Business Cycles & CO₂ Emissions

Baran Doda

Grantham Research Institute, LSE

26 March 2015

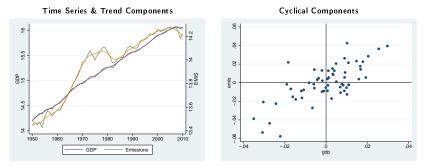
Green Growth and the New Industrial Revolution

L.B.Doda@lse.ac.uk Green Growth and the New Industrial Revolution

• • • • •

Context & motivation

- We know relatively little about the relationship between fluctuations in GDP and *CO*₂ emissions.
- The nature of the relationship is important for
 - making sure theoretical models resemble the real world
 - carbon pricing policy instruments in practice

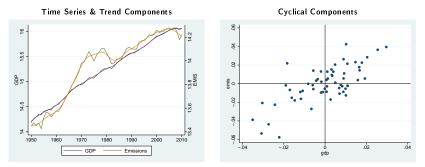

• • • • •

Context & motivation

- We know relatively little about the relationship between fluctuations in GDP and *CO*₂ emissions.
- The nature of the relationship is important for
 - making sure theoretical models resemble the real world
 - carbon pricing policy instruments in practice

Research topic

1. What are the key properties of fluctuations in GDP and CO_2 emissions in a given country?



US GDP & Emissions

2. Is there a systematic relationship between these properties and GDP per capita? (Annual data from 122 countries covering 1950-2011), and the set of the

Research topic

1. What are the key properties of fluctuations in GDP and CO_2 emissions in a given country?

US GDP & Emissions

2. Is there a systematic relationship between these properties and GDP per capita?
(Annual data from 122 countries covering 1950-2011)

Business cycle properties of emissions

FACT 1: Emissions are procyclical in a typical country.

FACT 4: Cyclical volatility of emissions is greater in countries with lower GDP per capita.

Business cycle properties of emissions

FACT 1: Emissions are procyclical in a typical country.

▶ Table

FACT 2: Procyclicality of emissions is greater in countries with higher GDP per capita.

▶ Table) (▶ Figure)

FACT 3: Emissions are cyclically more volatile than GDP in a typical country.

▶ Table

FACT 4: Cyclical volatility of emissions is greater in countries with lower GDP per capita.

Business cycle properties of emissions

FACT 1: Emissions are procyclical in a typical country.

▶ Table

FACT 2: Procyclicality of emissions is greater in countries with higher GDP per capita.

→ Table → Figure

FACT 3: Emissions are cyclically more volatile than GDP in a typical country.

🕩 Table 🕽

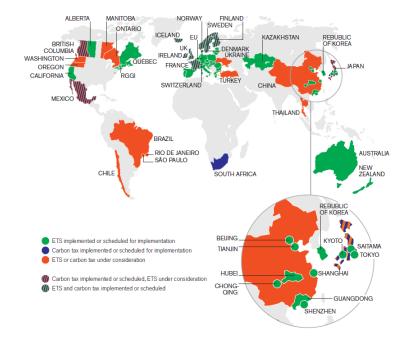
FACT 4: Cyclical volatility of emissions is greater in countries with lower GDP per capita.

Business cycle properties of emissions

FACT 1: Emissions are procyclical in a typical country.

▶ Table

FACT 2: Procyclicality of emissions is greater in countries with higher GDP per capita.


→ Table → Figure

FACT 3: Emissions are cyclically more volatile than GDP in a typical country.

► Table

FACT 4: Cyclical volatility of emissions is greater in countries with lower GDP per capita.

◆ Table ◆ Figure a ◆ Figure b

Source: World Bank (2014)

What are the facts good for?

- Implications for fixed instruments:
 - Carbon tax \implies emissions uncertainty
 - Emissions trading system \implies cost uncertainty
- Improving instrument performance
 - Indexed regulation

What are the facts good for?

- Implications for fixed instruments:
 - Carbon tax \implies emissions uncertainty
 - Emissions trading system \implies cost uncertainty
- Improving instrument performance
 - Indexed regulation

How to price carbon in good times...and bad!

Two broad policy implications:

1) Making the stringency of regulation responsive to economic fluctuations can decrease overall burden of regulation.

2) Whatever instrument is chosen to price carbon, it should apply to as large a group of emitters as possible.

- Linking previously independent ETSs can mimic responsive regulation and lead to overall gains.
- However, country-specific gains are not assured.

How to price carbon in good times...and bad!

Two broad policy implications:

1) Making the stringency of regulation responsive to economic fluctuations can decrease overall burden of regulation.

2) Whatever instrument is chosen to price carbon, it should apply to as large a group of emitters as possible.

- Linking previously independent ETSs can mimic responsive regulation and lead to overall gains.
- However, country-specific gains are not assured.

How to price carbon in good times...and bad!

Two broad policy implications:

1) Making the stringency of regulation responsive to economic fluctuations can decrease overall burden of regulation.

2) Whatever instrument is chosen to price carbon, it should apply to as large a group of emitters as possible.

- Linking previously independent ETSs can mimic responsive regulation and lead to overall gains.
- However, country-specific gains are not assured.

Conclusions

- Business cycle properties of emissions differ across countries.
- Climate change policy design and performance can be improved by conditioning policy on
 - business cycle fluctuations
 - cross-country differences in business cycle properties of emissions
 - other country characteristics

Business Cycles & CO₂ Emissions

Baran Doda

Grantham Research Institute, LSE

26 March 2015

Green Growth and the New Industrial Revolution

Email: L.B.Doda@lse.ac.uk

Table: Cyclicality of emissions

	Mean	Std. Dev.	Min	Max	Sample
$ar{ ho}_{ey}$	0.297***	0.244	-0.305	0.824	Full (N=122)
$ar{ ho}_{ey}$	0.260***	0.229	-0.305	0.725	Restricted (N=89)

Notes:

A bar over a variable indicates a sample mean. The null hypothesis that $\bar{\rho}_{ey}$ is equal to zero tested against a two-sided alternative in each case, where * implies p<0.10, ** implies p<0.05, and *** implies p<0.01.

Table: Cyclicality of emissions across countries

	Value	Sample
$ ho(ho_{ey}, GDP hoc_{2009})$	0.327***	Full (N=122)
$ ho(ho_{ey}, GDPpc_{2009})$	0.359***	Restricted (N=89)

Notes:

The null hypothesis that $\rho(\rho_{ey}, GDPpc_{2009})$ is equal to zero tested against a two-sided alternative in each case, where * implies p<0.10, ** implies p<0.05, and *** implies p<0.01.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

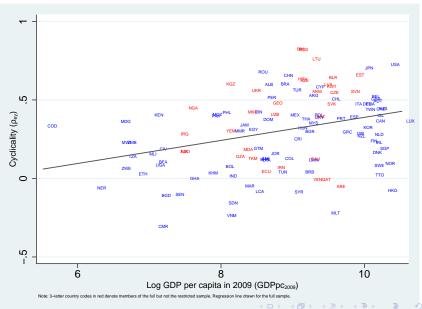
Table: Volatility of emissions

	Mean	Std. Dev.	Min	Max	Sample
$\bar{\sigma}_e$	0.078	0.064	0.018	0.358	
$\bar{\sigma}_y$	0.029	0.018	0.006	0.109	Full (N=122)
$ar{\sigma}_{rel}$	3.040***	2.492	0.701	17.221	
$ar{\sigma}_e$	0.068	0.051	0.018	0.285	
$ar{\sigma}_y$	0.023	0.011	0.009	0.081	Restricted (N=89)
$ar{\sigma}_{rel}$	3.082***	2.197	1.019	15.258	

Notes:

A bar over a variable indicates a sample mean. In the last row of each panel the null hypothesis that $\bar{\sigma}_{rel} = 1$ is tested against the alternative that $\bar{\sigma}_{rel} > 1$, where * implies p<0.10, ** implies p<0.05, and *** implies p<0.01.

Table: Volatility of emissions across countries


	Value	Sample
$ ho(\sigma_e, GDPpc_{2009})$	-0.220**	Full (N=122)
$ ho(\sigma_e, GDPpc_{2009})$	-0.316***	Restricted (N=89)
$ ho(\sigma_{rel}, GDPpc_{2009})$	-0.203**	Full (N=122)
$ ho(\sigma_{rel}, GDPpc_{2009})$	-0.235**	Restricted (N=89)

Notes:

The null hypothesis that a given correlation coefficient is equal to zero is tested against a two-sided alternative in each case, where * implies p<0.10, ** implies p<0.05, and *** implies p<0.01.

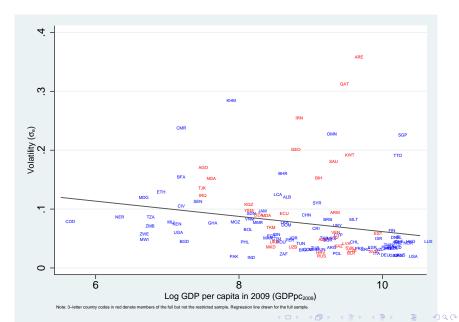
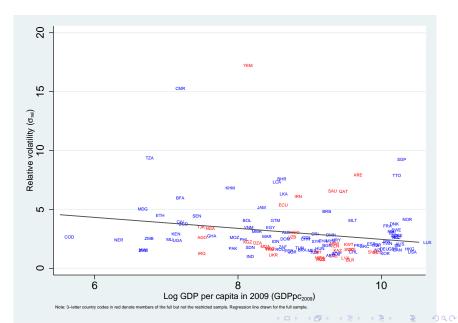

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □

Figure: Procyclicality of emissions increases with GDP per capita (Fact 2)



æ

Figure: Volatility of emissions decreases with GDP per capita (Fact 4)

Figure: Relative volatility of emissions decreases with GDP per capita (Fact 4)

