to underestimating the benefits of
mitigation policies (Hof et al., 2012).

The second line of research has aimed at investigating the economic
impact of low-probability, high-damage feedbacks, such as a sudden and sig-
nificant release of methane into the atmosphere. Ceronsky et al. (2011)
considered the impact of three methane release scenarios on the level of cli-
mate damages and on the social cost of carbon (SCC); Whiteman, Hope and
Wadhams (2013) superposed a pulse of 50 Gt of methane on two standard
emissions scenarios in order to assess the risks associated with the potential
thawing of methane hydrates from the East Siberian Arctic shelf; finally,
Lemoine and Traeger (2014) considered a framework in which multiple tip-
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ping points interact and represented the possibility that large methane stores
locked in permafrost and in ocean shallow clathrates are mobilized by warm-
ing by an increase of the equilibrium climate sensitivity parameter from 3 ◦C
to 5 ◦C.

The third line of research has focused on exploring economic and physical
uncertainties in IAMs through the use of Monte Carlo methods: Ackerman
et al. (2010) explored the implications of varying simultaneously the climate
sensitivity parameter and the damage function exponent using the DICE
model; Pycroft et al. (2011) conducted a similar exercise using PAGE09;
Calel et al. (2013) demonstrated that the uncertainty about the effective
heat capacity of the upper ocean mattered significantly for economic evalu-
ations.

Finally, there have been some attempts at improving carbon cycles rep-
resentation in IAMs. For instance, Glotter et al. (2014) have proposed a
modification of the carbon cycle in DICE to reflect the nonlinear CO2 up-
take of the ocean.

The realization that the permafrost carbon feedback is potentially the
most important positive feedback on policy-relevant time scales that is cur-
rently not included in Earth System Models (Prentice et al., 2015) and that
it will very likely act as an amplifier of human-induced climate change, and,
as such, it could represent significant costs to society, has led to an in-
crease in the attention that this topic is receiving. Indeed, several articles
have been published very recently that testify to the growing interest for
this topic both from a physical and an economic perspective. Schuur et al.
(2015) provided an overview of the existing research on the permafrost car-
bon feedback with the aim of refining our understanding of its sensitivity to
climate. Hope and Schaefer (2015) linked the PAGE09 economic model with
the SiBCASA land surface model to examine the economic impact of car-
bon emissions from thawing permafrost under the A1B scenario from IPCC
(Nakicenovic and Swart, 2000) and estimated that carbon emissions from
permafrost increases the mean net present value of the impacts of climate
change by about 13%. Koven et al. (2015b) presented a simplified approach
for estimating the strength of the permafrost carbon feedback, based on a
data-constrained approach, to measure the global sensitivity of frozen soil
carbon to climate change on a 100 year time scale.

This paper thus proposes to complement this growing literature and to
provide an estimate of the economic impact of the permafrost carbon feed-
back in the framework of the most widely used integrated assessment model,
DICE, and to explore its potential impact in terms of additional warming,
damages and consumption losses. Rather than an exercise in climate mod-
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elling, this paper aims at answering the following questions: given what we
know and what we don’t know about the potential strength and timing of
the permafrost carbon feedback, how does it impact our cumulative emis-
sions targets and our estimates of the social cost of carbon? How does it
affect the projected time horizon at which we will reach the +2 ◦C thresh-
old? How does it change the scale of climate-induced risks that we face?
And how can we compare the current uncertainty on the permafrost carbon
feedback with the uncertainty on other physical and economic processes? If
the permafrost carbon feedback is expected to make climate change hap-
pen faster than we project on the basis of human activities alone, then it is
essential to integrate it into the tools used to design and evaluate climate
change mitigation policies.

This paper is organized as follows: in Section 2, I will first briefly de-
scribe what is referred to as the “permafrost carbon feedback” and provide
estimates of its projected strength. In section 3, I will introduce the method-
ology I used to integrate it into DICE-2013R. In Section 4, I will present some
results, in terms of the impact of the permafrost carbon feedback both on
the social cost of carbon and on the optimal abatement path, under different
assumptions and conditions. Finally, in Section 5 I will compare these re-
sults with previous ones and discuss some potential limitations of the model.

2 What is the permafrost carbon feedback and
how have its potential economic impacts been
assessed so far?

2.1 General overview of the permafrost carbon feedback

Permafrost is defined as perennially frozen ground remaining at or below
0 ◦C for at least two consecutive years (Brown et al., 1997). It is composed
of bedrock, gravel, silt and organic material that was buried and frozen dur-
ing or since the last ice age (Schaefer et al., 2014) and it occurs in about
24% of the exposed land surface in the Northern Hemisphere (Schaefer et al.,
2012), mainly in Siberia, Greenland and Northern Canada. Because organic
matter does not decay once the soil is frozen, it is only when temperatures
rise, causing permafrost to thaw, that the organic matter starts to decay,
releasing carbon dioxide (CO2) and methane (CH4) into the atmosphere,
which further amplifies the warming due to greenhouse gas emissions. The
permafrost carbon feedback (PCF) is this amplification of anthropogenic
warming due to carbon emissions from thawing permafrost, and like emis-
sions of greenhouse gases from fossil fuel burning, it is irreversible on human
time scales (Figure 1).

4



Figure 1: Dynamics of the permafrost carbon feedback

One of the characteristics of the PCF lies in the fact that there is a sig-
nificant time lag between the trigger (global temperature increase) and the
response (CO2 release into the atmosphere). This means that even if the
amount of permafrost carbon that is expected to be released by 2100 is lim-
ited, the impact that the permafrost carbon feedback will have in the 22nd

and 23rd centuries will be partly determined by the level of warming during
the 21st century, and therefore, by the mitigation policies implemented at
that time. As emphasized by Schneider von Deimling et al. (2012), “even
more pronounced than many other components of the Earth system, the
permafrost feedback highlights the lagged and slow response to human per-
turbations”. Schaefer et al. (2011) show that, for the SRES A1B emissions
scenario, 80-90% of the thawing of permafrost carbon occurs before 2100,
but 46% of the thawed carbon is released into the atmosphere after warm-
ing stops in 2100. According to the recent meta-analysis by Schaefer et al.
(Schaefer et al., 2014), long-term estimates indicate that 60% of the per-
mafrost emissions will occur after 2100.

Another attribute of the PCF is that it is extremely likely to be positive
(i.e. it will amplify climate change): although it might trigger some negative
feedbacks (e.g. enhanced plant growth) that will dampen global warming,
the uncertainty on the PCF is said to be “one-sided” in the sense that it
will increase future climate impacts (Schneider von Deimling et al., 2012).
The PCF will therefore add to other existing positive carbon-climate feed-
backs (e.g. water vapour, temperature lapse rate, surface albedo, etc.) and
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as a result, the total effect of these feedbacks will be larger than the sum
of the individual impacts. This “compounding effect” of positive feedbacks
has been demonstrated by Roe (2009), who showed that the amplitude of
the additional radiative perturbation that one positive feedback produces is
amplified by the enhanced system response (i.e., the increased warming) the
other has created, thus making the total system response even larger.

There are many different aspects in which the inclusion of positive long-
term feedbacks such as the PCF is indispensable for the economic assessment
of mitigation policies. Firstly, in the context of the classical approach of
marginal costs and benefits analysis, adding the PCF in a climate-economy
model is likely to have an impact on estimates of the social cost of carbon
i.e., the net present value of the marginal benefit of mitigation. Secondly,
climate policies are often expressed in terms of CO2 concentration targets,
which makes the inclusion of the PCF even more relevant, as accounting for
its effects will almost certainly increase the emissions reductions required to
reach these targets (Schuur et al., 2013). This cut in allowable emissions
could be non-negligible and has been estimated by Schaefer et al. (2011) to
be roughly 14% (± 5%) for a target CO2 concentration of 700 ppm. Finally,
if the PCF is projected to make climate change happen faster than expected
on the basis on anthropogenic emissions alone, then it will also have signif-
icant implications for the timing of adaptation strategies.

2.2 Estimates of the projected strength of the permafrost
carbon feedback

According to the estimation of the size of the permafrost carbon pool pro-
vided by Tarnocai et al. (2009), the area of all soils in the northern per-
mafrost region represents 16% of the global soil area and 1,024 Gt of carbon
can be found in the top 3m of soil whereas 648 Gt is frozen in deposits known
to extend below 3m. In total, the northern permafrost region contains ap-
proximately 1,672 Gt of organic carbon, of which approximately 1,466 Gt,
or 88%, occurs in perennially frozen soils and deposits. More recent esti-
mates (Hugelius et al., 2014; Schuur et al., 2015) found that the northern
near-surface carbon pool (0-3m) should be around 1,035 ± 150 Gt of carbon
(95% confidence interval). Adding up estimates of the deep carbon in the
yedoma region and river deltas brings the known pool of terrestrial carbon
in the northern permafrost zone to 1,330-1,580 GtC, with the potential for c.
400 GtC in other deep terrestrial permafrost sediments that remain largely
unquantified (Schuur et al., 2015). The total carbon content of the per-
mafrost region thus represents roughly twice the amount of CO2 currently
in the atmosphere (c. 850 GtC).

6



As noted by Schuur et al. (2013), the perception of the importance of
the PCF to climate change has been dominated by the improved quantifica-
tion of the size of the permafrost carbon pool, whereas the strength of this
feedback will be primarily determined by the amount that is vulnerable to
release, the speed at which it will be released, and whether it will be released
as CO2 or CH4.

According to the IPCC’s Fifth Assessment Report (2013), despite the
fact that none of the models participating in C4MIP or CMIP5 includes
explicit representation of permafrost soil carbon decomposition in response
to future warming, including these processes in an Earth System Model may
change the sign of the high northern latitude carbon cycle response to warm-
ing from a sink to a source. Indeed, as stated in the report, there is high
confidence that reductions in permafrost extent due to warming will cause
thawing of some currently frozen carbon, but there is low confidence on the
magnitude of the flow of carbon through carbon dioxide and methane emis-
sions to the atmosphere. The overall magnitude of CO2 and CH4 emissions
to the atmosphere is assessed to range from 50 to 250 GtC between 2000 and
2100 for RCP8.5, which corresponds to the highest of the four concentration
scenarios defined by the IPCC (2013).

Several estimates of the impacts of the PCF on the global climate have
been published. Schaefer et al. (2014) published a meta-analysis in 2014,
and there have been a few more studies published since (Schneider von
Deimling et al., 2014; Schuur et al., 2015). It is worth noting that, except
for those from MacDougall et al. (2012) and Schneider von Deimling et al.
(2012; 2014), none of the projections represents the complete or closed feed-
back loop on global temperature, where emissions from thawing permafrost
influence air temperature and the simulated permafrost thaw rate. There-
fore, open-loop estimates need to be integrated in a dynamic model in order
to represent the full potential impact of the PCF. According to the study
by MacDougall et al. (2012) permafrost carbon emissions could constitute
190 GtC by 2100 and 800 GtC by 2300; a more recent study by Schneider et
al. (2014) assesses that permafrost carbon emissions could reach 141 GtC
by 2100 and 313 GtC by 2300 in the highest warming scenario (RCP8.5).

Obviously, the ultimate radiative forcing potential of permafrost emis-
sions will depend on whether the carbon is released as carbon dioxide (CO2)
or as methane (CH4), as methane has around 25 times the global warming
potential of CO2 over a century time scale (Solomon et al., 2007). Only a
few studies provide estimates of the proportion of thawed carbon that will
be released as methane. According to the IPCC’s Fifth Assessment Report
(2013), hydrological changes may lead to trade-offs between the CO2 and
CH4 balance of ecosystems underlain by permafrost, with methane produc-
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tion rates being roughly an order of magnitude less than rates of decom-
position to CO2. However, the IPCC pinpoints that, although the extent
of permafrost thaw simulated by climate models has been used to estimate
possible subsequent carbon release, few studies explicitly partition this into
CO2 or CH4 release to the atmosphere. Based on the results of the survey
by Schuur et al.(2013), the proportional release of CH4 estimated by experts
was relatively invariant across all warming scenarios and time horizons at
about 2.3%. Schneider von Deimling et al. (2012) find a similar range in
their simulations, with methane emissions accounting for approximately 1%
to 3% of the total carbon release, which constitutes cumulative CH4 emis-
sions by 2100 between 131 and 533 TgCH4 across the 4 RCPs.

The main sources of uncertainty about the permafrost carbon feedback
therefore include the size of the permafrost carbon pool, the physical thaw-
ing and decomposition rates, as well as the fraction of thawed carbon that
will decompose to CO2 or CH4. Other sources of uncertainty not considered
for the purpose of this paper include possible mitigating nutrient feedbacks
and the role of fine-scale processes such as spatial variability in permafrost
degradation (IPCC, 2013).

3 Proposed methodology - How can we model the
permafrost carbon feedback in DICE-2013R

We decided to use the DICE model as the framework for our analysis of the
impacts of the PCF, as it is one of the most well-known IAMs, and one which
has often been used to provide estimates of the SCC. A full description of
the equations and parameters of the 2013R version is available in Nordhaus
and Sztorc (2013).

3.1 How are climate feedbacks usually characterized?

Carbon-climate feedbacks usually appear in IAMs as components of the
equilibrium climate sensitivity parameter. However, since the permafrost
carbon feedback does not feature in the C4MIP and CMIP5 model ensem-
bles, it is not included in the estimate of the equilibrium climate sensitiv-
ity1that is provided by the IPCC’s Fifth Assessment Report, and which is
used in DICE to characterize the Earth system’s response (the change in
global mean temperature) to a doubling of CO2 concentration. One of the
possibilities would therefore be to simply add the impact of the permafrost
carbon feedback to this estimate. However, as highlighted by Gregory et al.
(2009), individual feedbacks are not additive in their effect on temperature
and therefore, the impact of the PCF cannot be estimated separately from
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the equilibrium climate sensitivity parameter and then added back to the
estimate.

One of the metrics which has been commonly used for feedbacks is to
define climate feedbacks in GtC.K-1 (Friedlingstein et al., 2006). However
due to the considerable time lag between the thawing of permafrost and its
actual release, the flux of permafrost that is released into the atmosphere
at time (t) does not depend on the surface temperature at time (t) but on
the temperature path over the previous decades/centuries. Schneider von
Deimling et al. (2012) precisely point out the limitations of the “carbon pool
sensitivity” indicator in the case of the PCF, as cumulative carbon releases
per degree of warming are not a scenario- or time-independent characteris-
tic: “carbon fluxes by 2300 are not only a consequence of permafrost thaw in
the 23rd century but are also affected by emissions from soil thawed earlier
in the 21st and 22nd century” (p.657).

For their assessment of the impact of climate feedbacks on the optimal
carbon tax, Lemoine and Traeger (2014) made the choice of a tipping point
framework. This does not seem like the most relevant modelling framework
for the purpose of this paper as, despite potentially significant carbon emis-
sions from thawing permafrost, anthropogenic fossil fuel emissions are likely
to remain the main source of carbon emissions (Schuur et al., 2013). Current
research (Schuur et al., 2015) supports the idea of a gradual and prolonged
release of permafrost carbon emissions in a warming climate, which would
mean that carbon dioxide release from permafrost carbon pools is more likely
to act as an accelerator of climate change rather than a tipping point mech-
anism2. In other words, it is likely that carbon emissions from permafrost
will make climate change happen faster than expected and therefore, there
is a significant risk that temperature targets will be significantly harder to
achieve than is currently assessed by the IPCC. As emphasized by Schuur et
al. (2015), “although never likely to overshadow emissions from fossil fuels,
each additional ton of carbon released from the permafrost region to the
atmosphere will probably incur additional costs to society”.

1Climate sensitivity is defined as the equilibrium change in global mean temperature
(∆T 2x) that results from a radiative forcing (∆F 2x) corresponding to a doubling of at-
mospheric CO2 concentration (van Vuuren et al., 2011). This response ∆T 2x=∆T 2x/α
is inversely proportional to the parameter α, where α is a measure of the strength of
the feedback processes in the system. Therefore, the equilibrium climate sensitivity is an
aggregated measure of how the climate responds to an increase in raditive forcing.

2According to Schuur et al. (2015), “increased permafrost carbon emissions in a warm-
ing climate are more likely to be gradual and sustained rather than abrupt and massive”.
However, the authors also acknowledge that new regional research is beginning to reveal
that a large fraction of permafrost carbon may be vulnerable to abrupt thaw - see the
part on “Reasons for potential underestimation of the strength of the PCF”.
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3.2 A two-phase approach to modelling the PCF

Most studies that provide estimates of potential permafrost carbon release
over the coming centuries present their results in the following way: they
give the total cumulative permafrost carbon released into the atmosphere
by a specific date (e.g. 2100, 2200 or 2300) for a specific atmospheric CO2

concentration scenario, namely, one of the four Representative Concentra-
tion Pathways (RCPs)3. Such a characterization is ill-suited to dynamic
models such as DICE, in which emissions at time (t) depend on atmospheric
CO2 concentration at time (t−1): indeed, the concentration of atmospheric
CO2 impacts directly global mean temperature and consequently climate
damages, which then weigh on the level of output and emissions. Moreover,
using a characterization of the PCF in which emissions from permafrost
carbon are solely a function of atmospheric CO2 concentration or global
mean surface temperature would not allow us to explore the different un-
certainties attached to the underlying processes of the PCF. Indeed, if the
warming scenario is one of the major uncertainties, there are numerous other
uncertainties to explore4. Finally, such an over-simplistic representation of
permafrost carbon release would bypass the different geological, hydrologi-
cal and climatic processes at stake.

Hence, what we need is a characterisation of permafrost carbon release
which is based on an accurate representation of the processes involved, but
which is also suitable for inclusion in DICE-2013R, and tractable enough
to explore different types of uncertainties. The majority of the published
articles that aim to describe and quantify permafrost carbon release use
a two-phase approach; permafrost degradation (or thawing), followed by
decomposition of thawed (or vulnerable) permafrost and release into the
atmosphere as CO2 or CH4. It is worth noting that only the first phase
(thawing) is directly dependent on global mean temperature: as surface
temperature rises, the active layer thickness increases and the soil carbon
which is no longer permanently frozen becomes vulnerable to decomposition.
The second phase (decomposition of carbon and release as CO2 or CH4) is

3Representative Concentration Pathways (RCPs) refer to the four possible climate
outcomes which have defined by the IPCC based on a review of the literature. They are
defined by their total radiative forcing pathway and level by 2100.

4In their uncertainty assessment, Burke et al. (2012) show that by 2100, about half the
spread in the permafrost-induced temperature anomaly is caused by uncertainties in the
RCP scenario, a quarter by uncertainties in the soil carbon distribution, an eighth caused
by the quality of the soil and an eighth by the parameterisation of the soil decomposition
model. Obviously this uncertainty assessment depends on the choice of the representation
of the processes involved in permafrost release. For Slater and Lawrence for instance
(2013), the two most important variables for permafrost are air temperature and snow
depth, whereas for Mishra et al. (2013), projections of permafrost degradation vary widely
due to differences in how models represent the effects of soil organic matter and snow on
surface thermal conductivity.
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principally a function of the type of permafrost soil that is vulnerable to
decomposition: as emphasized by Schuur et al. (2008) “on a global basis,
microbial decomposition of organic matter is the dominant pathway of car-
bon return from terrestrial ecosystems to the atmosphere”, which is likely
to be the case with carbon from thawed permafrost.

The proposed modelling approach described below follows this two-phase
approach.

3.2.1 Phase 1 - Permafrost thawing

Permafrost thawing occurs when surface temperature is above 0 ◦C for part
of the year. Its physical representation is based on the modelling of active-
layer thickening, which indicates the increasing depth of the seasonal freeze-
thaw cycle. As near-surface soil temperatures increase with global warming,
some of the permafrost soil changes phase from ice to water, thus increasing
the layer of soil at the surface that thaws seasonally. Any thorough repre-
sentation of active-layer thickening via heat transfers would therefore need
to take into account the variety of landscapes that compose permafrost soils,
highly localized hydrological processes and fine-grid projections of climate
variables such as surface temperature (including the impact of polar ampli-
fication, which is not uniform over all permafrost areas) and precipitation
patterns.

Because we are de facto constrained by the limitations of DICE, which
is a simple and globally aggregated model, we use a model based on existing
estimates of future permafrost thaw, rather than a process-based approach5.
Our challenge is therefore to find a model for permafrost thaw which is
solely dependent on global mean temperature and which can be fitted to
the existing estimates of permafrost degradation (Appendix A). We take a
similar approach to the one used by Winton et al. (2011) to determine the
sensitivity of the Northern Hemisphere sea ice cover to global temperature
change and which is based on an OLS regression of ∆I (the change in sea
ice cover) on ∆T (the change in global mean temperature). Our model
specification for permafrost thaw is the following:
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PFthawed(t) = β ∗ [TATM(t) − TATM(t0)] + ε (1)

where:

• t0 corresponds to the year 2000;

• PFthawed(t) is the proportion of the permafrost area that has thawed
at time t;

PFthawed(t) = 1 − PFarea(t)

PFarea(t0)
(2)

• TATM(t) is global mean surface temperature at time t.

Physical validity The model specification we choose for permafrost degra-
dation relies on the following physical assumptions:

• As long as TATM(t) = TATM(t0), the extent of the permafrost
area does not change. The underlying assumption is that TATM(t0)
corresponds to an equilibrium state, in which the extent of permafrost
is stable.

• Similarly, we assume that the intensity of permafrost degradation is
a linear function of the rise in global mean temperature above the
equilibrium temperature TATM(t0). The linearity claim seems to be
supported by the current knowledge of permafrost dynamics (Schuur
et al., 2015).

Statistical validity We estimate the β coefficient through pooled OLS,
using a two-level cluster procedure (by RCP and by author) for the standard
errors. We find a highly significant estimate of β of 0.172 with a two-way
clustered robust standard error of 0.0261 (Table 1).

5The major constraints we face in the choice of a suitable representation of permafrost
thawing processes are those which arise from the fact that the proposed modelling will
be incorporated in DICE, a simple and globally aggregated model. These constraints are
manifold: there is no possibility to introduce spatial heterogeneity; the model operates in
five-year time steps; and the only climatic variables are global mean surface temperature
and atmospheric CO2 concentration. These constraints therefore eliminate de facto any
modelling of thawing processes that relies on a zonation of the permafrost zone, or on
climatic variables other than global mean surface temperature. Models such as the one
proposed by Anisimov et al. (1997) to make projections of changes in active-layer thickness
over the Northern Hemisphere for different climate change scenarios by 2050 are therefore
inapplicable for the purpose of this paper.
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Table 1: Regression results

(1) PFthawed

∆TATM 0.172***
(0.0261)

Adj. R-squared 0.812
Number of observations 796

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
Statistics robust to heteroskedasticity and clustering on RCP and author

In order to derive projections of the amount of carbon that is made
vulnerable to decomposition by the thawing of permafrost we need to make
assumptions about the amount of carbon contained in the entire permafrost
area. The following table (Table 2) presents the most recent estimates of
the size of the northern near-surface permafrost carbon pool. Given the
closeness of these estimates, we use the latest one, of 1,035 GtC with a 95%
uncertainty range of ± 150 GtC.

Table 2: Published estimates of the size of the near-surface permafrost car-
bon pool (0-3m)

Study Estimate
(GtC)

Confidence
Interval

Tarnocai et al. (2009) 1,024 n/a
Hugelius et al. (2014), Schuur et al.
(2015)

1,035 ± 150 95%

3.2.2 Phase 2: Carbon decomposition and release as CO2 or CH4

As mentioned previously, on a global basis, the dominant pathway of carbon
return from terrestrial ecosystems to the atmosphere is microbial decompo-
sition (Schuur et al., 2008). The obvious challenge to modelling these pro-
cesses lies in the fact that permafrost soils across the Northern Hemisphere
are highly heterogeneous in their mineral and organic content and, as such,
decomposition rates are likely to vary widely.

Many models of permafrost carbon decomposition are based on a parti-
tioning of vulnerable (thawed) permafrost soils into different carbon pools
based on their decomposition profiles (Dutta et al., 2006; Schaefer et al.,
2011; Burke et al., 2012; Elberling et al., 2013; Schädel et al., 2014).

These representations present two main benefits, namely that they repli-
cate the physical processes at stake and that they do not require a zonation
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of permafrost soils. However, they also present major drawbacks. Firstly,
there is not enough data from field and laboratory experiments to allow us
to parameterize the different carbon pools (Schädel et al., 2014). Then, cli-
mate change will not only increase the amount of carbon which is available
for decomposition, but it is also very likely to alter the physical structure
and hydrological properties of permafrost soils (Schuur et al., 2009; Zhuang
et al., 2009). Therefore, any characterization of permafrost soils is bound to
evolve with climate change over the next 300 years. Finally, our choice of
representation should reflect the level of the uncertainties at stake: we can
try splitting the uncertainty on the decomposition rate into many uncertain
parameters and processes but this masks the fact that we really know very
little about the rate at which thawed permafrost will decompose over the
next 300 years. As emphasized by Schneider von Deimling et al. (2014),
the magnitude and timing of carbon fluxes as a consequence of permafrost
degradation are highly uncertain.

Therefore, what we propose here is a simplified approach, which concep-
tually fits the idea that the vulnerable carbon can be divided into a slow,
a fast and a passive pool but which does not aim to replicate intricate and
evolving microbial decomposition processes. Given the uncertainties sur-
rounding the characterization and mapping of the current permafrost zone,
aiming to represent these processes in a dynamic model running over the
next 300 years would seem, at best, spurious.

What we need to estimate future emissions of permafrost carbon is to
understand the rate at which permafrost carbon will be released into the
atmosphere, as well as the form that it will take (CO2 or CH4) (Schädel et al.,
2014). The approach described here relies on the following assumptions:

• A proportion of the thawed carbon is assumed to be passive, very
stable, and not released over the time scale of this study (Burke et al.,
2013).

• The decomposition and release of thawed permafrost carbon can be
modelled by an exponential decay rate (Schaefer et al., 2011).

Hence, we consider that the main uncertainties pertaining to the decom-
position phase are: the size of the passive pool, the rate of decomposition
(characterized as the e-folding time) and the proportion of decomposed car-
bon that will be released as CH4.

Assuming that the decomposition of permafrost carbon follows an ex-
ponential decay function, the amount of thawed permafrost carbon that is
released at time (t) can therefore be expressed as:

decompC(t) = thawedC(t0) ∗ (1 − propPassive) ∗ (1 − exp−
t−t0
τ ) (3)
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Where:

• thawedC(t0) is the amount of newly thawed permafrost at t0

• propPassive is the proportion of thawed permafrost in the passive
pool

• τ is the e-folding time of permafrost decomposition in the active and
slow pools (i.e. not in the passive pool)

Size of the passive pool According to Burke et al. (2012; 2013), the size
of this passive pool is considered uncertain and could range between 15%
and 60%.

Table 3: Published estimates of relative size of the passive pool

Study Best estimate
(GtC)

Uncertainty
range

Falloon et al. (1998) n/a 15%-60%
Dutta et al. (2006) 18% n/a
Burke et al. (2012) n/a 18%-60%
Burke et al. (2013) n/a 15%-60%
Schneider von Deimling et al.
(2014)

52.5% 40%-70%

We take a mid-point estimate of the size of the passive pool at 40%.

E-folding time of permafrost carbon decomposition The decompo-
sition time of the thawed carbon that is not in the passive pool is considered
to be in the range of 0-200 years (Burke et al., 2013). We derive an estimate
of the parameter τ through existing estimates of permafrost decomposition
rates, which are collected in Table 4.
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Table 4: Published estimates of the e-folding time of permafrost carbon
decomposition

Study e-
folding
time
(years)

Comments

Dutta et al.
(2006)

20 Estimate based on the projection that a 10%
thaw of the yedoma stock (46 GtC) would lead
to a total of 40 GtC being transferred directly
or indirectly to the atmosphere four decades
later under a uniform temperature of 5 ◦C.

Schaefer
et al. (2011)

70 Estimate defined as the characteristic e-folding
time of permafrost carbon decay.

Elberling
et al. (2013)

34-361 Estimate based on a three-pool dynamic model
that projects a potential C loss between 13 and
77% for 50 years of incubation at 5 ◦C.

Knoblauch
et al. (2013)

167 Estimate calculated from turnover times of
170.3 years for the stable pool and 0.26 years for
the labile pool.

Schädel
et al. (2014)

22-224 Estimate based on projections that between 20
and 90% of the organic C will potentially be
mineralized to CO2 within 50 incubation years
at a constant temperature of 5 ◦C.

Schnei-
der von
Deimling
et al. (2014)

25 (10-
40)

Estimate that corresponds to the turnover time
of an aerobic slow pool at 5 ◦C.

Based on the above estimates, we assume a mean value for the parameter τ
of 70 years, which, combined with the assumption that the size of the passive
pool stands at c. 40%, means that 31% of thawed permafrost carbon will
have decomposed after 50 years. This estimate is slightly below the mean
estimates from Elberling (2013) and Schädel (2014) of the percentage of
total thawed carbon which has decomposed after 50 years (45% and 55%,
respectively). However, their results rely on the assumption that the thawed
permafrost is exposed to a constant temperature of 5 ◦C, which is why we
adjust our estimate downwards.

Share of methane emissions Whether permafrost carbon will be re-
leased to the atmosphere in the form of CO2 or CH4 will be driven by
changes in soil moisture (Natali et al., 2015). Indeed, methane is mainly
produced through anaerobic decomposition, which depends on the relative
saturation of the soil (Burke et al., 2012). Given the considerable uncertainty
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surrounding future changes in permafrost soil moisture, and following the
approach generally used in the literature (Schuur et al., 2013; Schneider von
Deimling et al., 2014), we assume that the proportion of methane emissions
will remain constant until 2300. We therefore use the following equation to
calculate methane emissions:

CH4emissions(t) = propCH4 ∗ decompC(t) (4)

Where:

• propCH4 is the (constant) share of methane emissions; and

• decompC(t) is the amount of decomposed carbon at time t

There are very few published estimates of the share of methane emissions.
The only two studies we are aware of which provide an explicit estimate of
the percentage of permafrost carbon which will be emitted into the atmo-
sphere as methane are the one by Schuur et al. (2013), which indicates that
this proportion will be around 2.3% and the one by Schneider von Deimling
et al. (2014), which indicates that this proportion will be in the range 1.5%-
3.5%. We therefore assume a mean value for the proportion of methane
emissions of 2.3%.

3.3 Evaluation of the proposed modelling approach

Figure 2 represents projected permafrost degradation based on the model
described above. Shaded areas correspond to the ± 1 standard deviation
range of the β coefficient.
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Figure 2: Projections of near-surface permafrost degradation

Figure 3 represents projected permafrost carbon emissions based on the
model described above, assuming that: (1) the proportion of the passive pool
is 40%; (2) the e-folding time of permafrost in the slow and active pools is
70 years; and (3) that the proportion of methane emissions is 2.3%. Shaded
areas correspond to the ± 1 standard deviation range of the β coefficient.
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Figure 3: Projections of permafrost carbon emissions

As we can see in the figure above, our model projects that cumulative
permafrost carbon emissions will range between 57 and 121 GtC by 2100,
and between 47 and 566 GtC by 2300. This is consistent with the results
of the meta-analysis done by Schaefer et al. (2014), according to which car-
bon emissions from thawing permafrost are likely to be in the range of 120
± 85 GtC by 2100. It is worth noting that the only source of uncertainty
considered for the graph above is the uncertainty on the beta coefficient,
which represents the sensitivity of permafrost to an increase in atmospheric
temperature.

4 Results - What is the economic impact of the
permafrost carbon feedback?

This section is organised in two parts, which correspond to two different
damage function specifications. We start with the assumption that dam-
ages follow the base damage function in DICE-2013R, which is a quadratic
damage function. In this first part, we calculate the projected impact of the
PCF on different physical and economic variables, we estimate the absolute
and relative impact of the PCF on the SCC for different discounting param-
eters, we solve the model for the optimal abatement paths and we compare
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results with and without the PCF.

In the second part, we re-do these analyses under the assumption of
a more convex damage function, based on the work of Weitzman (2012).
There are two reasons why we decided to repeat the same set of analyses
for two different damage function specifications: first, because it links the
increase in atmospheric temperature to the level of climate damages, the
damage function is a crucial element in IAMs, and one on which most of the
results will hinge. However, the choice of a functional form for the damage
function remains largely arbitrary (Pindyck, 2013). In order to account for
the wide uncertainty pertaining to the relationship between future warming
and damages, we thus decided to consider, for the purpose of this paper,
both the commonly-used “base” quadratic damage function, and the more
aggressive damage function proposed by Weitzman (2012).

4.1 Case #1: Quadratic damages

4.1.1 Impact on emissions, temperature, damages and consump-
tion paths

In this section, we use the base DICE-2013R damage function, represented
by the following equation

ΩDICE(TATM(t)) =
1

1 + α1 ∗ TATM(t) + α2 ∗ (TATM(t))2
(5)

where α1 = 0 and α2 = 0.002664.

The figures below are based on the base case emissions scenario of DICE-
2013R and on the mean values of the uncertain parameters in the PCF
module (i.e. the size of the near-surface permafrost carbon pool, the β coef-
ficient, the proportion of the passive pool, the e-folding time of permafrost
carbon decomposition τ and the proportion of methane emissions).

Figure 4 shows the impact of the PCF on CO2 emissions, CO2 concen-
tration, atmospheric temperature increase and consumption.
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Figure 4: Impact of the PCF on CO2 emissions, CO2 concentration, atmo-
spheric temperature increase and consumption - assuming the DICE-2013R
quadratic damage function
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As can be seen in the figure above, the permafrost carbon feedback has
an amplification effect on total CO2 emissions, which starts to become sig-
nificant towards the end of the 21st century and reaches its peak around
2150. We can also see from the graph that although industrial emissions
start falling after 2130 to finally reach zero in 2235 (this corresponds to the
base case scenario for the emissions control rate in DICE-2013R), CO2 emis-
sions from thawing permafrost continue to be released in the atmosphere.

As regards the impact on CO2 concentration, the permafrost carbon
feedback could add up to 97 ppmv to the atmospheric concentration of CO2

by 2300 in the base case scenario of DICE-2013R. This is consistent with
the closed-loop estimates from MacDougall et al. (2012), according to which
the additional CO2 concentration due to permafrost carbon could be in the
range of 53-213 ppmv (with a best estimate of 101 ppmv) for DEP8.56.
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As regards the effect on global mean temperature, the permafrost carbon
feedback can add up to 0.70 ◦C to the atmospheric temperature, in the base
case scenario of DICE-2013R and assuming all of the permafrost module
parameters are at their mean level. This is consistent with the closed-loop
estimates we have of the additional warming due to the PCF by 2300: ac-
cording to MacDougall et al. (2012), the impact of the permafrost carbon
feedback on atmospheric temperature could be in the range of 0.13-1.69 ◦C
over the period to 2300 in the DEP8.5 emissions scenario.

The cumulative (undiscounted) impact of the permafrost carbon feed-
back on consumption reaches $7,500 trillion by 2300; this represents an
average (undiscounted) impact on consumption over the period of $25 tril-
lion per year.

4.1.2 Impact on the social cost of carbon

We estimate the social cost of carbon as the net present value of the impact
on consumption associated with an incremental increase in CO2 emissions
in a given year. Based on this definition the base SCC for the current pe-
riod (2015), calculated using DICE-2013R and for the parameter values ρ =
0.015 and η = 1.45 is $20.9 per ton of CO2.

The tables below (Table 5, 6 and 7) present a sensitivity analysis for
the impact of the PCF on the SCC, for different levels of the pure rate of
time preference (ρ) and the elasticity of marginal utility (η). These three
tables correspond to three different values of the pure rate of time preference
(PRTP), or utility discount rate: based on the literature, we consider the
case where ρ = 0, as advocated by Stern (2007), ρ = 0.015 as in Nordhaus
(2008) and ρ = 0.010 as a middle-ground estimate. As regards the parameter
η, which represents the elasticity of marginal utility and the intertemporal
elasticity of substitution, we consider the range of [1,4]. For comparison
with the result from Nordhaus (2014), we also added the case η = 1.45.

6The Diagnosed Emissions Pathways (DEPs) used by MacDougall et al. (2012) are
first derived from simulations of their earth system model (the UVic ESCM) driven by
specific RCPs. These DEPs are then used to force the UVic ESCM, and to estimate the
full impact of the PCF on the Earth’s atmosphere.
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Table 5: Sensitivity analysis of the SCC, calculated without the PCF and
assuming a quadratic damage function

SCC - without the PCF, quadratic damages

Elasticity of marginal utility η
1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0

PRTP ρ
0.000 $204.6 $83.3 $75.9 $32.6 $16.1 $9.0 $5.6 $3.8
0.010 $60.0 $30.3 $28.3 $15.0 $8.8 $5.6 $3.8 $2.7
0.015 $38.0 $20.9 $19.6 $11.2 $6.9 $4.6 $3.2 $2.4

Table 6: Sensitivity analysis of the SCC, calculated with the PCF and as-
suming a quadratic damage function

SCC - with the PCF, quadratic damages

Elasticity of marginal utility η
1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0

PRTP ρ
0.000 $239.9 $99.7 $91.0 $39.2 $19.2 $10.6 $6.4 $4.2
0.010 $72.3 $36.4 $33.9 $17.7 $10.2 $6.3 $4.2 $3.0
0.015 $45.6 $24.8 $23.2 $13.0 $7.9 $5.2 $3.6 $2.6

Table 7: Sensitivity analysis of the relative impact of the PCF on the SCC,
assuming a quadratic damage function

Relative impact of the PCF on the SCC with quadratic damages

Elasticity of marginal utility η
1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0

PRTP ρ
0.000 17.2% 19.7% 19.9% 20.4% 19.0% 16.7% 14.4% 12.3%
0.010 20.5% 19.9% 19.8% 17.9% 15.7% 13.6% 11.7% 10.2%
0.015 20.0% 18.6% 18.4% 16.3% 14.2% 12.3% 10.8% 9.5%

As we can see from the three tables above, accounting for the PCF
when calculating the social cost of carbon increases estimates by 10-20%,
depending on the discounting parameters used. In Nordhaus’ base case (ρ
= 0.015 and η = 1.45), the SCC without the PCF is $20.9 per ton of CO2

whereas it reaches $24.8 per ton of CO2 when the PCF is added to the
model, which represents a 18.6% increase. This discrepancy is very similar
to the one for the common “middle-ground” values of ρ = 0.010 and η = 2.0,
which lead to an estimate of the SCC which is 17.9% higher in the case with
the PCF compared to the case without the PCF. These results are a direct
implication of the lagged nature of the PCF and emphasize the importance
of discounting when it comes to estimating climate change impacts.
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4.1.3 Impact on the optimal abatement path

To our knowledge, we are the first to solve for optimality an Integrated As-
sessment Model which includes the PCF. In order to do so, we run the model
in Matlab to derive the optimal emissions control rate and the optimal car-
bon tax which maximize a social welfare function, W , that is the discounted
sum of the population-weighted utility of per capita consumption:

W =

Tmax∑
t=1

U [c(t), L(t)]R(t) (6)

where:

• U [c(t), L(t)] = L(t) ∗ [ c(t)
1−α

1−α ]

• R(t) = (1 + ρ)−t

For this exercice we consider that the discounting parameters are fixed
with ρ = 0.015 and η = 1.45, which correspond to the DICE-2013R default
settings.

The graphs below (Figure 5) display the optimal emissions control rate
path and carbon price, as well as the corresponding industrial emissions and
atmospheric temperature increase paths for the base case (without the PCF)
and for the case in which the PCF is taken into account. We use for this
exercise the optimization toolbox in Matlab.
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Figure 5: Emissions control rate, carbon tax, industrial emissions and atmo-
spheric temperature increase in the optimal scenario - assuming a quadratic
damage function
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As we can see in the graphs above, the difference in the optimal emis-
sions control rate between the case with the PCF and the case without the
PCF can be as high as 8.1 percentage points. For instance, the optimal
emissions control rate without the PCF is 37.9% in 2050 in the case without
the PCF and 41.5% when the PCF is taken into consideration. By 2100,
the difference has grown bigger, from an optimal emissions control rate of
83.2% in the case without the PCF and 90.8% in the case with the PCF.
This translates into a c. 17.5% difference between the average optimal car-
bon price in the case with the PCF and the average optimal carbon price in
the case without the PCF over the period 2015-2110, before the industrial
emissions cease.

Similarly to the optimal CO2 industrial emissions path which was cal-
culated by Nordhaus (2013), we find that it follows a bell-shaped curve to
2110. The area between the two curves, which represents the difference in
total industrial emissions between the optimal scenario with the PCF and
the optimal scenario without the PCF amounts to 390 GtCO2 over the pe-
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riod 2015-2300. Finally, we find that in the optimal case without the PCF,
the increase in atmospheric temperature path peaks at 3.29 ◦C whereas it is
slightly higher in the case with the PCF, at 3.58 ◦C.

4.1.4 Impact on the optimal abatement path, with a +2 ◦C con-
straint on atmospheric temperature increase

Limiting atmospheric temperature increase to 2 ◦C above pre-industrial lev-
els has long been presented by scientists (Rijsberman et al., 1990) as the
condition to avoid the worst impacts of climate change, and has become,
since the Copenhagen Accord in 2009, the internationally accepted target
for climate policy. For this reason, we now run the model in optimal mode
(as previously), but with the additional constraint that the increase in atmo-
spheric temperature should not exceed 2 ◦C. The following graphs show the
optimal emissions control rate and the corresponding optimal carbon tax, as
well as the industrial emissions and atmospheric temperature increase paths,
for the cases with and without the PCF, when this additional constraint is
added to the optimisation program.
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Figure 6: Emissions control rate, carbon tax, industrial emissions and atmo-
spheric temperature increase in the optimal scenario - assuming a quadratic
damage function and with a +2 ◦C constraint on temperature
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As we can see in the graphs above (Figure 6), adding the constraint of
limiting the increase in atmospheric temperature to +2 ◦C has a significant
impact on the difference between the emissions control rate in the case with-
out the PCF and in the case with the PCF7. This difference even reaches
35 percentage points in the early years of the period. It reaches its peak in
2040, when the optimal emissions control rate is 100% in the case with the
PCF and 65.0% in the case without. This translates into a relative impact
on the carbon price which is on average 92.0% over the period 2015-2055,
before the emissions control rate reaches 1.

As regards the optimal paths of industrial CO2 emissions under the
+2 ◦C constraint we find that cumulative emissions over the period 2015-
2300 are, for the case without the PCF, 3,210 GtCO2 without the constraint

7There seems to be some slack in the model when the emissions control rate is no
longer equal to 1 between the years 2110 and 2120. While we cannot fully account for
it, the same pattern is also found in Nordhaus’ results for the optimal path in the Limt2
scenario (Nordhaus, 2013).
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compared to 890 GtCO2 with the constraint. When we take into account the
impact of PCF, these levels of cumulative industrial emissions fall to 2,820
GtCO2 without the constraint and to 360 GtCO2 with the constraint. As
expected, the PCF amplifies the difference between cumulative industrial
emissions in the optimal scenario with no constraints and in the optimal
scenario with a +2 ◦C constraint on atmospheric temperature increase: this
difference increases from 2,320 GtCO2, when the PCF is not taken into ac-
count, to 2,460 GtCO2. This supports the argument that setting a limit on
atmospheric temperature increase (or atmospheric CO2 concentration) and
estimating the maximum level of industrial emissions that is permitted by
this target, without taking into account the projected impacts of the per-
mafrost carbon feedback, might lead us to significantly miss the target.

The graphs below (Figure 7) chart abatement costs (relative to gross out-
put) paths in the optimal scenario, in the case without the +2 ◦C constraints
on atmospheric temperature increase and in the case with the constraint.
The impact of the PCF on relative abatement costs between 2015 and 2300
when there is no constraint on atmospheric temperature increase represents
on average 0.12 percentage points over the period 2015-2110. When the
constraint is added to the model, the impact of the PCF on relative abate-
ment costs increases to 1.27 percentage points on average over the period
2015-2055.
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Figure 7: Abatements costs in the optimal scenario and assuming a
quadratic damage function - comparing the case with and without a +2 ◦C
constraint on temperature
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4.2 Case #2: Weitzman damages

4.2.1 Impact on emissions, temperature, damages and consump-
tion paths - assuming the Weitzman damage function

In this section, we examine the implications of the damage function specifi-
cation. In order to do so we recalculate previous results using an alternative
damage function, which was proposed by Weitzman (2012).

ΩWeitzman(TATM(t)) =
1

1 + (α1 ∗ TATM(t))2 + (α2 ∗ TATM(t))γ
(7)

where parameter values are the following:

• α1 = 1/20.46

• α2 = 1/6.081
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• γ = 6.754

Figure 8 shows the impact of the PCF on the increase in atmospheric
temperature (TATM).

Figure 8: Impact of the PCF on CO2 emissions, CO2 concentration, at-
mospheric temperature increase and consumption - assuming the Weitzman
damage function
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4.2.2 Impact on the social cost of carbon - assuming the Weitz-
man damage function

We repeat the same exercise as in section 4.1.2, the only change being that
we now make the assumption that the damage function follows Weitzman
(2012). We consider the same ranges for parameters ρ and η as previously.
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Table 8: Sensitivity analysis of the SCC, calculated without the PCF -
assuming the Weitzman damage function

SCC - without the PCF, Weitzman damages

Elasticity of marginal utility η
1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0

PRTP ρ
0.000 $1,676.5 $777.6 $714.6 $310.0 $137.2 $62.2 $29.1 $14.2
0.010 $338.5 $165.4 $153.0 $70.9 $33.9 $17.0 $9.0 $5.1
0.015 $173.3 $87.2 $80.9 $39.0 $19.6 $10.4 $5.9 $3.6

Table 9: Sensitivity analysis of the SCC, calculated with the PCF - assuming
the Weitzman damage function

SCC - with the PCF, Weitzman damages

Elasticity of marginal utility η
1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0

PRTP ρ
0.000 $1,974.5 $1,088.2 $1,019.2 $533.3 $282.8 $152.1 $82.9 $45.9
0.010 $459.1 $252.7 $236.6 $124.0 $66.1 $36.0 $20.1 $11.5
0.015 $245.5 $135.4 $126.9 $66.9 $36.0 $19.9 $11.4 $6.7

Table 10: Sensitivity analysis of the relative impact of the PCF on the SCC
- assuming the Weitzman damage function

Relative impact of the PCF on the SCC, Weitzman damages

Elasticity of marginal utility η
1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0

PRTP ρ
0.000 17.8% 39.9% 42.6% 72.0% 106.1% 144.4% 184.7% 222.8%
0.010 35.6% 52.7% 54.7% 74.8% 94.8% 112.2% 124.0% 127.3%
0.015 41.6% 55.4% 56.9% 71.6% 84.0% 92.1% 94.1% 89.3%

As we can see from the tables above, the impact of the PCF on the social
cost of carbon is much stronger in the case of the Weitzman damage function
than in the case of a quadratic damage function: the effect of the PCF,
which ranged between 10 and 20% in the case of quadratic damages now
ranges between 18 and 220%. Whereas the first analysis (with the quadratic
damage function) emphasized the importance of the lagged impacts of the
PCF, the tables above demonstrate that the relative impact of the PCF on
the social cost of carbon is extremely sensitive to the convexity of the damage
function used in the model. Indeed, even with middle-range discounting
parameters, the choice of an aggressive damage function means that the
PCF could increase the social cost of carbon by more than 50%.
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4.2.3 Impact on the optimal abatement path - assuming the Weitz-
man damage function

We repeat the exercise done in section 4.1.3 but we assume this time that
climate damages follow the Weitzman damage function. As previously, we
consider that the discounting parameters are fixed with ρ = 0.015 and η =
1.45.

Figure 9: Emissions control rate, carbon tax, industrial emissions and atmo-
spheric temperature increase in the optimal scenario - assuming the Weitz-
man damage function
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As we can see in the graphs above (Figure 9), the difference in the op-
timal emissions control rate between the case with the PCF and the case
without the PCF is in the range of 1.0 to 14.0 percentage points during the
period that the emissions control rate is not equal to 1 (2015-2095). This
translates into a c. 30% difference between the optimal carbon price in the
case with the PCF and the optimal carbon price in the case without the
PCF over the period 2015-2095.
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Similarly to our findings for the quadratic damage function, we find that
the optimal industrial emissions path follows a bell-shaped curve to 2095.
The area between the two curves, which represents the difference in total
industrial emissions between the optimal scenario with the PCF and the
optimal scenario without the PCF amounts to 500 GtCO2 over the period
2015-2300, which is c. 28% higher than in the case with the quadratic dam-
age function. Finally, we find that in the optimal case without the PCF,
the increase in atmospheric temperature path peaks at 2.84 ◦C whereas it is
slightly higher in the case with the PCF, at 2.99 ◦C.These numbers reflect
the stronger convexity of the Weitzman damage function compared to the
base quadratic damage function used in DICE-2013R.

4.2.4 Impact on the optimal abatement path, with a +2 ◦C con-
straint on atmospheric temperature increase - assuming the
Weitzman damage function

We now run the second experiment in which we add the additional constraint
that the increase in atmospheric temperature should not exceed 2 ◦C. The
following graphs (Figure 10) show the optimal emissions control rate and the
corresponding optimal carbon tax, as well as the industrial emissions and
atmospheric temperature increase paths, for the cases with and without the
PCF, when this additional constraint is added to the optimisation.
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Figure 10: Emissions control rate, carbon tax, industrial emissions and
atmospheric temperature increase in the optimal scenario - assuming the
Weitzman damage function and with a 2 ◦C constraint on temperature
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As we can see in the graphs above, adding the constraint of limiting the
increase in atmospheric temperature to +2 ◦C has a significant impact on
the difference between the emissions control rate in the case without the
PCF and in the case with the PCF. This difference even reaches 35 percent-
age points in the early years of the period, which is similar to the case of
the quadratic damage function. This translates into a relative impact on
the carbon price which is on average 92.3% over the period 2015-2060, date
at which the emissions control rate reaches 1.

As regards the optimal paths of industrial CO2 emissions under the
+2 ◦C constraint we find that cumulative emissions over the period 2015-
2300 are, for the case without the PCF, 2,290 GtCO2 without the constraint
compared to 890 GtCO2 with the constraint. When we take into account the
PCF these levels of cumulative industrial emissions fall to 1,780 GtCO2 with-
out the constraint vs. 360 GtCO2 with the constraint. Hence, the PCF still
amplifies the difference between cumulative industrial emissions between the
optimal scenario with no constraints and the optimal scenario with a +2 ◦C
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constraint on atmospheric temperature increase, from 1,400 GtCO2 to 1,420
GtCO2, but to a lesser extent than in the case with quadratic damages, as
higher convexity of the Weitzman damage function weighs significantly more
on the optimal paths of industrial emissions.
The graphs below (Figure 11) chart abatement costs paths in the optimal
scenario, in the case without the +2 ◦C constraint on atmospheric tempera-
ture increase and in the case with the constraint. The impact of the PCF on
relative abatement costs between 2015 and 2300 when there is no constraint
on atmospheric temperature increase represents on average 0.27 percentage
points over the period 2015-2095 (vs. 0.12 in the case of the quadratic dam-
age function). When the constraint is added to the model, the impact of
the PCF on relative abatement costs increases to 1.27 percentage points on
average over the period 2015-2055, which is the same number as for the
quadratic damage function.

Figure 11: Abatements costs in the optimal scenario and assuming the
Weitzman damage function - comparing the case with and without a +2 ◦C
constraint on temperature
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4.3 Uncertainty analysis

We now examine the impact of uncertainty about the PCF on the social
cost of carbon. In order to do so, we assign distributions to the five main
uncertainties in our modelling of the permafrost carbon feedback:

• The size of the permafrost carbon pool: according to Hugelius et al.
(2014), the 95% confidence interval for the size of the permafrost car-
bon pool is 1,035 ± 150. We therefore calibrate a normal distribution
based on these estimates.

• The proportion of the passive carbon pool: based on the estimates from
Table 3 we make the assumption that the proportion of the passive
pool follows a normal distribution with a mean of 40% and a two-
standard deviation interval of 11%.

• The β coefficient: based on the estimation described in Section 3.2.1,
we assume that the β coefficient follows a normal distribution with a
mean of 0.172 and a standard deviation of 0.0261.

• The e-folding time of permafrost carbon decomposition: according to
Burke et al. (2013), the decomposition time of the thawed carbon
that is not in the passive pool is considered to be in the range of 0-200
years. Given the wide range of the estimates in Table 4 we assume
that the e-folding time of permafrost carbon decomposition (in the
active and slow pools. i.e. not considering the passive pool) follows a
normal distribution with a mean of 70 and a standard deviation of 30.

• The share of methane emissions: based on the few estimates we have of
the share of methane emissions (see Section 3.2.2), we consider for this
parameter a normal distribution with a mean of 2.3% and a standard
deviation of 0.6%.

We now conduct a Monte Carlo simulation of the model. In order to
do so, we take a Latin Hypercube Sample of the parameter space and we
generate 10 000 draws of the model with the PCF and with the quadratic
damage function. We then repeat the exercise with the Weitzman damage
function. The resulting two normalized histograms for the social cost of
carbon are displayed on Figure 12.
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Figure 12: SCC histogram - with uncertainty on the PCF only
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As can be seen in the chart above, the range of the social cost of car-
bon is much wider with the Weitzman damage function than with the base
quadratic damage function used in DICE-2013R. This is a direct impliction
of a higher convexity of the Weitzman damage function, which amplifies the
impacts of the PCF on social welfare.

5 Discussion

As far as we are aware, there is only one other study which has tried to
estimate the economic cost of the permafrost carbon feedback through the
use of an Integrated Assessment Model, which is the recent paper by Hope
and Schaefer (2015), who linked the PAGE09 IAM with the SiBCASA land
surface model. It is worth noting that they only consider the A1B scenario
from the Fourth Assessment Report of the IPCC (2007) in which anthro-
pogenic emissions stop in 2100, when the atmospheric CO2 concentration
reaches 700ppm. Therefore, all their results are based on the assumption
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that there are zero anthropogenic emissions after 2100. Most of our sim-
ulations (except the ones which solve for the optimal path) are based on
the default emissions control rate of DICE-2013R in which the atmospheric
concentration of carbon reaches 1,698 GtC in 2100, which corresponds to
800 ppm. This should explain why we find slightly larger impacts of the
PCF in 2100. Notably, Hope and Schaefer (2015) find that the mean an-
nual value of all extra impacts is about US$2.8 trillion in 2100 and peaks
at US$30 trillion in 2200. In our base case scenario (DICE-2013R) we find
that the mean annual value of the extra damages due to the PCF is about
$3.6 trillion in 2100 and increases until it reaches $57 trillion by 2300.

They also find that the PCF increases the mean net present value of the
impacts of climate change by roughly 13%. Considering that our model runs
to 2300, contrary to theirs which only runs to 2200, and that our scenario is
less optimistic than the A1B scenario on the level of future anthropogenic
emissions, this number can be said to be roughly in line with our base esti-
mate of a relative impact of the PCF on the social cost of carbon of +18.6%
(Table 7).

It is worth highlighting here that our model does not take into account
the fact that thawing permafrost will also release nitrogen that is likely to
offset some carbon losses through enhanced fertilization. However recent
research seems to suggest that the large potential carbon losses from the
permafrost region are unlikely to be compensated by the nitrogen fertiliza-
tion accompanying decomposition (Koven et al., 2015a).

In fact, despite these seemingly high numbers, there are several fac-
tors which suggest that our model might significantly underestimate the
economic impact of the PCF. First, there are reasons to believe that the
current estimated projections of permafrost carbon thaw and decomposi-
tion are conservative (Schneider von Deimling et al., 2014) For instance,
most studies do not account for the potential thaw and decomposition of
deep frozen carbon outside the Yedoma and refrozen thermokarst (RTK)
regions, as no coherent data is currently available on the distribution and
characterization of soils below 3m depth for large regions in Siberia, Alaska
and Canada. Still, these depths are likely to be affected by thaw over the
coming centuries, and to contribute to the permafrost carbon feedback.

Another phenomenon which is not considered in this paper is the pos-
sibility of abrupt thaw. According to Schuur et al. (2015), recent regional
research seems to be suggest that a large fraction of permafrost carbon could
be vulnerable to abrupt thaw, as climate change is expected to increase the
initiation and expansion of abrupt thaw features. Even if abrupt thaw would
only occur at point locations, there is a risk that it could cause deeper per-
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mafrost thaw to occur more rapidly. However, due to the strong uncertainty
on the conditions which would cause abrupt thawing, this process is not cur-
rently considered in forecasts of permafrost carbon-climate feedbacks.

We do not consider potential pathways of abrupt methane release here
either, which could be triggered by extensive permafrost degradation leaving
exposed regional hydrocarbon reservoirs below the permafrost cap (Anthony
et al., 2012).

Similarly, potential changes in organic chemistry are left out of the scope
of this paper, despite the fact that recent research (Hodgkins et al., 2014)
has examined the biogeochemistry of peat and dissolved organic matter and
concluded that the impact of permafrost thaw on organic matter chemistry
could intensify the predicted climate feedbacks of increasing temperatures,
permafrost carbon mobilization, and hydrological changes.

Finally, as we noted earlier, our model for permafrost degradation as-
sumes that the state at year 2000 is stable, i.e. that the level of global mean
temperature in the year 2000 does not cause permafrost to thaw. In real-
ity, most of the permafrost observatories in Russia have shown substantial
warming of permafrost during the last 20 to 30 years and there is evidence
that permafrost is thawing in specific landscape settings (Romanovsky et al.,
2010).

6 Conclusion

As emphasized by Prentice et al. (2015), the permafrost carbon feedback
is, on the basis of current knowledge, potentially the most important posi-
tive feedback on policy-relevant timescales that is currently not included in
Earth System models. This omission should be a concern for policy makers
as it could lead to a dangerous overestimation of the level of emissions that
is compatible with a given CO2 concentration target.

A variety of ad hoc methods combining data and model results have pro-
duced a large range of estimates of the potential physical magnitude of this
feedback, but to our knowledge, its economic impact has not yet been fully
investigated. Despite the complexity of the processes involved, we used these
projections to build a simplified model, which can be integrated in DICE-
2013R and which represents the main uncertainties at stake. We have shown
in this paper that including a rough model of the permafrost carbon feed-
back adds on average between 10 and 20% to the current estimates of the
social cost of carbon calculated using DICE-2013R.
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We have also examined the implications of the choice of a damage func-
tion on the projected impacts of the PCF. Using a damage function which
is more convex than the quadratic one used in DICE-2013R could worsen
significantly the economic impacts of the PCF. Moreover, by amplifying the
economic impacts, it increases drastically the uncertainty on the projected
effect on the social cost of carbon. It is yet another illustration of how cru-
cial are the issues of discounting and damage functions when it comes to
assessing the future impacts of climate change.

There are numerous potential improvements which could help us to bet-
ter assess the economic impacts of this imperfectly known feedback: these
include a more extensive knowledge of the permafrost zone as well as a better
understanding of the processes which lead to permafrost thaw and carbon
decomposition. Markedly, the rates of permafrost thawing and decompo-
sition, as well as the relative proportions of methane and carbon dioxide
emissions will be of considerable significance.

Finally, there are two features of the PCF that underpin our model but
which do not appear explicitly in our results: its long-term path dependency
and its irreversibility. More than the figures of the projected impacts of the
PCF on the social cost of carbon, what policy makers should have in mind is
that the level of industrial emissions that we allow for over the next decades
will have critical implications for the amount of permafrost carbon that is
released in the atmosphere over the next centuries, and for the extent of
future climate change.

These findings, as well as the width of uncertainties pertaining to this
feedback, call not only for further research in this field, but also for an ex-
plicit consideration in the climate policy debate.
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A Appendix: Estimates of permafrost degrada-
tion

Table 11: Published estimates of future permafrost degradation

Study Permafrost area degradation

2100 2200 2300

RCP2.6

Burke et al. (2012) 16% n/a n/a
Lawrence et al. (2012) 30% n/a n/a
Mokhov and Eliseev (2012) 38% 33% 22%
Koven et al. (2013) 23% n/a n/a
Schuur et al. (2013)* 15% n/a 25%
Slater and Lawrence (2013) 37% n/a n/a

DEP2.6

MacDougall et al. (2012) 38% 38% 36%
Schneider von Deimling et al. (2012)* 15% 15% 14%
Schneider von Deimling et al. (2014)* 17% n/a n/a

RCP4.5

Burke et al. (2012) 24% n/a n/a
Harden et al. (2012)* 23% n/a n/a
Lawrence et al. (2012) 49% n/a n/a
Mokhov and Eliseev (2012) 48% 59% 59%
Koven et al. (2013) 46% n/a n/a
Schuur et al. (2013)* 24% n/a 39%
Slater and Lawrence (2013) 52% n/a n/a

DEP4.5

MacDougall et al. (2012) 46% 53% 57%
Schneider von Deimling et al. (2012)* 26% 35% 38%
Schneider von Deimling et al. (2014)* n/a n/a n/a

RCP6.0

Burke et al. (2012) 27% n/a n/a
Lawrence et al. (2012) 56% n/a n/a
Mokhov and Eliseev (2012) 60% 81% 83%
Koven et al. (2013) n/a n/a n/a
Schuur et al. (2013)* 42% n/a 56%
Slater and Lawrence (2013) 63% n/a n/a

DEP6.0

MacDougall et al. (2012) 49% 58% 63%
Schneider von Deimling et al. (2012)* 33% 55% 62%
Schneider von Deimling et al. (2014)* n/a n/a n/a

Continued on next page
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Continued from previous page

Study 2100 2200 2300

RCP8.5

Burke et al. (2012) 35% n/a n/a
Harden et al. (2012)* 41% n/a n/a
Lawrence et al. (2012) 76% n/a n/a
Mokhov and Eliseev (2012) 84% 93% 93%
Koven et al. (2013) 76% n/a n/a
Schuur et al. (2013)* 57% n/a 74%
Slater and Lawrence (2013) 87% n/a n/a
Chadburn et al. (2015)* 50% n/a n/a

DEP8.5

MacDougall et al. (2012) 52% 63% 69%
Schneider von Deimling et al. (2012)* 57% 100% 100%
Schneider von Deimling et al. (2014)* 37% n/a 58%

The estimates marked with an asterisk (*) have not been used in the regres-
sion, usually because of a lack of continuous data.
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