Climate Change, the Adoption of Improved Varieties, and Property Rights: Implications on Welfare

Mintewab Bezabih Grantham Research Institute Mare Sarr University of Capetown Gregor Singer Grantham Research Institute

Motivation

Adoption of improved varieties:

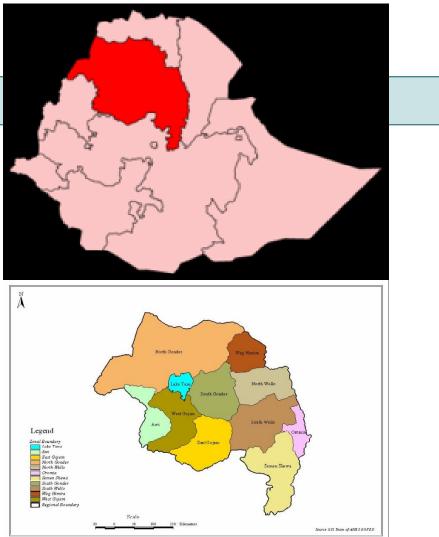
- a classical route to agricultural development, escape from poverty trap
- has the potential of yielding high returns
- India and Mexico
- uptake of improved varieties has been particularly slow in Africa; Ethiopia's figures even lower.
- Why do small scale African farmers not adopt farming technologies that have proven so effective elsewhere?
 - Constraints to adoption
 - Potential returns from the adoption

Previous studies

- empirical literature on a host of key factors affecting adoption.
 - including risk
- welfare literature: comparison of welfare outcomes between adopters and non-adopters
 recent, less emphasis on risk
- The role of secure property rights in adapting to climate change
 - very recent; limited coverage

Limitations

- The vast majority of previous studies
 - do not explicitly look into the effect of climate change on adoption and/or welfare.
- cross -section analyses (omitted variable bias).
- Very few studies link up the following findings:
 - well defined rights to land are known to increase incentives for technology adoption.
 - Land related investment: major adaptation strategies.


contributions

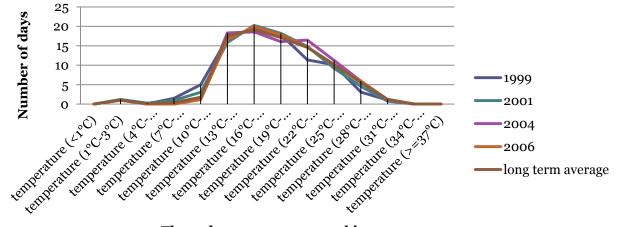
- understanding the dynamics in the adoption of improved seeds
 - Crops that have been focuses of international breeding programs (maize, wheat).
 - Staple crops that have lesser international significance (teff).
- Panel data features
 - enables for controlling for unobservables.
- Explicit consideration of the impact of climatic factors.
- investigating the role of the land certification program
 - understanding of the relationship between adaptation and property rights.

Data

Sustainable Land Management Survey 2005 & 2007

- Amhara regional state of Ethiopia
- Two Zones: East Gojjam and South Wollo
- 14 Kebeles (7 East Gojjam & 7 South Wollo)
- About 1720 households per survey year

Data :contd.


- Data source: rainfall and temperature observations
 - Ethiopian meteorology authority: monthly rainfall and daily temperature observations over 30 years for 8 stations close to the study villages.
 - Interpolated at a household level using the Inverse Distance Weighing method.

Temperature:

• Non linearity:

- Plant growth depends on the cumulative exposure to heat and precipitation during the growing season (agronomic studies).
- Plants cannot absorb heat below a specific threshold or extra heat above a ceiling, the effect of heat accumulation tends to be nonlinear.
- Range-based distribution

Distribution of summer temperature values over the short and long term

Three degree temperature bins

Analytical approach

- Assessment of the impact of climatic factors on
 Adoption of improved varieties
 Alternative welfare measures
- Accurate identification of:
 - The impact of adoption on welfare
 - The impact of land certification on adaptation

Empirical strategy

- (i) A semi-parametric method based on matching
- (iii) DiD: a parametric household fixed effects regression.
- (iii) marginal structural model (MSM)
- Other considerations
 - Test of the common trends assumption.
 - Alternative panel data estimations.

DiD regression estimator

• DiD enables controlling for non-trend based unobservables

$$y_{it} = \alpha_i + \beta \cdot a_{it} + \gamma_t + \delta \cdot Z_{it} + \epsilon_{it} \tag{3}$$

3/26/2015

Results: determinants of adoption

		Adoption	
	Maize	Wheat	Teff
Farmer training	1.013***	1.137***	1.469**
	(0.304)	(0.344)	(0.587)
Trust of head in traders	0.198	0.519***	-0.0609
	(0.124)	(0.140)	(0.273)
Degree of risk aversion	0.0513	0.00267	-0.114
_	(0.0865)	(0.103)	(0.203)
Summer average rainfall variability last five years (CV)	-13.04	-41.30***	-6.353
	(16.08)	(11.05)	(11.80)

Results: semi parametric estimation

	Production	Input productivity	Net income
Maize	174.7^{**}	23.3***	48.9 ^{**}
	(77.9)	(8.7)	(25.2)
Wheat	55.8	7.4	55.7
	(179.3)	(6.1)	(56.8)
Teff	-278.6	-9.7	-38.1
	(255.0)	(11.1)	(201.4))

Table 3: Matching DiD hybrid estimates

Notes: Bandwidth for kernel matching is 0.05. Standard errors are in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

Results: Mundlak's fixed effects regression -maize, wheat, teff

	(1)	(2)	(3)	(4)
	Production	Input productivity	Net crop income	Net crop income
Medium summer temp. (hours with 11 to 27 deg.)	0.420*** (0.0887)	0.0369*** (0.0136)	0.166*** (0.0292)	0.166*** (0.0292)
Rainfall mid-growing (mm in September)	4.326^{**}	(0.240)	1.657***	1.656***
	(1.697)	(0.269)	(0.482)	(0.482)
	(1)	(2)	(3)	(4)
	Production	Input productivity	Net crop income	Net crop income
Medium summer temp. (hours with 11 to 27 de	eg.) 0.919** (0.218)		0.245^{***} (0.0663)	0.245*** (0.0664)
Rainfall mid-growing (mm in September)	4.568*	0.218**	0.802	0.796
	(1)	(2)	(3)	(4)
	Production	Input productivity	Net crop income	Net crop income
Medium summer temp. (hours with 11 to 27 deg.)	0.580***	0.0219***	0.435***	0.433^{***}
	(0.0800)	(0.00805)	(0.0528)	(0.0528)
Rainfall mid-growing (mm in September)	-0.217	-0.0496	0.810	0.795
	(1.280)	(0.104)	(0.825)	(0.824)

Results: certification impacts

	(1)	(2)	(3)	(4)
	Production	Input productivity	Net crop income	Gross crop income
cert_temp	-0.600***	0.0123	-0.279***	-0.280***
	(0.186)	(0.0155)	(0.0951)	(0.0951)
cert_rain	4.859***	-0.476***	1.084	1.087
	(1.651)	(0.137)	(0.850)	(0.850)

conclusions

- Climate measures have distinctively varying impacts on the adoption and welfare of different crops.
- Certification is found to have climate mitigating impacts.
- Varying (monetary) benefits from adoption need to be studied in correspondence with findings from agronomic or plant breeding studies.
- The rationale behind sticking to local/landrace varieties, for reasons other than direct productivity benefits, needs to be studied further.