

Bridging the gap:

improving the economic and policy framework for carbon capture and storage in the European Union

A policy brief by the Grantham Research Institute on Climate Change and the Environment (LSE) & the Grantham Institute (Imperial College)

Samuela Bassi, Rodney Boyd, Simon Buckle, Paul Fennell, Niall Mac Dowell, Zen Makuch and Iain Staffell

> Brussels, 16 June 2015 London, 24 June 2015

This presentation

- Aim and focus
- CCS globally and in the EU
 - Scenarios
 - State of CCS
- Key challenges
 - Technology, infrastructure & storage
 - Costs
 - Finance
 - Regulation & policy
- Policy recommendations
- Conclusions

Aim and focus of the study

Aim of the study: Provide policy advice on how to make CCS more bankable in the EU

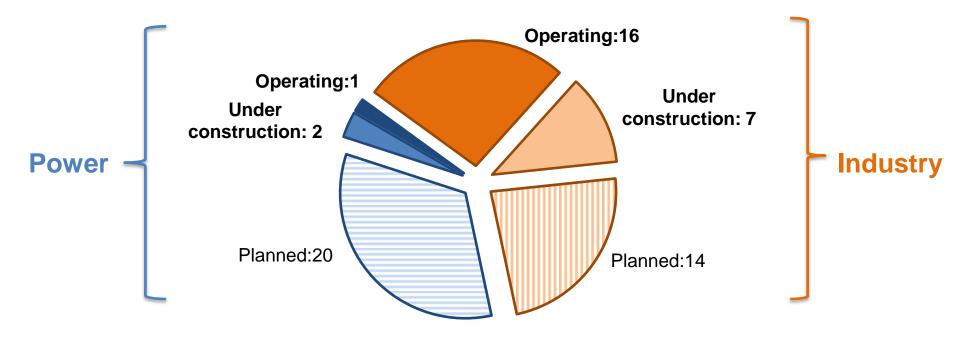
Focus on CCS - Why?

- Central in most energy scenarios & EU Energy Roadmap:
 - Essential in lowest cost technology portfolios
 - Can provide low-carbon electricity back up
 - Potential for negative emissions (BECCS)
 - Industrial applications
- Yet not progressing as fast as expected in the EU

CCS globally and in the European Union

Source	Scenario	CCS	% total	CCS
		generation	generation	capacity
World		TWh	%	GW
IEA	2DS base	6,299	15%	960
	2DS hiRen	2,945	7%	460
	2DS hiNuc	3,055	7%	470
	2DS no CCS	0	0%	0
Global Energy Assessment	Mix	18,158	35%	n/a
	Efficiency	9,441	22%	n/a
	Supply	11,761	20%	n/a
European Union				
EU Commission	Low nuclear	1,548	32%	248
	Diversified	1,189	24%	193
	High energy			
	efficiency	878	21%	149
	Delayed CCS	926	19%	148
	High RES	355	7%	53
Energy Modelling Forum (EMF28)	80% DEF	570	14%	n/a
	80%EFF	536	14%	C
	80% PESS	0	0%	0
	80% GREEN	0	0%	0
Global Energy Assessment	Mix	2,470	37%	n/a
	Supply	1,841	26%	n/a
	Efficiency	990	19%	n/a

CCS in 2C scenarios (2050)


- CCS up to 50% of electricity by 2050
- Some scenarios not feasible without CCS
- If feasible, more expensive (IPCC: +140%)

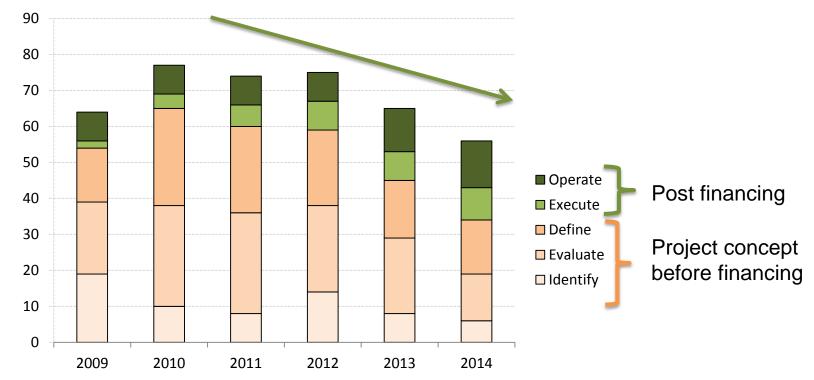
All scenarios in EU Energy Roadmap 2050 include CCS

State of world CCS projects

EU: 12 power plants expected by 2015, however to date

0 operating/under construction

6 planned (power)

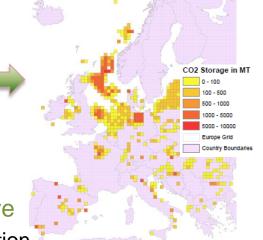

- **5 UK** (Peterhead; White Rose; Don Valley; C.GEN; Captain Clean)
- 1 Netherlands (ROAD)

...and the pipeline of projects is drying out

Global CCS large scale integrated projects by development phase, 2009-2014

Source: Based on GCCSI (2014a, 2014b)

Key challenges



Technology, infrastructure and storage

- Capture & infrastructure: technology is well known, low risk
 - → More understanding needed on: integration, cost reductions, industrial CCS, BECCS
 - → Pipelines require planning (especially for clustering) + regulation

Storage: Potential bottleneck
Storage shortage in some countries (e.g. central EU)

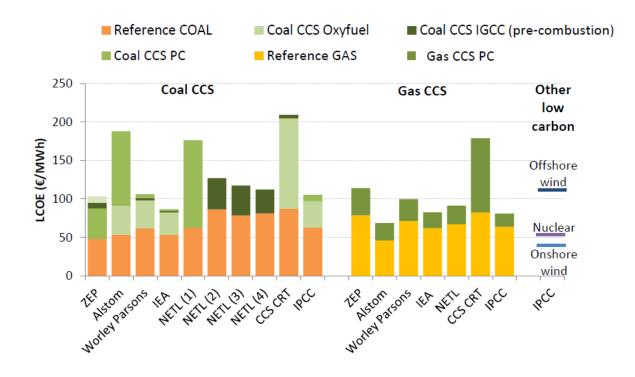
→ Further sites characterisation is crucial

EU potential CO₂ storage

EOR & utilisation (CCSU) Can provide near term incentive

Some potential for EOR in North Sea; CCSU still under investigation

→ More research needed, likely not game changer

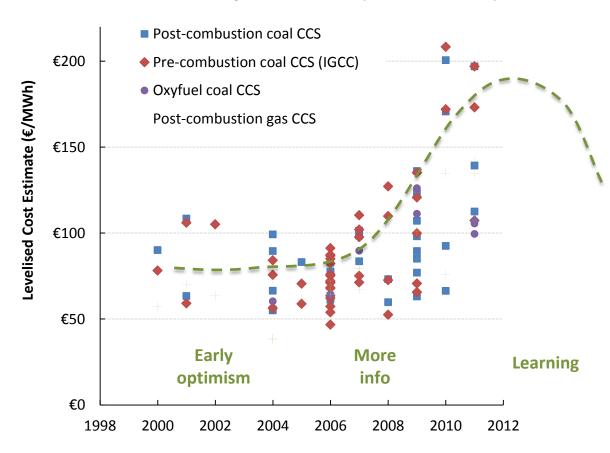


Costs

ELECTRICITY

- LCOE does not take into account back-up role of CCS
- Large variability of LCOEdepends on theoretical assumptions
- CCS is currently 30-120% more expensive than unabated plants
- Some estimates within range of offshore wind

Levelised cost of electricity (LCOE), €2013 values

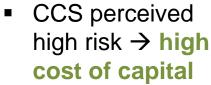


...Costs evolve across time

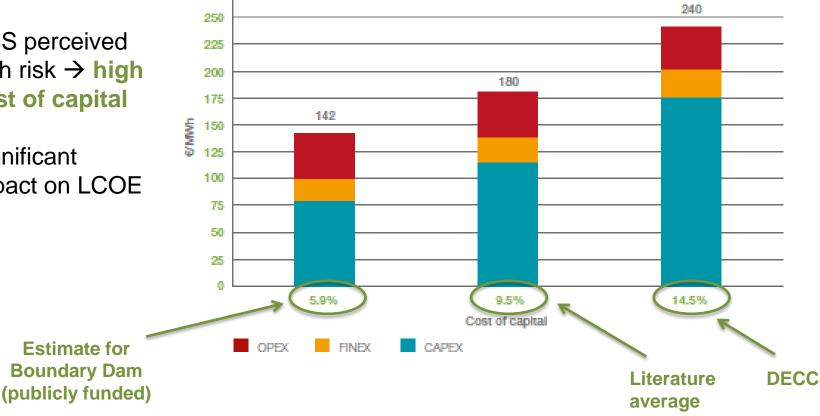
- Cost estimates have gone up: + 15-30% compared to 2010
- But expected cost reductions as technology evolves:
 14-40% by 2030.

Boundary Dam: -30% if built again

Estimates of CCS levelised cost of electricity since 2000 (€2013 values)



Finance


275

Estimated LCOEs based on the Boundary Dam project and assumptions on cost of capital

Significant impact on LCOE

Estimate for

Policy & regulation

Funding

- Limited EU funds (NER300, EEPR) €1.3 bn
- Almost no national funding programmes except UK €1.2 bn
- Uncertain size of future funds (e.g. NER400, cohesion funds), likely insufficient
- Low investment in CCS R&D (in 2012: EU €125 m; UK: €32 m)

Policy uncertainty

- No coordination across MS policies.
- Low commitment in EU 2030 framework & Energy Union

Regulatory issues especially on liability in case of leakage:

 Storage operators to cover leakage risk at (future) ETS prices: uncertain, potentially openended risk

Policy recommendations

- Policy incentives
- Coordination
- Regulation

Policies to incentivise CCS investment

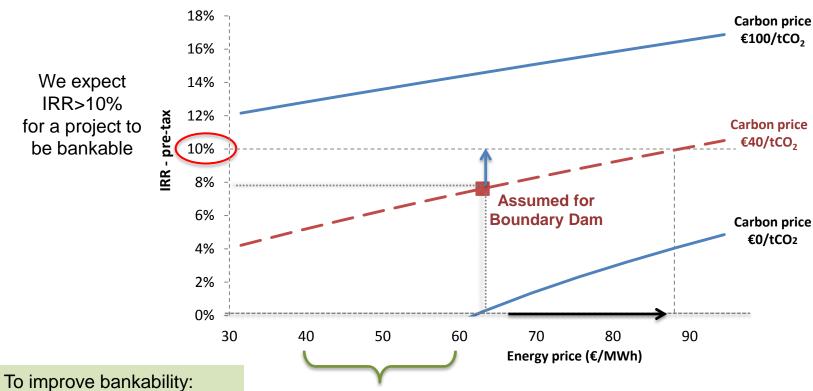
Carbon pricing alone is not enough:

€40-60/t CO₂ for coal power plants; >€100/t CO₂ for gas → unfeasible in next decade

Up to 2020:

- EU/national funds for CCS research & development (especially on BECCS)
- New funding mechanism for early stage projects (complementary to NER 400)

2020-2050:


- Carbon pricing &
- Financial incentives for CCS electricity generation
- Support from public financial institutions to leverage private investment to reduce cost of capital
- Mandatory targets
- Private sector fund
- Tailored incentives for industrial CCS

...Bankability depends on electricity and CO₂ prices

Sensitivity of IRR to carbon and electricity prices – based on Boundary Dam (coal)

- Raise carbon price
- Raise electricity price
- Both

EU power wholesale prices range: €40-60/MWh

Source: Authors, based on Boundary Dam

Ambitious and coordinated action

Piecemeal approach has failed to bring in 12 CCS plants by 2015:

Coordination at EU level or across 'coalition of willing' Member States.

Role for Member States:

Assess own potential for CO₂ capture and for storage.

Role for European Commission (in collaboration with Member States):

- Ensure coherence across national CCS policies
- Facilitate shared learning on CCS innovation.
- Set milestones to measure progress
- Facilitate and support infrastructure planning and development

Improved legislation

Increased certainty over size of liability for CO₂ leakage:

revision of CCS Directive or alternative legislation

- Initial cap on long-term liability for carbon dioxide leakage, to be reviewed as risks become better understood and private insurance mechanisms develop.
- Financial mechanism for damage remediation, such as a liability fund or private insurance.
- Special treatment of demonstration projects through a public liability scheme.
- Reliance on the Environmental Liability Directive, rather than the EU ETS, to determine the size of remediation costs caused by leakage from CO₂ storage sites.

Conclusions

- CCS is crucial in the EU Energy Roadmap 2050
- Progress so far has been too slow
- Key barriers: costs (e.g. electricity), financing, infrastructure and technology, inadequate policy and regulation

 Way forward: a new EU strategy to incentivise, coordinate and better regulate CCS action

Thank you.

For additional information please contact:

Samuela Bassi, Policy Analyst: s.bassi@lse.ac.uk

Rodney Boyd, Policy Analyst: r.boyd@lse.ac.uk

Chris Duffy, Policy Communications Manager: c.duffy@lse.ac.uk
Paul Fennell, Reader in Clean Energy: p.fennell@imperial.ac.uk

Niall Mac Dowell, Lecturer in Energy and Environmental Technology and Policy: n.mac-dowell06@imperial.ac.uk

