

Grantham Research Institute on Climate Change and the Environment

Green policies, clean technology spillovers and growth

Antoine Dechezleprêtre London School of Economics

Joint work with Ralf Martin & Myra Mohnen

Green policies as growth policies?

"Green policies can boost productivity, spur growth and jobs"

Angel Gurría, OECD Secretary-General

Climate policies and induced technical change

- Climate policies such as carbon pricing induce a switch of innovation activities away from dirty technologies and towards clean technologies
 - [Aghion, Dechezleprêtre, Hemous, Martin & van Reenen (JPE *forth.*), Noailly & Smeets (2014), Popp & Newell (2012), Hottenrott & Rexhaüser (2013)]
- What is the impact on innovating firms and on the economy?

Clean R&D push & private benefits

In addition to private benefits...

Public benefits

Double dividend?

If Clean > Dirty Spillovers

- A policy-induced redirection of innovation from dirty to clean technologies will reduce the net cost of environmental policies...
- ... and can even lead to higher economic growth
 - One of the theoretical motivations for the Porter hypothesis [Mohr (2002); Smulders & de Nooij (2003); Hart (2004, 2007); Ricci (2007)]

Research programme

- Compare relative degree of spillovers between clean and dirty technologies
 - Measure knowledge spillovers using patent citations
 - 2 sectors: transportation and electricity production
- Measure the economic value of these spillovers for potential growth impacts

Technology groups

Dirty	Group	Clean
Fossil fuel based (coal & gas)	Electricity generation	Renewables
Internal combustion vehicles	Automotive	Electric, Hybrid, Hydrogen

Measuring knowledge spillovers

Count citations made by future patents

- Trajtenberg (1990), Cabellero and Jaffe (1993), Jaffe and Trajtenberg (1996, 1998), Jaffe et al. (1998), Jaffe et al. (2000)
- Advantages
 - Mandatory for inventors to cite "prior art"
 - Data availability
 - Technological disaggregation

Data

- World Patent Statistical Database (PATSTAT)
 @ EU Patent Office
- 1.2 million inventions filed in 107 patent offices from 1950 to 2005, 3 million citations made to these inventions

Patent example

[56]

4.075,519 4.280.072

United States Patent 1191

Norway

Jul. 16, 1993

Inventor: Gustav Saether, Leksvik, Norway

Assignce: Lyng Elektronikk A-S, Vanvikar

Foreign Application Priority Data

References Cited

U.S. PATENT DOCUMENTS

Saether

[75]

[73]

[21]

[30]

[52]

[22] Filed:

[54] ELECTRIC MOTOR

Appl. No.: 92,092

Jul. 17, 1992 [NO]

Int. CL

U.S.

[45] Date of Patent: Nov. 29, 1994

FOREIGN PATENT DOCUMENTS 300126 1/1989 European Pat. Off. 2211030 12/1988 United Kingdom Primary Examiner-R. Skudy

Attorney, Agent, or Firm-Keck, Mahin & Cate [57]

ABSTRACT

An electric motor consisting of an inside stator part and a rotor part placed outside and concentrically in relation to the stator part, has a high number of permanent magnets (13) on the inside of the rotor part. The magnetic fields from these permanent magnets interact with magnetic fields between flux-conducting lamella blocks (30, 35) engaging the coil cores (8) on the stator. The lamella blocks (30, 35) are T- and T-shaped with top beams (25, 27) pointing in directions parallel to the axis, and the top beams (25, 27) are positioned to provide substantially circumferentially directed magnetic fields in flux gaps (36) therebetween. The magnetic fields in the flux gaps (36) between the top beams (25, 27) are reversed in successive order, and under time control from an electronic regulator.

10 Claims, 8 Drawing Sheets

Field of Search 310/162, 216, 75 R, 68 B, DIG. 6, 179, 180, [56] Re. 28,075 7/1974 Kavanaugh 3,783,313 1/1974 Mathur 4,075,519 2/1978 Mrcun 4,280,072 7/1981 Gotou et al. 5,200,776 4/1993 Sakamoto . **References** Cited **U.S. PATENT DOCUMENTS** Re. 28,075 7/1974 Kavanaugh 310/49 R 3,783,313 1/1974 Mathur 310/49 R 2/1978 Mrcun 310/67 R 7/1981 Gotou et al. .

5.200.776 4/1993 Sakamoto 310/68 B

FOREIGN PATENT DOCUMENTS

300126	1/1989	European Pat. Off.
2211030	12/1988	United Kingdom .

92.2844

310/49 R

310/49 R

310/67 R

310/68 B

H02K 37/00

310/49 R: 310/67 R:

310/49 R, 67 R, 156,

184, 254, 263, 42

310/68 B: 310/75 R: 310/156: 310/179

Spillover from US 5369324

United States Patent [19]

0000000000

[11] Patent Number: 5,690,185 [45] Date of Patent: Nov. 25, 1997

[54] SELF POWERED VARIABLE DIRECTION WHEELED TASK CHAIR

[75] Inventor: Michael P. Sengel, 110 S. Lorraine Rd., Wheaton, EL 60187-5833

[73] Assignce: Michael P. Sengel, Wheaton, Ill.

[21] Appl. No.: 410,685

Sengel

[22] Filed: Mar. 27, 1995

[51]	Int. CL6	B60K 1/02
[52]	U.S. Cl	
-	Edd of Courses	280/304.1

180/65.6, 65.8, 907, 214, 15, 21, 24.01, 24.07, 224, 255; 280/647, 648, 650, 250, 250.1, 304.1

[56] References Cited

U.S. PATENT DOCUMENTS

1,839,981	1/1932	Markey
2,362,616	11/1944	Cloud
3,111,181	11/1963	Yatich
3,534,825	10/1970	Reffle
4,461,367	7/1984	Eichinger et al
4,613,151	9/1986	Kielczewski 280/650
5,090,513	2/1992	Bussinger
5,183,133	2/1993	Roy
5,249,636	10/1993	Krase

275,248	1/1994 6/1994	Finch
369,324	11/1994	Saether
,482,125	1/1996	Pagett
FC	REIGN	PATENT DOCUMENTS
338 689	10/1989	European Pat. Off

330480 6/1930 United Kingdom .

Primary Examiner-Brian L. Johnson Assistant Examiner-Prank Vanaman

[57]

ABSTRACT

A Self Powered Variable Direction Wheeled Task Chuir, and a personal mobility device, providing additional ranges of motion in that it has an electrically powered height adjustable seat allowing the operator's seating position to range from standard table height seating to work beach or coanter top seating. Additionally and more importantly, the chair, will have directional movement capabilities well beyond typical wheel chairs, or other wheel driven personal mobility devices in that it will utilize electro-mechanical directionally pivoting propulsion, capable of not only forward, backward, and pivot turning capabilities, but also sideways movement or more precisely, movement in any direction, and a rotational movement as may be required by the operator.

6 Claims, 16 Drawing Sheets

Spillovers from spillovers...

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

РСТ

(19) World Intellectual Property Organization International Bureau

(10) International Publication Number

WO 2006/023539 A3

(72) Inventors: KRAMER, Kenneth, L. [US/US]; 712 N. County Road 850 E., Greensburg, IN 47240 (US).

(43) International Publication Date 2 March 2006 (02.03.2006)

- (51) International Patent Classification: A61G 5/10 (2006.01)
- (21) International Application Number:
- (22) International Filing Date: 16 August 2005 (16.08.2005)

(54) Title: HOME CARE EQUIPMENT SYSTEM

20 September 2004 (20.09.2004) US

200

240 202

242 230

206

232

-220

222

- (25) Filing Language:
- (26) Publication Language:
- (30) Priority Data: 60/601.924
- 60/611,407

WO 2006/023539 A3

226

DAHNEKE, Marshall, S. [US/US]; 69 Morton Way, Batesville, IN 47006 (US). WILCOX, Reed, N. [US/US]; PCT/US2005/029229 Ten Keeler Court, Ridgefield, CT 06877 (US). GAAG, Franz [DE/CH]; Route de Collex, 22, CH-1294 Genthod (CH). SCHWANEMANN, David, T. [US/US]; 1305 Hillcrest Road, Cincinnati, OH 45224 (US). TEUFEL, Rainer, B. [DE/US]; 490 Tucker Drive, Worthington, OH 43085 (US). KOLOSKI, Peter, A. [US/US]; 2719 Donna Drive, Upper Arlington, OH 43220 (US). LOTHROP, English Thornton, K. [US/US]; 77 West South Street, Worthington, OH 43085 (US). BERGER, Ryan, R. [US/US]; 1587 Grandview Avenue, No.B., Columbus, OH 43212 (US). English (74) Agent: CONRAD, Richard, D.; Barnes & Thornburg LLP, 11 South Meridian Street, Indianapolis, IN 46204 (US)16 August 2004 (16.08.2004) US (81) Designated States (unless otherwise indicated, for every

(71) Applicants and

kind of national protection available): AE, AG, AL, AM,

[Continued on next page]

(57) Abstract: A system for assisting a person of limited mobility in moving from room to room within a home and performing essential daily activities includes a personal mobility device (40, 100, 1700, 1800, 2000) which includes transfer drivers (164) which engage a transfer system (210) to transition from a first elevation to a second elevation. -250

Ground-breaking spillovers from clean tech

COMBINED SOLAR POWERED FAN AND HAT ARRANGEMENT FOR MAXIMIZING AIRFLOW THROUGH THE HAT

SOLAR POWERED, SILENT, ENERGY EFFICIENT BABY ROCKER

Counting citations received by clean & dirty patents

 Table 2: Mean number of citations

	Clean	Dirty	Diff.
Citations received	3.399 (8.256)	$2.295 \\ (5.921)$	1.104*** [0.016]
		50% hi	gher

Citations flowers

Citations to 1000 dirty....

...and 1000 clean innovations

Econometric analysis

- Potential issues:
 - Recent increase in citations (web searches)
 - Clean patents younger
 - Differences across patent offices
 - Citation pool larger for dirty
- Regression approach

$$Cites_i = \exp(\beta Clean_i + \gamma X_i + \epsilon_i)$$

Not all citations are equal

- Economic value of citations vary greatly
 - Weight citing patents on the basis of how many times they are themselves cited
 - Based on Google's "Page rank" algorithm

Results

	(1)	(2)	(3)	(4)	(5)	(6)
Dep. var.	C	itations recei	ived		PatentRank	
Clean invention	0.398***	0.392***	0.430***	0.267***	0.264***	0.292***
	(0.015)	(0.015)	(0.014)	(0.013)	(0.014)	(9.014)
Number of patents		-0.092***	-0.057***		-0.052***	- 031***
		(0.00°)	(0.007)		(0.006)	0.005)
Family size			0.073^{***})67***
т			(0.004)			J.003)
			(0.026)		,	Y L de de de
Created	20/ chillo	iorc	(0.030) 0.047***	1200	(chillo	iorc *
Granied +4	5% Shiin	/ers	(0.021)	+297	ο ερποι	/ers
			(0.031)			
Patent office-by-year-by-sect	or yes	yes	yes	yes	yes	yes
Month fixed effect	yes	yes	yes	yes	yes	yes
Obs.	1,149,988	1,149,988	1,149,988	1,149,988	1,149,988	1,149,988

Notes: Robust standard errors in parentheses (* p < 0.05, ** p < 0.01, *** p < 0.001). The dependent variable is the total number of citations received excluding self-citations by inventors (columns 1 to 3) and the PatentRank after 20 iterations (columns 4 to 6). All columns are estimated by fixed-effects Poisson pseudo-maximum likelihood.

Robustness

- Results robust to multiple sensitivity checks
- Results true both for energy and transportation
- Spillovers higher for clean both nationally and internationally
- Spillovers higher for clean both intra and extra sector

The drivers – comparing clean to other emerging technologies

The value of clean and dirty spillovers

- What is the economic value of spillovers to knowledge recipients?
- We estimate the impact of spillovers on the market value of firms (discounted future profits): $V_{it} = q_t (A_{it} + \beta K_{it})^{\sigma}$

Firm i's stock market value in year t

Knowledge assets

Knowledge assets = firm's own R&D activity + spillovers from the economy

Physical assets

Data

- Firm-level patent data + financial data
- 8735 firms, 2000-2011

- Market value, assets, R&D, patents

Citations between firms to capture knowledge spillovers

Results

	(1)	(2)	(3)	(4)	(5)
Dep. var.]	n Tobin's Q	Ş	
R&D / assets	0.438***	0.436***	0.427***	0.433***	0.428***
	(0.029)	(0.029)	(0.029)	(0.029)	(0.029)
Patent / $R\&D$	-0.097**	-0.070	-0.062		-0.062
	(0.044)	(0.044)	(0.045)		(0.045)
Fwd citations / patent		0.074***	0.031***		0.029***
		(0.006)	(0.010)		(0.010)
Knowledge spillover	S		0.059***		
Ritowiedge Spilloven	5		(0.011)		
Closp spillovors				0.146***	0.125***
Clean spillovers				(0.037)	(0.037)
Dintry amillaryona				0.053	0.041
Dirty spinovers				(0.033)	(0.033)
Other enilloyone				0.080^{***}	0.056^{***}
Other spinovers				(0.007)	(0.011)

Where do spillovers occur?

- Who captures these spillovers and the benefits that go with them?
- On average, 50% of knowledge spillovers in clean occur within the country of the inventor
 - The figure is smaller for small open economies (ex: UK 20%)

Good news from unilateral policy perspective

Conclusion & policy implications

- Clean innovations generate significantly more spillovers than dirty technologies; the marginal value of clean spillovers is also greater
 - This comes from the relative novelty of clean technologies
 - Climate policies that induce a switch away from dirty and towards clean innovation can have economic co-benefits
 - Crowding out of dirty is key
- Spillovers are localized
 - This might lower concerns that unilateral climate policies lead to negative competitiveness effects
 - The share of benefits from innovation will be larger than benefits from avoided climate damage

Road ahead

Quantify and simulate the effect of clean policies on economic growth

Determine optimal amount of public R&D support to new techs (including clean)

How to encourage innovation specifically in clean/new techs?

How to ensure crowding out of dirty?

Back-up

Maybe things aren't so binary?

Grey (less dirty) innovations: Making fossil fuels more efficient

→ Cars: fuel injection technologies

→ Energy generation: "cleaner" coal (CHP, IGCC...)

Clean & dirty patents

- Usage of patent classification system (IPC & ECLA)
- OECD & EPO have been working on identifying clean patents
- Most recently Y02: A new classification system for climate change related technologies
 - Input from examiners and experts
 - Backward re-classification of patents

Related literature

- 1. Measurement and drivers of knowledge spillovers using patent citations
 - [Griliches (1992); Trajtenberg (1990); Jaffe et al (1993); Henderson, Jaffe and Trajtenberg (1996); Thompson and Fox-Kean, (2005)]
 - A few papers on energy technologies [Popp and Newell (2012); Nemet (2012); Bjorner and Mackenhauser (2013); Verdolini and Galeotti (2011), Noailly & Shestalova (2013)] but no paper on clean vs dirty technologies
- 2. Impact of knowledge spillovers on firms' productivity and long run growth [Romer (1990); Aghion and Howitt (1996)]
 - Endogenous growth models with clean technologies and environmental policies [Smulders & de Nooij (2003); Hart (2004, 2007), Ricci (2007)]

Classification groups for car

	Clean		Grey		Dirty
B60K ⊥	Arrangement or mounting of electrical propulsion units	$F02M \ 39/71$	Fuel injection apparatus	F02B	Internal-combustion piston engines;
B60K 6	Arrangement or mounting of hybrid propulsion systems	F02M 3/02-05	Idling devices for carburettors l		combustion engines in genera
	comprising electric motors and internal combustion		preventing flow of idling fue	F02D	Controlling combustion engines
B60L 3	Electric devices on electrically-propelled vehicles for	F02M 23	Apparatus for adding secondary	F02F	Cylinders, pistons, or casings for
	safety purposes: Monitoring operating variables,		air to fuel-air mixture		combustion engines; arragement
	e.g. speed, deceleration, power consumption	F02M 25	Engine-pertinent apparatus for		of scalings in combustion engines
B60L 7	Dynamic electric regenerative braking		adding non-fuel substances	F02M	Supplying combustion engines
B60L 11	Electric propulsion with power supplied within the vehicle		or small quantities of secondary		with combustiles mixtures
B60L 15	Methods, circuits, or devices for controlling the		fuel to combustion-air, main fuel,		or constituents thereof
	traction-motor speed of electrically-propelled vehicles		or fuel-air mixture	F02N	Starting of combustion engines
B60R 16	Electric or fluid circuits specially adapted for vehicles	F02D 41	Electric control of supply of combustion	F02P	Ignition (other than compression
	and not otherwise provided for		mixture or its constituents		ignition) for internal-combustion engines
B60S 5	Supplying batteries to, or removing batteries form	F02B 47/06	Methods of operating engines involving		
B60W 10	Conjoint control of vehicles sub-units of different		adding non-fuel substances or anti-knock		
	type or different function		agents to combustion		
B60W 20	Control systems specially adapted for hybrid vehicles		air, fule, or fuel-air mixtures of engines,		
H0⊥M	Fuel cells		the substances including non-airborne oxygen		

Classification groups for electricity

	Clean		Grey		Dirty
Y02E10	Energy generation through renewable energy sources	Y02E50	Technologies for the production of fuel of	C10G1	Froduction of liquid hydrocarbon mixtures from oil-sh
Y02E30	Energy generation of nuclear origin		non-fossil origin		oil-sand, or non-melting solid carbonaceous or similar
E 02B 9/08	Tide or wave power plants	Y02E20/10	Combined combustion		materials, e.g. wood, coal, oil-sand, or the like ${ m B03B}$
F03B13/10-26	Submerged units incorporating electric generators	Y02E20/12	Heat utilisation in combustion	CIOLI	Fuel
	or motors characterized by using wave or tide energy $% {\displaystyle \int} {\displaystyle \int {\displaystyle \int$		or incineration of waste	C10J	Production of fuel gases by carburetting air or other g
703D	Wind motors	Y02E20/14	Combined heat and power generation	E02B	Ilydraulic engineering
F03G4	Devices for producing mechanical power from	Y02E20/16	Combined cycle power plant, or	F01K	Steam engine plans; steam accumulators;
	geothermal energy		combined cycle gas turbine		engine plants not otherwise provided for;
703G6	Devices for producing mechanical power	Y02E20/18	Integrated gasification combined cycle		engines using special working fluids or cycles
	from solar energy	Y02E20/30	Technologies for a more efficient	F02C	Gas-turbine plants; air intakes for jet-propulsion
703G7/05	Ocean thermal energy conversion		combustion or heat usage		plants; controlling fuel supply
724J2	Use of solar heat, e.g. solar heat collectors	Y02E20/32	Direct C02 mitigation		in air-breathing jet-propulsion plants
724J3/08	Froduction or use of heat, not derived	Y02E20/34	Indirect C02 mitigation, by acting	F22	Steam generation
	from combustion using geothermal heat		on non C02 directly related matters of	F23	Combustion apparatus; combustion processes
726B3/28	Drying solid materials or objects by processes		the process, more efficient use of fuels	F24J	Production or use of heat not otherwise provided for
	involving the application of heat by radiation,	Y02E20/36	Heat recovery other than air pre heating	F27	Furnaces; kilns; ovens; retorts
	e.g. from the sun			F28	Heat exchange in general

Control variables

- Patent office **x** year **x** technology fixed effects
- Past patent stock in the same technological class (4 digit IPC)

Accounting for size of "citation pool"

- Family size
- Triadic
- Granted

Controls for private value of innovation

"Patent Rank"

Number of patents j cites (Backward cites)

$$r(i) = \frac{\alpha}{N} + (1 - \alpha) \sum_{j \in F(i)} \frac{1}{N}$$

Defines a system of linear equations. Solve recursively Set of patents citing I (Forward cites)

Results by sector

		(1)	(2)	(3)	(4)
	Sector	Transport	Electricity	Transport	Electricity
	Dep. var.	Citatio	n count	Paten	tRank
	Clean invention	0.347***	0.488***	0.219***	0.333***
		(0.018)	(0.023)	(0.014)	(0.023)
	Number of patents	-0.060	-0.047***	-0.048***	-0.019**
		8)	(0.009)	(0.006)	(0.007)
			0.067^{***}	0.062^{***}	0.060***
St	ronger effects in e	lectricity	(0.004)	(0.007)	(0.004)
			0.432^{***}	0.279^{***}	0.252^{***}
		(0.056)	(0.050)	(0.045)	(0.041)
	Granted	1.134***	0.725^{***}	0.620***	0.381***
		(0.034)	(0.024)	(0.027)	(0.017)
	Observations	419,959	748,918	419,959	748,918

Clean, grey & dirty

	(1)	(2)	(3)	(4)
Sample	Clean vs.	Clean vs.	Grey vs.	Clean vs.
	Grey and true Dirty	Grey	True Dirty	True Dirty
Dep. var.		Citations reco	eived	
Clean/Grey invention	0.430***	0.191***	0.307***	0.502***
	(0.014)	(0.016)	(0.016)	(0.015)
Number of patents	-0.057***	-0.051***	-0.114***	-0.060***
	(0.007)	(0.00)	(0.005)	(0.007)
Family size	0.		72***	0.071^{***}
	(Clean >	Grey > Dir	CY 004)	(0.004)
Triadic	0.456^{***}	0.481^{***}	0.454^{***}	0.441^{***}
	(0.036)	(0.055)	(0.037)	(0.035)
Granted	0.947^{***}	0.997^{***}	0.977^{***}	0.868^{***}
	(0.031)	(0.035)	(0.033)	(0.027)
Observations	$1,\!149,\!988$	326,942	978,179	1,006,996

Robustness

- Compare clean & dirty patents developed by same inventor / company
- Look at university/company/individuals patents
- Control for R&D subsidies
- Citations made by *applicants* only (not by *examiners*)
- Different subsamples (triadic patents, US, EPO)
- Correct for self-citations within applicant
- Adding controls (# IPC codes, # inventors, # claims, # citations made, etc)

Maybe it's a network effect?

inn

С

di

			(1)	(2)	
	-	Dep. var.	Citations received		
Sample of		Clean invention	0.274^{***}	0.336***	
nventors		Number of patents	-0.096***	-0.081***	
oing both		Family size	(0.004) 0.038^{***}	(0.006) 0.094^{***}	
ly a clean		Initial of particular (0.004) Family size 0.038*** (0.002) 0.866*** (0.012)	(0.006) 0.644^{***}		
		Granted	(0.012) 1.234^{***}	(0.026) 1.008^{***}	
		Inventor final affect	(0.007)	(0.011)	
		Obs.	697,192	997,192	

Maybe it's the companies?

		(1)	(2)
	Dep. var.	Citation	s received
Sample of innovations by	Clean invention	0.400^{***} (0.000)	0.380^{***} (0.000)
companies doing both dirty & clean	Number of patents	-0.038^{***}	-0.067***
	Family size	(0.000) 0.091^{***} (0.000)	(0.000) 0.102^{***}
	Triadic	(0.000)	(0.000) 0.446***
	Granted	(0.000) 1.023^{***}	(0.000) 1.000***
	Fixed effect	(0.000) no	(0.000) yes
	Observations	435,584	435,584

- -

- -

_

Clean driven by subsidies already?

- Climate change has been a priority for governments for a while
- Energy efficiency and security has been an issue for even longer
- Clean innovations might already have been driven by subsidies?

Regress on R&D subsidies

- IEA collects data on clean R&D subsidies by governments for 28 countries
- Allocate spending to innovations on the basis of location of inventors

 $GovernmentSpending_i = \overset{\circ}{a}_{j \mid Inventors(i)} GovernmentSpending_{c(j)}$

Control for R&D subsidies

	(1)	(2)	(3)	(4)	(5)	(6)
Sample	A	x 11	Tran	isport	Electricity	
Dep. var.	Citations received					
Clean invention	0.493***	0.507***	0.253**	0.253***	0.483***	0.497***
	(0.026)	(0.026)	(0.077)	(0.079)	(0.026)	(0.026)
Government spending		0.034***		-0.001		0.032***
		(0.007)		(0.033)		(0.007)
Number of patents	-0.007	-0.006	-0.070***	-0.070***	-0.006	-0.005
	(0.009)	(0.009)	(0.020)	(0.020)	(0.009)	(0.009)
Family size	0.067***	0.067^{***}	0.054^{***}	0.054***	0.066^{***}	0.066^{***}
	(0.004)	(0.004)	(0.012)	(0.012)	(0.004)	(0.004)
Triadic	0.452***	0.450***	0.474^{***}	0.474^{***}	0.447^{***}	0.445^{***}
	(0.046)	(0.046)	(0.093)	(0.094)	(0.046)	(0.047)
Granted	0.689***	0.688^{***}	0.776***	0.776***	0.696***	0.695***
	(0.025)	(0.025)	(0.055)	(0.055)	(0.026)	(0.026)
Obs.	496,788	496,788	16,703	16,703	488,896	488,896

Universities are subsidy channel

	(1)	(2)
Dep. var.	Citation	s received
Clean invention	0.421***	0.423***
	(0.014)	(0.015)
Number of patents	-0.047***	-0.050***
	(0.006)	(0.006)
Family size	0.070***	0.067***
	(0.003)	(0.003)
Triadic	0.450***	0.432***
	(0.034)	(0.034)
Granted	1.005***	0.992***
	(0.031)	(0.032)
University	. , ,	0.429***
		(0.022)
Firms		0.271^{***}
		(0.018)
Obs.	826,078	826,078

Reference category: Innovations filed by individuals

Universities / firms / individuals

	(1)	(2)	(3)		
Applicant	University	Firm	Individual		
Dep. var.	Citations received				
Clean invention	0.396***	0.418***	0.459***		
	(0.003)	(0.016)	(0.030)		
Number of patents	-0.100***	-0.041***	-0.068***		
	(0.014)	(0.007)	(0.011)		
Family size	0.072^{***}	0.067***	0.377***		
	(0.005)	(0.003)	(0.042)		
Triadic	0.152^{***}	0.454^{***}	-0.870		
	(0.043)	(0.035)	(0.613)		
Granted	0.775^{***}	1.022***	0.131***		
	(0.047)	(0.032)	(0.036)		
Obs.	$36,\!186$	706,517	75,487		

Clean advantage slightly smaller for university patents

Cleanness or novelty? Clean vs CCS

	(1)	(2)
Dep. var.	Citations received	PatentRank index
Clean invention	-0.083*	0.045
	(0.034)	(0.023)
Number of patents	0.037^{***}	0.057^{***}
	(0.010)	(0.010)
Family size	0.065^{***}	0.055^{***}
	(0.006)	(0.005)
Triadic	0.477^{***}	0.271^{***}
	(0.062)	(0.047)
Granted	0.681^{***}	0.338^{***}
	(0.030)	(0.019)
Observations	106,700	106,700

Controlling for generality & originality

	(1)	(2)	(3)	(4)	-	
Dep. var.		Citations	s received		-	
Clean invention	0.365***	0.332***	0.363***	0.332***		
	(0.012)	(0.012)	(0.012)	(0.012)		-5%
Number of patents	-0.044***	0.007	-0.025***	0.006		
	(0.005)	(0.006)	(0.005)	(0.005)		
Family size	0.043***	0.039***	0.041***	0.039^{***}		
	(0.002)	(0.002)	(0.002)	(0.002)		
Triadic	0.296^{***}	0.264^{***}	0.287^{***}	0.264***		
	(0.014)	(0.013)	(0.014)	(0.013)		
Granted	0.673***	0.591^{***}	0.659^{***}	0.592***		
	(0.023)	(0.021)	(0.022)	(0.021)		
Generality		1.149***		1.164***		
		(0.019)		(0.019)		
Originality			0.371***	-0.036*		
			(0.015)	(0.015)	_	
Obs.	281,978	281,978	281,978	281,978	-	

Further robustness

- Five-year window
- Citations made by *applicants* only (not by *examiners*)
- Extreme outcomes
- Different samples: inventions receiving at least one citation, Triadic patents, US or EPO patent office
- Correct for self-citations within same applicant
- Adding controls (# IPC codes, # inventors, # claims, # citations made, etc)

Cross-sectoral spillovers

	(1)	(2)	(3)
Dep. var.	Citations received	Intra-sectoral	Inter-sectoral
		citations	citations
Clean invention	0.430***	0.457***	0.247***
	(0.014)	(0.015)	(0.019)
Number of patents	-0.057***	-0.053***	-0 081***
	(0.007)	(0.007)	0.006)
Family size	0.073^{***}	0.074***	.066***
	(0.004)	(0.004)	(0.003)
Triadic	0.456^{***}	0.48^{-5}	0.212^{***}
	(0.036)		(0.040)
\sim			
Good n	ews from grov	wth perspec	tive
Obs.	1,149,900	1,149,900	1,149,900

National & international spillovers

	(1)	(2)	(3)
Dep. var.	Citations received	Citations received	Citations received
		within country	across country
Clean invention	0.430***	0.423***	0.247***
	(0.014)	(0.017)	(0.019)
Number of patents	-0.057***	-0.057***	-0.081***
	(0.007)	(0.008)	(0.006)
Family size	0.073^{***}	0.062***	0.066^{***}
	(0.004)	(0.00°)	(0.004)
Triadic	0.456^{***}	0.3ϵ	0.212^{***}
	(0.036)		(0.040)
G Good news fro	om unilateral & mu	ultilateral policy pe	erspective
06.	. ,		_,,,,

The (unsurprising) deep reasons

Controlling for the age of technology

	(1)	(2)	(3)	(4)		
Dep. var.		Citations received				
Clean invention	0.410***	0.381***	0.363***	0.354^{***}	-20%	
	(0.013)	(0.013)	(0.013)	(0.013)	1,	
Number of patents	-0.094***	-0.052***	-0.043***	-0.046***		
	(0.004)	(0.005)	(0.005)	(0.005)		
Family size	0.070***	0.067***	0.068***	0.068^{***}		
	(0.004)	(0.003)	(0.003)	(0.003)		
Triadic	0.448***	0.431***	0.406***	0.397***		
	(0.035)	(0.035)	(0.034)	(0.034)		
Granted	0.939***	0.929***	0.917***	0.912***		
	(0.031)	(0.030)	(0.030)	(0.030)		
Age of tech field		-0.177***	0.194***			
		(0.009)	(0.034)			
Age of tech field 2			-0.023***			
			(0.002)			
Age of tech dummies	no	no	no	yes		
Observations	$1,\!149,\!237$	$1,\!149,\!237$	$1,\!149,\!237$	1,149,237		

Tobin's Q equation

Decomposing knowledge spillovers

